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The isovector spin-flip M1 strength function in the deformed heavy nuclei '"Gd and '"U is cal-

culated in the quasiparticle random-phase approximation. Interaction parameters are adjusted to

reproduce the energies of isobaric-analog and Gamow-Teller excitations observed in (p, n) charge-

exchange reactions. A phenomenological spreading width for decay into background 2p2h states is

introduced and adjusted to reproduce the M1 spin-flip strength function recently observed by elastic

scattering of tagged photons on Zr and Pb. %'ith the model parameters fixed in this fashion, our

calculations predict large quantities of spin-flip M1 strength (10-20 p,&) between 5 and 10 Mev ex-

citation in "Gd and "U; it is strongly fragmented and should be observable by tagged-photon elas-

tic scattering and proton inelastic scattering but probably not in high resolution inelastic electron

scattering.

I. INTRODUCTION

The magnitude, location, and distribution of magnetic
dipole strength in heavy nuclei were almost unknown be-
fore 1980. Theoretical studies predicted relatively strong
isovector 1 excitations in nuclei wherein spin-orbit
partners of large angular momentum are on opposite
sides of the Fermi surface.

In the past ten years a series of pioneering experimen-
tal studies has altered this situation radically. The main
components of the long-missing M1 strength have now
been found in at least a few heavy nuclei. The crucial ex-
periments fall into three categories with different probes
and a variety of energies.

(1) The discovery and study of the b, T, = —1 Ml spin-
flip or Gamow-Teller (GT) strength by Goodman and col-
laborators' at the Indiana University Cyclotron Facility
in 100—200 MeV (p, n) charge-exchange reactions.

(2) The discovery and study of orbital isovector Ml
strength in deformed nuclei by Richter and collabora-
tors, of the University of Darmstadt Linear Electron
Accelerator in high-resolution studies of the inelastic
scattering of 20—40 MeV electrons.

(3) Identification of widely fragmented Is. T, =0 spin-flip
isovector M1 strength by Laszewski and collaborators '

at the University of Illinois Electron Accelerator in the
elastic scattering of 5 —10 MeV polarized tagged photons.

Much experimental work remains to be done since M1
strength in heavy nuclei is now known to be spread over
many states and has been clearly identified in rather few
nuclei. However, a consistent picture is beginning to
emerge. It is in good general agreement with rather
1ong-standing theoretica1 predictions. In this paper we
discuss quasiparticle random-phase approximation
(QRPA) calculations for spin-flip isovector Ml strength
in a variety of nuclei, treating both the AT, = —1

Gamow-Teller excitations and the AT, =0 inelastic exci-
tations.

In only a very few cases is the majority of the calculat-
ed M1 strength concentrated in a single state. Well-
known examples of such sharp Ml states are ' C (Ref. 5)
and Ca. However in heavier nuclei like Zr and Pb
the experimental situation is less clear. Calculations in
the one-particle one-hole random-phase approximation
(1p lb RPA) including only nucleonic degrees of freedom
predict one strong 1+ state around 8 —9 MeV in Zr with
predominant configuration v(g7/2g9/p ). In Pb an even
stronger (isovector) 1+ resonance (strength roughly three
times that of the corresponding excitation in Zr) is pre-
dicted in the region between 7 —8 MeV with dominant
configurations tr(h9/2h '['[/p ) with v(i» /i2i3/p ). These
are nearly pure spin-flip excitations and can be therefore
excited by real and virtual' ' photons and by protons
and neutrons. ' On the other hand, 1+ transitions dom-
inated by the convection current (orbital) contribution
are excited very weakly in proton inelastic scattering.
Spin-flip states are strong as predicted by 1plh RPA cal-
culations with much of the strength concentrated in one
single level would have been detected easily in inelastic
electron and proton scattering; none have yet been
detected in these reactions.

In heavy nuclei, however, in the energy region where
those 1+ states are expected, the density of two-particle
two-hole (2p2h) states is high. Therefore the 1p 1h
configurations couple strongly with the 2p2h
configurations, fragmenting the M1 strength in the ex-
pected energy region. In addition, the M1 strength is fur-
ther reduced by coupling to non-nucleonic degrees of
freedom (admixture of b, particle nucleon-hole
configurations). Such calculations have been performed
for Zr and Pb some years ago by Cha et a/. " Here
it turned out that these additional effects reduce the total
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M1 strength below 11 MeV by roughly a factor of 2 com-
pared to the 1p1h RPA results. The recent experiments
of Laszewski et al. ' with polarized tagged photons
seem to support these predictions.

Information on M1 strength in deformed nuclei is still
sparse. Predominantly orbital M1 excitations have been
found by (e,e') at the Darmstadt Linear Electron Ac-
celerator and by nuclear resonance fluorescence' at
around 3 MeV in rare earth nuclei. The existence and lo-
cation of such orbital M1 strength is rather well under-
stood. In a recent paper' it was shown that the purity of
the low energy orbital M1 excitations are a consequence
of the strongly repulsive residual particle-hole interaction
in the spin-isospin channel. This repulsive interaction
pushes the dominant spin-flip M1 strength up to excita-
tion energies of 5 —10 MeV leaving the orbital com-
ponents behind close to their unperturbed position. The
predicted spin-flip strength between 5 and 10 MeV for de-
formed nuclei has not yet been found. In the original pa-
per the single-particle wave functions used contain an er-
ror noted and corrected in the erratum to Ref. 13. The
distribution of orbital strength is only slightly influenced
and the qualitative interpretation of both orbital and
spin-flip modes is unaltered. Similar conclusions have
been reached by Dietrich et al. '

In this paper we investigate in detail the spin-flip M1
strength in deformed nuclei, focusing on ' Gd and U.
The connection between the various sorts of M1 strength
studied in (p, n) charge exchange and in elastic electron
and proton scattering can be seen from the structure of
the (nonrelativistic) nuclear effective Ml operator. The
isovector part of this operator is

sidual interaction in the spin-isospin channel. In Sec. IV
we give the results of the model for the AT, =0 spin-flip
M1 strength distribution. These results will be discussed
in the light of experimental and theoretical knowledge of
the corresponding spin-flip strength in Zr and Pb.
Finally, in our summary, we argue that a consistent
theoretical picture of M1 strength in nuclei is emerging,
based on the mean-field description of nuclei and on
we11-established properties of the residual interaction.

II. COMMENTS ON THE QUASIPARTICLE
RANDOM-PHASE APPROXIMATION (QRPA)

The calculations of the M1 and GT strength functions
have been performed in the QRPA. This successful mod-
el of the nuclear many-body system is based on the
mean-field approximation. In this connection, the de-
formed rare earth and actinide nuclei are of special in-
terest because they are well described by the unified mod-
el, in which independent particles in a deformed mean
field rotate adiabatically. For the deformed intrinsic
wave function, the total angular momentum j is no longer
a good quantum number, only its projection K on the
symmetry axis, and the parity. The selection rules for
Ml transitions are AK"=1+ or bK"=0+. In QRPA,
the state vectors of excited states consist of two parts:
the first one is a superposition of two-quasiparticle excita-
tions built upon a correlated ground state, the other one
results from the destruction of two quasiparticles in a vir-
tual four-quasiparticle ground-state fluctuation:

A

Mq= g g( l(tq(i)+ —,'(g,'~' —g, "')(Mo~)q,
~m ) =

—,
' g (XP,a&a + YP„a&a„)~0),

A, ,p

(2.1}

where the Gamow-Teller operator is

(Mo~)„'= g rr; t„'(i ) . (1.2)

The separation into orbital and spin-flip parts is evident.
The b, T, =@=—1 isospin component is active in (p, n)
charge exchange. Here, although the GT excitation has
three isospin components (T = To —1, To, To+1 with To
the target isospin) 99% of the strength is in the lowest-T
(To —1) component. The To component is excited in
elastic electron or proton scattering. Thus the bT, =O
spin-flip strength seen in inelastic scattering is an isospin
component of the GT excitation not accessible in (p, n }

charge exchange. We note also that the AT, =O orbital
part of the isovector M1 operator is

(MO~OrbItgi 2 g

a generator of orbital rotations of neutrons against pro-
tons. However, the strength of the orbital excitation is
much too small to permit any collective scissor-mode in-
terpretation.

The paper is organized as followed. We first introduce
the model and apply it in Sec. III to GT resonances in

Gd, ' Ho, and U. A comparison with the experi-
mental data strongly constrains the magnitude of the re-

where the a& and a„are Bogoliubov quasiparticle opera-
tors and the overbar on the indices indicates the time-
reversed single-particle state. The amplitudes X and
Y as well as the excitation energies, are solutions of the
QRPA. All the calculations have been performed in the
manner described in Ref. 15. The single-particle wave
functions have been generated from a nonspherical
Woods-Saxon potential, as described in Ref. 15.

The particle-hole interaction is of the Landau-Migdal
type

F""=Co6(r, —r2)(fo+f o&& 'r2+goai'a2

+goer, tr2r, rz)+F"" '~ .. (2.2)

The velocity dependent part F"" ' turns out to be of lit-
tle importance in the present context, although it has
some influence on the orbital Ml strength. It will be dis-
cussed no further here. The same parameters have been
used as in Ref. 13 except for the spin-isospin flip strength
go which will be adjusted to reproduce the GT reso-
nances. The components of the spurious (isoscalar) 1

state are projected out in the manner described in Ref.
13.

The isovector part of the magnetic dipole operator
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[e.g. , (1.1)] can be written as

A

M„'= g [g,"j,r„'(i)+ ,'(—g,'~' g—,
'"' —2g,

" )o;r„'(i)] .

(2.3)

Equation (2.3) shows that transitions due to the orbital
part of the operator are possible between states of the
same j shell, so that no orbital excitations are expected in

spherical closed shell nuclei only. On the other hand,
magnetic spin-Aip transitions between spin-orbit partners
are possible. In deformed nuclei, the Fermi surface gen-
erally separates Nilsson orbitals originating from the
same j shell; such states are connected by large matrix
elements of the operator J. This is the origin of the low-

energy orbital excitations in nonspherical nuclei. ' ' '
In the present calculation we concentrate on the spin-Hip
transitions between spin-orbit partners.

The truncation of a configuration space gives rise to re-
normalized effective interactions and to renormalized
effective transition operators. In some cases conservation
laws determine the form of the effective operators. ' This
is not the case for the Ml operator in, e.g. , (2.3). For
magnetic moments and transitions in odd-mass nuclei an
effective operator has been determined that accounts for
correlations beyond the 1plh RPA configuration space. '

The main effect of effective-operator modifications can be
included in the QRPA calculations by using effective g(
and g, parameters in Eq. (2.3) instead of those appropri-
ate for free nucleons. In the following, the effective M1
operator is used with modified g, values only:

g((efr)

(2.4)

(eff) 0 7

For all further details we refer to Refs. 13 and 15.

III. GAMOW-TELLER RESONANCES

In medium and heavy nuclei the Gamow-Teller reso-
nances (GTR) dominate the 0'(p, n) spectrum induced by
medium-energy protons (100 MeV Fp 400 MeV).
These 1,EL=0, AS=1 resonances have been extensive-
ly studied experimentally (e.g. , Ref. 19) and theoretically.
The GTR lie close to the 0+, EL=0, ES=O isobaric ana-

TABLE I. Landau parameters used in the present QRPA cal-
culation. The values in parentheses have been used in Ref. 13.

f '0" =0.21
fo'"=0.585 (0.56)

go =go =01
f, = —0.7

CO=320 fm MeV

f0~ = —2.45
fo'"=1.71 {1.6S)

go =go
f, =0.35

log resonances (IAR) detected much earlier in low-energy

(p, n) reactions. The excitation energies of the two reso-
nances coincide in Pb. In nuclei lighter than Pb the
GTR is slightly above the IAR, whereas in nuclei heavier
than Pb the IAR tends to be slightly higher. These ex-
perimental facts will be used in the following to calibrate
the interaction in the spin-isospin channel. This is cru-
cial for the location of the spin-Hip M1 distribution. In
addition, it provides us with a good test of the interaction
in the spin-independent isovector channel, which is im-

portant for the low-lying orbital M1 strength.
In a conventional RPA framework we describe the

charge-exchange (p, n) excitations as superpositions of
proton particle-neutron hole pairs built on the ground
state of the original (parent) nucleus. ' Within the
QRPA we have to replace the particle-hole pairs of the
conventional RPA by a proton and neutron quasiparticle
pair, as described in the previous section. Due to the
selection rules in charge exchange reactions, only the
isospin-dependent part of the particle-hole interaction
[Eq. (2.2)) enters. For the IAR, which are I =0+ excita-
tions, the spin-dependent part does not contribute, so the
location of analog resonances is determined by the mag-
nitude of the Landau-Migdal parameter fo. (Here we

have always to bear in mind, that by definition, the
Landau-Migdal interaction has only a direct part. ) The
interaction parameters fo'" and fo'" given in parentheses
in Table I have been used in the previous calculation of
the orbital dipole states. ' The theoretical excitation en-
ergies of the IAR in &s6Gd i65Ho, and U obtained with
these parameters are also shown in parentheses in Table
II where they can be compared with the corresponding
experimental values. The agreement is quite good but the
theoretical values are systematically too low by a few
hundred keV. For that reason we increase f (I

parameters
by a few percent in order to obtain the optimal interac-

TABLE II. The theoretical values have been calculated within the QRPA, using the parameters
given in Table I ~ For comparison we give in parentheses the excitation energies of the IAS, where the
"old" f0 parameters (given in parentheses in Table I) have been used.

Experimental and theoretical excitation energy of the IAS and GTR
Theory (MeV) Experiment

156Gd

165H

238U

a 164D

IAS
GTR
IAS

GTR
IAS
GTR

15.9
17.2
16.9

a
17.9
19.7
19.6

(15.6)

(16.5)

(19.4)

16.2 (natural Gd)
17.5 (interpolation between ' Sm and ' -'Ho)

16.6

17.8 (estimated from Fig. 5)
19.8+0. 1

Slightly below the IAR (Ref. 23)
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tion in the isospin channel which strongly influences the
low-lying M1 spectrum. The results obtained for these
low-lying 1+ states with the new fo parameters differ
only slightly from those obtained before. '

In the case of the GTR, only the spin-isospin part go of
the residual interaction [Eq. (2.2)] contributes. We use
this fact to determine the value of go. The Landau pa-
rameters depend to some extent on the single-particle
model chosen and on the size of the configuration space;
small changes of the order of 10—20% are possible. Such
fine tuning does not contradict the basic assumption that
these parameters are universal. If the model and the
configuration space, however, is fixed, then the parame-
ters must be the same for all nuclear properties calculat-
ed. (This is different, e.g. , for the multipole-multipole
force, where for each multipolarity new parameters have
to be introduced. ) In Table II we compare the calculated
excitation energies of the GTR with experiment. The
agreement is good and the value of g o =0.7 is in the range
of other determinations. From Table II it is also clear
that our theoretical model can reproduce the relative en-
ergies of the IAR and GTR.

In Figs. 1 —3 we show the calculated GT strength (full
line) and IAR (dashed line) in ' Gd, ' Dy, and U.
The QRPA equations have been solved with the new
force parameters given in Table I. The parameters are
the same for all three nuclei. Experimentally, in the rare
earth region, the IAR is slightly below the GTR
(whereas) in U the IAR is slightly above the GTR.
Our theoretical results reproduce this behavior. For a
more detailed comparison we show the strength distribu-
tion in U with an enlarged energy scale in Fig. 4. An
experimental (p, n) spectrum of ' Ho using protons of
E =160 MeV is shown in Fig. 5 which might be corn-
pared with our theoretical result for ' Dy. The narrow
peak at 16.6 MeV is the IAR which is simultaneously ex-
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FIG. 2. Same as in Fig. 1 for '64Dy.

cited with the GTR. The experimental GTR energies
given in Table II are estimated centroid energies of the
resonance part of the GT strength. The magnitude of the
GT strength in the resonance region is of the order of
55% of the Ikeda sum rule, whereas our calculated
strength is close to the sum-rule limit; furthermore the
theoretical shape of the GTR does not agree with the ex-
perimental cross section. Here we point out that within
our present model we cannot account either for the ex-
perimentally observed 50% quenching of the GT
strength in the resonance region nor the width and the
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FIG. 1. Strength distributions of the Gamow-Teller reso-
nance (solid line) and the isobaric analog state (dashed line) in
"6Gd, calculated within the framework of the QRPA. FIG. 3. Same as in Fig. 1 for U.
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high-energy tail of the GTR. These limitations are well

known from similar investigations in spherical nuclei.
The 1plh RPA results reported here overestimate the to-
tal strength in the resonance region by roughly a factor of
2 and the theoretical width is much smaller than the ex-
perimental one. To overcome this difficulty, not only

1p lh but also 2p2h and 5 particle-nucleon hole
configurations must be included. " Such extended models
are indeed able to explain the main features of the GTR
in spherical nuclei. We shall come back to this point in

the next section in connection with the effective g factors
in the M1 operator. Inclusion of 2p2h and b-h com-
ponents in complete RPA calculations for deformed nu-

clei leads to very large configuration spaces and have not

yet been carried out.

—15
I I

0 5

E [Me V]

10

FIG. 5. Zero degree (p, n) spectrum (Ref. 20) of ' 'Ho using
protons with an incident energy K~=160 MeV. The energies
are given relative to the excitation energy of the isobaric analog
state (F.,„=16.6 MeV).

ENERGY (MeV)

FIG. 4. The strongest Gamow-Teller (solid line) and isobaric

analog (dashed line) states in 'U, given in an enlarged energy

scale.

IV. SPIN-FLIP hT, =0 M1 STRENGTH

The search for the spin-flip AT, =O M1 strength in
heavy nuclei has a long history. In the early experimen-
tal work E1 transitions were frequently misinterpreted as
Ml. These (erroneous) results were in apparent agree-
ment with theoretical predictions from 1p1h calculations,
which usually give one or two strong Ml states (see, e.g. ,
Ref. 21 and references therein). With improved and more
varied experments using ( n, y ),

' nuclear-resonance-
fluorescence, high resolution (e, e'), and polarized
tagged photons' spin-flip M1 strength has been
identified in a few heavy mass nuclei Zr, ' Sn, and
208Pb

The spin-flip M1 strength is highly fragmented and
quenched by more than 50% relative to the predictions of
the independent particle model (IPM). At the same time,
theoretical models have made much more realistic by in-
clusion of the coupling to 2p2h —or rather ph+ phonon
configurations, or to 2p2h and 161h configurations. "
On this level theory and experiment are in basic agree-
ment, as will be shown later.

There is as yet no experimental indication of the corre-
sponding spin-flip M1 strength in deformed heavy nuclei.
We now give the predictions of our model for the loca-
tion of the bulk of the predicted Ml strength and discuss
why it may have escaped detection. The calculations
were performed in the framework of the QRPA as out-
lined in Sec. II and in previous publications. ' ' The
crucial input is the ph interaction in the spin-isospin
channel that has been fine tuned to reproduce the ener-
gies of AT, = —1 GT resonances, as outlined in the previ-
ous section. We have carried out detailed calculations of

Gd and U because they have been subjected to ex-
tensive experimental study by inelastic electron scattering
and they are well deformed, so that all the assumptions of
our theoretical model are fulfilled. We first compare the
M1 strength in "Gd with the corresponding theoretical
results in Zr and Pb. We find several similarities but
also some major differences which may explain why this
M1 strength in the deformed nuclei has escaped experi-
mental detection.

In Fig. 6 we show the M1 strength distribution of the
uncorrelated two-quasiparticle excitations in ' Gd and in
Fig. 7 the corresponding QRPA results. The state below
4 MeV contains a large fraction of orbital strength as can
be seen from comparing the upper and middle parts of
these figures. In the upper part the full (orbital plus sign)
matrix elements have been used, while in the middle part
the spin g factors have been put equal to zero, i.e., only
the orbital contribution is plotted. For some of the
strongest low-energy states of Fig. 6 which are labeled (a)
to (I), the asymptotic Nilsson quantum numbers and (in
parentheses) the corresponding quantum numbers in the
limit of no deformation (i.e., the spherical case) are given
in the caption. Practically all the low-lying two-
quasiparticle states with large orbital M1 strength are, in
the limit 6~0, diagonal in the quantum numbers of the
spherical shell model, that is, in the total angular momen-
tum j. These matrix elements have a large orbital contri-
bution if j is large. On the other hand, the higher two-
quasiparticle excitations reduce in the spherical limit to
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excitations of pairs of spin-orbit partners, the matrix ele-
ments between which are purely spin-flip. The deformed
single particle wave functions can be represented as linear
combinations of spherical ones. For moderate deforma-
tions 0.2 ~6 0.3 the asymptotic spherical state remains
the dominant configuration. The unperturbed two-
quasiparticle energies of the asymptotically diagonal
states are directly proportional to the deformation 5 (plus
the BCS gap energy) and are, therefore, lower than the
spin-flip transitions whose energy in the spherical case is
determined by the (one-body) spin-orbit potential.

Figures 6 and 7 indicate that in deformed nuclei two
different classes of magnetic excitations exist. The two-
quasiparticle states up to about 4 MeV have large orbital
contributions whereas the higher two-quasiparticle exci-
tations are predominantly of the spin-flip type. This be-
havior is not peculiar to ' Gd but is a general feature of
all well-deformed nuclei in the rare earth and actinide re-
gion. Our interest now is in the spin-flip strength; we
therefore concentrate from now on the spectrum beyond
4 MeV. It is obvious that the low-lying diagonal orbital
states do not exist in spherical closed shell nuclei because
the two-quasiparticle states which differ on1y in the

156r & 2-qp-states gf, free gs, eff
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FIG. 6. 8(M1)$ strength distribution of the uncorrelated
two-quasiparticle states in "Gd. In the upper part the total
strength is given, in the middle part only the orbital contribu-
tion. The quantum numbers of the more prominent low-energy
orbital excitations are (a) —, (h, , ~z) [523]—— (h„„)[532]; (b)
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In the bottom of the figure the same data are presented summed

up in intervals of 0.5 MeV, and in addition with an artificial
width folded in, as discussed in the text. In this figure the spuri-
ous rotational contributions have not been removed.
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asymptotic Nilsson quantum number coalescence in the
same single particle state ~J") for 5=0. In this limit
therefore, only the spin-flip transitions remain.

The individual excitations below 4 MeV can be com-
pared with experiment, but for higher-excitation energy
the distribution of the excitation strength is more easily
appreciated if it is summed up in certain intervals.
Therefore in the lower part of Figs. 6 and 7, the same
data are presented once more in the form of a histogram.
Finally, for the higher excitations, Gaussians with
energy-dependent width have been folded in to simulate
spreading effects not yet included as discussed below.

The two-quasiparticle strength function in ' Gd is
compared in Fig. 8 with the corresponding IPM distribu-
tion in Zr and Pb. The Zr state has the
configuration v(g, zzg~zz) and the two states in Pb are
the well known vr(h~zzh»zz ) and (iv, , z iz]3/z ) spin-orbit
partners. It is important to realize that the total strength
in the two spherical nuclei is concentrated in one and two
states, respectively, while in the deformed nucleus the
strength is fragmented into many levels because the
single-particle states are split by the deformation. The

Energy (MeV)

FIG. 7. Results of a QRPA calculation of the B(MI)1'
strength distribution. The parameters of Table I, free charges
and eftective g factor» (g, ,&=0.7g, f„„)have been used. Com-

pared to Ref. 13 the configuration space has been increased so
that we have now included all large spin-flip transitions up to 10
MeV. The figure is organized in the same way as Fig. 6. In the
lower part the data are presented summed up in intervals of 0.5
MeV (and divided by 0.5 MeV), and finally (above 4 MeV) with

Gaussian functions folded into each individual state. The width

of these Gaussians increases linearly from I =0.5 MeV at

E,„=4 MeV to I =2 MeV at E,„=10 MeV. All the states
shown have been orthogonalized to the spurious rotational state
so that any remnants nf spuriosity are removed.
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total two-quasiparticle Ml strength cannot be directly
compared with the M1 strength in the two other nuclei
because it also contains components of the "spurious"
E"=1 state which appears because rotational symme-
try has been violated by the deformed single-particle po-
tential. Within the QRPA procedure the spurious com-
ponents are projected out' and do not appear in the
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10.9

QRPA spectrum.
In the middle part of Fig. 9 the M1 distribution of

' 6Gd, calculated in the QRPA model (with bare opera-
tors) is shown. It is compared with the corresponding
RPA results (full lines) in Zr and Pb. The strong
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FIG. 8. B(M l }f strength distributions of the independent
particle model in Zr and 'Pb and of the uncorrelated two-
quasiparticle states in "Gd, respectively. The free g factors
have been used. Note the different scales.

MeV

FIG. 9. The solid lines in the upper and lower parts of the
figure indicate the RPA results of the B(M1)f strength distri-
butions obtained with free g factors whereas the dashed lines
denote the results obtained with effective g factors. In the mid-
dle part we show the QRPA results with free g factors. For the
results with effective g factors see Fig. 7. Note the different
scales.
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repulsive ph interaction in the spin-isospin channel shifts
the spin-flip strength to higher energies compared to the
unperturbed results shown in Fig. 8, and reduces it
through the effect of ground-state correlations. This can
be seen clearly in Zr. In Pb the isovector part of the
spin-dependent interaction produces one strong isovector
state which carries nearly all the strength, whereas the
small isoscalar strength is only slightly shifted because
the isoscalar force (go) is weak. The QRPA result in

Gd looks different. First of all there is also a shift of
strength to higher energies compared to the two-
quasiparticle result, again due to the strongly repulsive
interaction in the spin-isospin channel. However, the M1
strength is still strongly fragmented because the two-
quasiparticle M1 strength function is itself so fragmented
that the residual interaction is unable to concentrate a
major part of the M1 strength in one single state. There-
fore on the 1plh RPA level, the strongest M1 state in

Gd is more than a factor of 10 weaker than the isovec-
tor M1 resonance in Pb. Modification of the M1
operator, as we shall see later, makes no qualitative
difference; it only reduces the strength by a factor of
about 2. The conclusion at this stage is that the 1p1h
RPA results in Zr and Pb disagree with experiment
in that no strong 1+ state has been found. The theoreti-
cal spin-flip strength is insufficiently fragmented. In or-
der to explain the experimental results one has to develop
theoretical models which include correlations beyond the
1plh RPA level.

A very sophisticated RPA model which includes 2p2h
as well as Ah configurations has been worked out by Cha
et al. i& and applied to 90Zr and zosPb. These authors
show that the inclusion of 2p2h correlations (in RPA)
reduces the M1 strength in Pb, below 11 MeV by more
than 30%%uo and admixture of b,h components gives a fur-
ther quenching of about 20%. The total theoretical
strength is in good agreement with the most recent exper-
iment, as shown in Table III. However, this model not
only predicts the total 8 (Ml) value correctly but it also
gives an M1 strength distribution very close to what is
measured. The results are compared in Fig. 10.
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FIG. 10. In the upper part the experimentally detected
B(M1) strength in ' 'Pb is shown (Ref. 4). The open histogram
indicates the results by Laszewski et al. (Ref. 4) obtained with
polarized photons (below neutron threshold) and the shaded his-

togram the known B (M1) strength above threshold (Ref. 5).
The theoretical calculation shown in the lower part has been
performed by Cha et al. , (Ref. 11) within the 1plh+2p2h RPA
also including 161h correlations. The total theoretical strength
below 11 MeV is B (M 1 ) f =20.4p&, which should be compared
with the total experimental strength below 8.5 Me V of
B(M1)t =]7.5p& (Ref. 4).

TABLE III. The values given in the third and fourth columns for "Gd and "'U are QRPA results
summed up from 4-10 MeV and 3.5-10 MeV, respectively. The B(M1) strengths shown in the fifth
column are the integrated values below 11 MeV. The results for the uncorrelated two-quasiparticle
states in "Gd and "'U (second column) are not given because they also include components of the
spurious (isoscalar) 1 state.

"Zr
156Gd

208Pb

238U

Independent particle
model

free operator

1plh+2p2h RPA
plus 151h

correlations'

14.6

45.6

11.0
28.4
35.6
36.3

5.6
15.8
19.5
18.6

5.8

20.4

Experimental and Theoretical M1 strength in pz
1plh RPA

free
effective
operator Experiment

6e7 0 7

17 5+2 0

'Reference 11.
References 3 and 4.
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In an analysis of magnetic moments and transitions
Speth et al. ' have derived an effective magnetic-moment
operator which accounts for effects beyond the 1plh
RPA correlations. This operator is suitable for use in the
present 1p1h RPA calculations. The results for Zr and

Pb are given in the third row of Table III and as
dashed lines in Fig. 9. The total strength calculated in
1plh RPA with the effective magnetic operator is close to
what is obtained by the much more elaborate calculations
of Ref. 11 (note: the effective operator parametrizes the
effect of higher-order correlations; the underlying physics
is discussed in Ref. 11). As we can see from Figs. 9 and 7,
the effective operator does not influence the shape of the
M1 strength distribution, but only its absolute magni-
tude. If, however, we fold a Gaussian distribution into
the lplh RPA strength function (including the effective
operator) we obtain an Ml distribution very similar to
that in the lower part of Fig. 10.

We now simulate the effects of 5-particle nucleon-hole
and 2p2h admixtures by using effective g, factors and
folding a Gaussian spreading-distribution width in all the
levels of the lplh QRPA Ml strength functions. The
theoretical distributions depend of course on the width of
the Gaussian. As the number of 2p2h states increases
with the excitation energy we use a Gaussian with a
width that increases with energy. From the theoretical
and experimental results of Pb in Fig. 10 one obtains a
width of I -1 MeV. However, one has to bear in mind
that the level density in the doubly closed shell nucleus

Pb is low compared to similar excitation energy in de-
formed heavy mass nuclei ~ Therefore a width of the or-
der of I =1—2 MeV FWHM might be a realistic value.
The M1 distribution of ' Gd in the bottom part of Fig, 7
has been obtained by folding all the individual levels with
Gaussians with widths that increase linearly from I =0.5
MeV at E,„=4MeV to I =2 MeV at E,„=10MeV. For
comparison the same procedure has also been applied to

the uncorrelated two-quasiparticle result, Fig. 6. The
differences between the distributions in Figs. 6 and 7
(lower part, solid lines) are due to the repulsive spin-
isospin interaction in this channel that shifts the isovec-
tor spin-flip strength up in energy by several MeV.

Another choice of widths for the same folding pro-
cedure has been used for the distribution shown in Fig.
11, where the low-energy 1+ spectrum which is dominat-
ed by the orbital contribution is also included: between

E,„=4 MeV and E,„=10 MeV the width increases
linearly from I =0 to I =2 MeV; but in order to avoid.

too sharp spikes, a minimum width of I =60 keV has
been used (which might correspond to a not-too-high
detector resolution). Comparing the part above 4 MeV
with the corresponding curve of Fig. 7 one sees only
small differences. Bearing in mind the experimental
difficulties which had to be overcome to detect the
(strongest) low-lying 1+ states, one easily understands
why so far only little is known about the high-lying M1
strength.

The M1 strength in U is shifted to lower energies
compared to "Gd because the single-particle spacing is
proportional to A ' . The total strength in U in the
range between 3.5 and 10 MeV excitation energy is slight-
ly larger than in "Gd. In Fig. 12 the QRPA results for
the M1 distribution of U beyond 3 MeV are shown.
The distribution is of predominantly spin-flip character
and can be directly compared with the corresponding re-
sults given in the bottom part of Fig. 7. The Gaussian
width was varied linearly with energy starting from
I =0.5 MeV at E,„=3.5 MeV to I =2 MeV at E,„=10
MeV. This averaging procedure yields a pronounced
two-resonance structure. Finally, in Fig. 13 we give also
the complete spectrum of U. Again a minimum width
of I =60 keV is employed, and a linear increase from
I =0 at 3 MeV to I =2 MeV at E,„=9MeV is assumed.

25I)
20)

166g ~]
gl, free gs, eff

10
238U

total-------------------- K=O only

gt, free gs, eff

15

10
CI

/
/

/
/

/

/

Energy (Mev)

FIG. 11. The complete 8(M1) spectrum of "Gd up to the
excitation energy of E,„=10 MeV calculated within the QRPA.
Gaussian functions have been folded into the individual levels,
the width of which increases linearly from I =0 at E„=4MeV
to I =2 MeV at E,„=10 MeV, but a minimum width of I =60
keV is used whenever I would be smaller than that.

ENERGY (Mev)

8

FIG. 12. 8(M1) strength distribution in "'U calculated
within the QRPA. The Gaussian width increases linearly from
I =0.5 MeV at E„=3.5 MeV to I =2 MeV at E,„=9MeV.
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FIG. 13. The complete 8(M1) spectrum of '"U up to the ex-
citation energy of E,„=10 MeV derived within the QRPA.
Similar to Fig. 11 a minimum width of I"=60 keV has been em-

ployed, and a linear increase from I =0 at E,„=3.5 MeU to
I =2 MeV at E,„=9 MeV. Note: The structure of the spec-
trum below E,„=3.5 MeV depends sensitively on the energies of
the individual single-particle states which are not known with

the necessary precision. Therefore we can only predict the total
8 (M1) strength below E,„=3.5 MeV with confidence.

Here we point out that the detailed level structure below
3.5 MeV depends sensitively on the energies of the indivi-
dual single-particle states around the Fermi surface,
which are not known with the necessary degree of pre-
cision. We expect, however, that the total theoretical M1
strength below 3.5 MeV is reasonably reliable.

We mentioned in Sec. II that in spheroidal nuclei only
the projection K of the total angular momentum of the
intrinsic wave function on the symmetry axis is a good
quantum number. Therefore we expect K = 1+ and
E =0+ contributions to the spin-flip dipole strength dis-
tribution. It is well known that in the case of the electric
dipole resonance the E1 distribution splits into E =1
and E =0 parts which are well separated from each
other. This is not the case for the 1+ states. The
E =0+ part is given separately as dashed lines in Figs.
11, 13. If we compare the K =0+ part with the sum of
the K =0 and 1+ contributions (solid line) in the

QRPA results of U, then one observes that the
E =0+ contribution is only a smooth background. In

Gd (upper and middle parts of Fig. 11) the situation is
slightly different. The main K =0+ part is close to the
minimum of two well-separated E"=1+ contributions.
Therefore we do not obtain in ' Gd a double resonance
structure as we do in U.

We can summarize the results on the spin-flip magnetic
dipole strength as follows.

(1) We obtain from QRPA calculations appreciable
ATz =0 spin-flip dipole strength in deformed heavy mass
nuclei. The total predicted strength in "Gd is inter-
mediate between the strength in Zr and Pb. The cal-
culated strength in U is similar to the observed (and
calculated) strength in Pb.

(2) Because of deformation the strength in ' Gd and
U is much more fragmented than in Pb. It is nearly

uniformly distributed (with some little structure, depend-
ing on the width of the Gaussian smearing function) be-
tween 6—9 MeV in ' Gd and 4-7.5 MeV in U.

(3) There is no pronounced splitting between the
E =0+ and E"=1 components of the M1 resonance in
either &56Gd or in U.

(4) The AT, =0 Ml excitation is less collective than the
hT, = —1 or GT excitation. The p-h interaction shifts
the main AT, =O strength 3 —4 MeV above its unper-
turbed position. The corresponding shift in the
AT, = —1 GT excitation is about 10 MeV. At the same
time, the shifted GT strength is concentrated in a smaller
energy region. This variation with AT, of the collectivity
of M1 excitation s is by now well established. The
b, T, = —1((p, n)) excitations is strongly collective; the
hT =0((p,p') or (e', e)) excitation is weakly collective;

z

the AT, = + 1((n,p) ) excitation is not collective at all.
Note added in proof. A recent (p,p') experiment ~ re-

ports indications of the AT, =O M1 strength in three
rare-earth nuclei. The strength-distribution appears to be
double-humped which would suggest a smearing-width
about half that used in Fig. 7.
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