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Extension of multiphonon theory to odd-mass nuclei
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The multiphonon method previously developed for a system containing an even number of fer-
mions is extended to the case where this number is odd. Recursion formulas well suited for realistic
applications to odd-mass nuclei are given for overlaps and matrix elements of one- and two-body
operators.

I. INTRODUCTION

The multiphonon method (MPM) has been developed
to study the observed anharrnonicities of the vibrational
motion in even-even deformed nuclei. The method
presents two main advantages. First it is, to our
knowledge, the only method that takes fully and properly
the Pauli principle into account; second, it is an exact di-
agonalization of the model Hamiltonian and avoids there-
fore all of the problems inherent to any perturbative
treatment.

Two general formulations of the multiphonon theory
for a system containing an even number of fermions (even
case) have been given in Ref. I, hereafter quoted as paper
I. The first one is a generalization of the Wick's theorem
to phonons. It leads to compact and elegant expressions.
The second one, based on recursion formulas, is more
easily handled in realistic numerical calculations. The
latter one has been successfully applied to nuclear struc-
ture problems such as quadrupole and octupole vibra-
tions in even-even deformed nuclei. A simple version
of this method, where only one type of phonon is con-
sidered, has been extended to the case of an odd number
of fermions (odd case) and applied to the odd-mass light
Actinium.

The aim of this paper is to extend the general formula-
tion of the MPM based on recursion formulas to the odd
case. In Sec. II, it is shown that the matrix elements
needed in the odd case can be expressed in terms of ele-
ments to be calculated in the even case. Among the latter
some have been given in I. They are given once again in
Sec. III in a slightly different form in addition to new
terms needed to the odd case. Illustrative examples are
given in Sec. IV, while conclusions are drawn in the last
section.

II. EXPRESSIONS FOR THE ODD CASE

As in paper I the phonons 6, are defined as a superpo-
sition of two ferrnions

6;=—,
' g(X, )„,,a a, ,

where the matrix X; is antisymmetric and where the
operator at creates a fermion (e.g. , a quasiparticle)
characterized by quantum numbers summarized by label

p. In order to take the Pauli principle properly into ac-
count the full commutation rules of these phonons are
considered

( 6 ), 62)= —
—,
' Tr(X, X2 }+g (X,X2 )„,a„a„.

=(Qi ) '(Q2) ' (Q, ) "o), (3)

where, for convenience

(6;) '

(Qi) '= (4)

We shall further introduce the notation
l k, —k; ) to label

the multiphonon state (3), where k, has been replaced by
k, —1.

It seems worthwhile to remind the reader that the rnul-

tiphonon states (3) do not form a basis in the strict
mathematical sense. As a consequence, we need to calcu-
late the overlap matrix of states (3}in addition to the usu-
al one- and two-body opej. ator matrix elements.

As in I, we note by A'J„. . . (k'„;k„) the matrix element
of the product

P =aaa . a aa a
/J

which contains i creation operators a and j annihilation
operators a. For instance

A, ,„(k',;k„)= —A „„(k'„;k„)

=((g„)" (g, ) '(g, )
' „,

x(Qi) '(Qg) ' (Q„") ") .

It is clear that

A„",, . . . „(k'„;k„)=A 1'. . . ,„(k„;k'„).

In the odd case, the multiphonon states write

lk„,&) =(g', ) '(g, )
' (g„) "~,lo~ .

In the even case we introduce, as previously done, multi-
phonons states noted

lk„) =lk„k, , . . . , k„)
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To avoid confusion, we introduce in this case the nota-
tion

T2o(k'„A, ', k„l,)= —T (k'A, 'k„A, )=(k'„az,at1a2tat&k )

=51,A22(k'„;k„)—52 2A 12(k'„;k„)
T"(k'„X',k„~)= (k'„X'l~;, lk„~ & .

Here also one has a relation similar to (7)

T„"„.. „(.k'„A, ', k„A, ) =T'. . . „„(k„i,;k'„A.') .

(9)

(10)

+522 A12(k'„;k„)—A, 22'. (k'„;k„),

(12)

T Iz (k'„A, ', k„l, ) = ( k„'az a,a2azk„)

Note the appropriate order of the subindices in (7) and
(10). As a consequence, we can restrict ourselves to ele-
ments A' and T' wherei jor j ~i.

Our task in this section will be to calculate the T'~ ele-
ments in terms of A ' elements. We start with the over-
lap matrix elements

T (k', A, ';k„A, ) = (k'„a&.azk„)

=522 A (k'„;k„)—A 22 (k'„;k„) .

For the one-body matrix elements, one gets similarly the
relations by writing a& P; a& in normal order:

(k'p', kg )
—52 1A I2 (k'p', kp )

—5~2A I~ «', k, )+5m A 12(k', k, )

(13)

It is seen that T can be deduced from A and A ',
while T" is calculated from A, A ", and A . We re-
mind the reader that A ' and A can be obtained from
A as shown in I. As a consequence the one-body ma-
trix elements for the odd case can all be obtained with the
help of formulas given in I.

For the two-body operators, the relations are a little bit
more elaborated. But they are still easily obtained by
writing a&. P; a& in normal order. One gets

T,234(k'„A, '; k„i, ) = ( k'„az a,aza3a4azk„)
40 40 40 40 40 51

52.'1 A 2342, 52.'2 A 1342. +52,'3 A 124K. 52.'4 A 1232. + 51I.2.' 1234 1234XA,'

T1234(k'„A,'; k„A, ) = ( k'„a2 a,a,a,a4a2k, }

524[52.'1 A 23 5ii'2 A 13 +52.'3 A. 12 ]
20 20 20

31 31 31 31 31 425X'1A 23k4 +5Ã2 A 1324 52.'3 A 1224 +52.2,'A 1234 52.4A 1232,' A 1232.2.'4

T1234(k', k', k„X)= (k„'a2 a,a2a3a4agk„)

5A.'l[5il4 A 23 523 A 24 ]+52.'2[5il 3 A 14 5iL4A 13 ]
22 22 22 22 22 33+4'1 A 2/34 52.'2 A 12,34 +542. A 122,'3 532, A 121,'4 +52.2.' 1234 A 122.&l.'34

(14)

(16)

where, for simplification, the arguments (k'„;k, ) of all A have been omitted. It is found that T can be deduced from
A40 and A 51, T31 from A'20

A 31, and A42 and anally T22 from A11, A22 and A 33

In I it has been shown that A", A ', and A can be expressed in terms of A and A . Using a similar method, we
now show that the new quantities A ', A, and A can be obtained from the knowledge of A and A . Explicitly
one gets

A, 23456(k'„;k„)= (k'„a,aza3a4a5a6k„) = g (k'„ataza3a4(k„—k, )[a5a6, Q; ]),
which according to the commutator given in relation (Al) of the Appendix leads to

123456 ( k'„;k, ) = g g (X, )(x; )6„A 12345' ( kI. ; k, —k, }

In a similar way

A 123456( k„';k„}= ( k'„a,a2a3a4a5a6k„) = g ( k', a,a2a3a4(k„—k; )[a5a6, Q; ] ) + g ( k'„a,a2a3a4( k„—k; —k )C„(i j) )

where

C11(1' j}=[[a5a6Q ] Q,'] .

If one uses relations (A2) and (A3) one gets

(19)
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rP

A 123456(krtkr ) g (Xi )56A 1234(krtkr ki )+ g g g (Xt )sp(Xj )6u A 1234@v(krrkr k& kj )
i J IJ PV

(20)

where g; is the sum over all permutations of indices i and j. Note that, for i =j, one gets a factor 2.(X, )5„(X;)6„and
that this (2!)disappears with the factor 1/2! contained in (Q j ), as defined in (4). Finally

A 123456(k„';k„)= ( k'„ala2a3a4asa6k33

= g ( k„'a,az(k„—k; —k )C,', (i j) ) + g ( k'„a,az(k„—k; kj ——k» )C I » (ij,k ) ), (21)

where

CI1(ij,)=[[a3 4 s 6, Q1],Q ],
and

C', „(i,j,k) =[C,', (i,j),Q»] .

(22)

Using relations (A4) and (A5) one obtains
p

A 123456(k'„;k„)=—g g g [(X, )56(Xj )4 (Xi )46(Xj )sp+(Xi )45(Xj )6p) A 123@(k'r,'kr —k; —kj )
& —J ~J

p

rf X (Xi )4p(Xj )sv(X» )6pA 123pvp(krrkr ki kj k» )

i j kijk pvp

where g;j» is the sum over all permutations of indices i, j, and k.
Here also the 1/p! contained in (Q )j' compensates the p! obtained from identical terms in g~ when p =2 (or p =3),

i.e., when 2 (or 3) indices among i, j, and k are equal. To summarize this section, it has been shown that the overlaps
and matrix elements of one- and two-body operators of a system with an odd number of fermions can all be expressed in
terms of the quantities A, A, A, and A of the even case.

III. CALCULATION OF THE A, A, AND A MATRIX ELEMENTS

To calculate the matrix elements A" or, equivalently, A "we use the same techniques as in relations (17), (19), and
(21). The game consists of commuting all annihilation operators a of Po„with all the phonons Q;, so as to arrive to the
action of the a on the vacuum. In this procedure one needs only to retain the successive commutators whose action on
~0) is nonzero. Using the displayed formulas given in the Appendix one gets successively:

A21(k'„;k„)=—A, 2(k'„'k„)=(k'„a,a2k„) = g (k'„(k„—k;)C, (i))+g (k'„(k„—k, —k )C, 1(ij))
'l

= —g (X, )12 A (k'„;k„—k, )+ g g g (X, )1„(X )2„A„,, (k'„;k„—k, —k ),
I l J iJ PV

A 4321 (k'„;k„)= A 1234 (k'„;k„)= ( k'„a1a2asa4k„) = g ( k'„(k„—k, —k )C11 (i j ) )

(23)

—k, —k —k»)C„, (i j,k))+
i~J~k~l

(k'„(k„—k, —k —k» —k1 )C1111(i,j,k, l) )

+ +'(X, ),6(X, ),d A (k'„;k„—k, —k, )

'l~ 4

+ g g g g ( —1)'+ (X, ),6(XJ ),„(X» )d„A„',,(k'„;k„—k, —k, —k» )

i ~ j~k ijk pv

p
g (X, ),„(X )2,,(X»)3 (X1)4 A„(k'„;k„—k, —k k» —k,)—

l J k I Ij kl pvpo

P 4

g g g (
—1)'+ +'(X;),„(X,),„A (k'„;k„—k, —k, )

+ g gg( —1)'+ +'(X, ),6[X,A "(k'„;k„—k, —k, —k»)X»), d
i~J~k ijk

P
+ g g [X&'X A (kr& kr k& k k» k1 )X»X1 ]1234

t ~J~k~l (Jkl

(24)
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where g is the sum over all permutations P4 of the four indices 1234 such as a (b and c (d and where obvious nota-

tions have been introduced for the summation over the greek indices.

A 654321 ( k„';k„)= —A 123456 ( k'„;k„)= ( k'„XX1XX2XX3XX4XXSXX61t

g ( It'„(k„—k; —k, k„—)C „,(i,j,k ) ) +
i j~k ijk

g (k'„(k„—k, —k —
k1,

—k1)C1»1(ij,k, l ) )
i(j ~k~1 ijkl

cp

(It'„(k, —k, —k —
k1,.

—k1 —k )C11111(i,j,k, l, m))
J k 1 m ijklm

cp

+ g g ( lt'„(k„—k; —kj —kk —k1 —k —k„)C1111»(i,j,k, 1, m, n ) )
k (1 m (n ijklmn

'l 6

g g( —1)'+"+'+ (X, ),6(X, ),d(Xk ),f A (k'„;it„—k; —k, —kk )

i ~ j~k ijk

P 6

+ g g g g( —1)'+ +' (X;),6(X ),d(Xk), 3(X1)f„A2„(k'„;It„—k; —k, —kk —k1)
i j k I jt'kl pv

p 6'

+ g g g g( —1)'+ (X;),6(X)),2(Xk)d„(X1)„,(X )gp
i j k I m ijklm kpvp

X A" (k'. k —k —k —k —k —kApvp r& r i j k 1 m

i j k 1 m n jiklmn Apvpcr7

(X;)13(X )2„(Xk )3,(X/)4 (X )5 (X„)6

x A2„„,(k'„,k„—k, —k, —
k1,

—k, —k —k„)
P 6 +'+ (X;),6(&, ),d(Xk),f A (k'„;k„—k, —k, k„)—

i ~ j~k ijk

P 6

gg( —1)'+ +'+"(X, ),6(X, ),d[Xk A (It'„;k„—k, —k, k» —k )1X—], f
i «j~k 1 ijkl

P 6'

g g( —I)'+ (X;),6[X)X1,A (k'„,k„—k, —k, k„—k, —k —)XX ],d f
i ~j k 1 m ijklm

p
[X,X,X„A (k'„,k„—k, —k, kk —k1 —k ——k„)X1X X„)123456,

i j k+1~m ~n ijklmn

(25)

where g6 is the sum over all permutations P6 of the six
indices 123456 such as a & b, c (d, and e &f, where g6
is the sum over all permutations I'6 of the six indices
123456 such as a & b and c & d (e &f, and where again
obvious notations have been introduced for the summa-
tion over greek indices.

IV. ILLUSTRATIVE EXAMPLES

In the first example, where only one type of the collec-
tive phonon is considered, the formulas become much
simpler, as shown in Ref. 5. For instance the overlap ma-
trix formula decouples from the others and reads

k

T (k'A. ', kk)=6kk g (X ')~2 A (k —1;k —i) (26)
1=0

with the definition

(X ) =5

As a second example, we choose the case where two
types of collective phonons are introduced. This case
may still be numerically tractable in realistic situations.
The recursion formulas for A and A have been ex-
plicitly given in our previous works (see, e.g. , Ref. 3). We
therefore only indicate how to display the "new" relation
(25) for A (p'q', pq), where p and p' are relative to the
first type of phonon, while q and q' deal with the second.
The two phonons Q, and Q2 are defined as in relation (1)
by matrices X, and X2, respectively. We first indicate the
meaning of the sum g, k. It runs over four terms.
The first one has i =j =1=1, contains a sum of 15
different products X,X,X1 in factor of A (p 'q ',p —3, q ),
the second one has i =j =1, k =2, contains all possible
different products of the type X,X& X2 in front of
A (p'q';p —2, q

—1). The contribution of the two other
terms where i =1, j =k =2, and i =j =k =2 can be de-
duced from the two preceding ones by interchanging the
roles of p and q simultaneously with those of X, and X2.
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In a similar way, the sum g, & «&] runs over five

terms leading to A (p'q', p —4, q), A (p'q', p —3,q
—1),

A 20(p'q', p —2, q
—2), A (p'q', p —1,q —3 ), and

A (p'q', p, q
—4), with the appropriate coefficients. The

sum g; 1 &k &]& contains products of five X and brings
therefore six contributions in A (p', q', p —a, q +a —5),
where a varies from 0 to 5. Finally the sum

„ introduces products of six X in front of
A (p', q';p b,—q +b —6), with b varying from 0 to 6.

V. CONCLUSIONS

In this paper it has been shown that the general recur-
sion formulation of the multiphonon method for a system
with an even number of fermions can easily be extended
to the case of an odd number of fermions. The price to
pay is to calculate the matrix elements of the product of
six annihilation operators between the multiphonon
states of the even case.

In practical situations, the quality of the results to be
obtained within this method greatly depends on the space
of the multiphonon states (8). One needs to make an ap-
propriate choice of the collective phonons used as the
building blocks of the multiphonon theory and a suitable
selection of the odd fermions involved. The correspond-
ing limitations will essentially be of numerical order.

Several applications to nuclear structure problems are
possible within this formalism. One of the most interest-
ing is the study of vibrational states in odd-mass nuclei,
where the odd particle couples to the vibrations of the
core. In particular, it is worthwhile to search how the
anharmonicities of the vibrations obtained in even-even
deformed nuclei ' are modified by the presence of the
odd quasiparticle in odd-mass nuclei. For the octupole
vibrations with K =0, the results obtained in even-even
nuclei have shown that one can safely restrict the multi-
phonon basis to one basic phonon. As a consequence, it
is probable that the extension to odd-mass nuclei given in
Ref. 5 can also be used for heavier Actinides. For the y
vibrations, where one has to introduce, at least two basic
phonons, the extension to odd-mass nuclei leads to nu-
merical problems that may still be tractable. Two open
questions may find their answer in this application: (i)
can one explain, in a microscopic way, why the K —2 vi-
brational level has always an energy lower than its K +2
partner? (ii) Where should one search for the K+4 levels
arising from the "two y phonon" state? %e would like to
emphasize two problems encountered in the applications
of the multiphonon method. The first one is of numerical
order: with the actual computer facilities, realistic calcu-
lations have to be restricted to two basic phonons. As a
consequence, we cannot yet evaluate the importance of
the coupling to the noncollective degrees of freedom and
are forced to restrict the applications to nuclei where
only two vibrational degrees of freedom are strongly col-
lective. The second one is related to the cases where the
pairing correlations play an important role. The fer-
mions introduced in the multiphonon theory become

quasiparticles and one has to take care of the particle
nonconservation problem. From the applications to the
even-even deformed nuclei, we learned that for the lowest
vibrational states (e.g. , those having main components of
their wave function on one and two phonons states) the
deviation of the number of particles remains small (of the
order of 1). We may therefore expect, with some
confidence, that the effects of the particle nonconserva-
tion may also be small in the odd-mass nuclei, at least for
the lowest-lying states.

Finally, we would like to remind the reader, that in the
multiphonon approach, the Pauli principle is fully taken
into account. Furthermore, by taking into account the
total model Hamiltonian (i.e., the total residual interac-
tion) one can push the calculations further than the usual
RPA and further than the quasiparticle-phonon nuclear
model developed by Soloviev and his co-workers.

APPENDIX

In this Appendix, we summarize the different commu-
tators necessary to the proofs given in the main text.
First, we write the commutation rules of the phonon
operator Q; defined in (1) with pairs of fermions

[a,a2, Q, ]=g (X; )2„a,a„ (A 1)

and

[a]a2 Qi ] (X')]2+X [(X')lpapa2 (X] )2papa1]

From these relations, one deduces

[a,a2, Q; ]~0) = —(X, ),2 (A2)

and

C]] (i,j)= [[a]a,, Q, ],QJ~]

=g [(X;)„(X,),„+(X,),„(X,), ]atat

=y g (X, ),„(X,')„a„'at, (A3)

[ala2 Q, Q, ]=[ala2 Q, Q, ] .

Second, we give explicitly the comrnutators of operator
P&3 =a aaa,

where g~ is the sum over the 2! permutations of the in-
dices i and j. Note that this permutation arises since
C(i,j ) = C (j,i), which derives from
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C i (i)= [a&aza3a4, Q; ]= —(X, )34a,az+ (X; )z4a&a3
—(X; ),3aia413

+g [(X, )z„a,a„a3a4 —(X, ),„a,a„aza4+ (X, )4„a,a„aza3],

P
C I& (i,j)= [C I (i), Q, ]= g g [—(X, )z3(X, )4„+(X,)z4(Xj )3„—(X, )34(Xj )z„]ala„

+g [(X )3p(Xj )4 apa„a iaz —(X; )z„(X& )4,a„a„a,a, + (X, )z„(Xj)3„a„aa,a4] . , (A4)

and

cp

CI&&(i j,k)=[CI&(ij ), QI, ]=—g g (X, )z„(X )3„(XI,. )4 a„a,,a a& .
ijk pvp

(A5)

The commutators C needed in Sec. III are more involved. It would be cumbersome to give their full explicit expres-
sions. We therefore restrict ourselves to the parts of these that contribute to C~O).

The commutators for PO4=A1cz2a3a4 have been given in I, we repeat them here in a slightly different presentation.
The first commutator

z 3 4~Qi)

contains six terms of the type (X, ),ba, ad and four terms of the type g„(X;),„a„aba,ad that do not contribute to
C, (i)~0). Here the set (abed) results from a permutation of set (1234). The second commutator

C04(i J)—[C04(i) Qt]

(A6)

It can be seen easily that relation (A6) is equivalent to Eqs. (3.26) and (3.27) of I. In a similar way, the third commuta-
tor

contains a constant term that will be given explicitly, 12 different terms of the type g„(X;),&(Xj ),„a„ad and six terms
of the type g„„(X;),„(X )b„a„a„a,ad, which will all appear under the summation g,",

CP

Cii(& J)~0) —& [(X(»z(X, )34
—(X;)i3(Xj)z4+(Xr»4(X, )z3]lO) .

lJ

Ciii(i j k)=[Cit(i j»Qk]

contains under the summation g;j& six different terms of the type g„,,(X;),b(Xj),„(Xk)d,a„a„ that contribute to
C &»(i,j,k) ~0) and will be given below, and four different terms of the type

p(Xj )b (Xk ) papa apad
pvp

C~~~(~, J, k)IO) = —& g{(X,)~z(Xj)3„(Xk)4, (X, )~3(Xj)z„(X„)4,.+(X, ),4(X ),„(Xk)„+(X,)„(X,),„(X„)„„
ijk pv

(X, )z4(X, ))„(Xl,)3,, +(X;),4(X, ),„(X„)z,]a„a„~O) . (A7)

It can easily be seen that relation (A7) is equivalent to Eqs. (3.29) and (3.30) of I. Finally the fourth commutator gives

&»&(' j» )=[ i»(' J' ) 8 ]
C

=g g (X, )&„(X )z„(Xk)3 (X&)4 a„a a a
ij kl )tt vpa

(A8)

If we go to PO6=cz1a2a3a4a5a6, we have to calculate the six successive commutators. C1 {i)contains 15 terms of the

type (X, ),ba, ada, a& and six terms of the type g„(X,),„a a&a, ada, af, where set (abedef) is deduced from set
(123456) by permutation. As a consequence C& ~0) =0. The second commutator C, &

(i,j) contains, under the summa-

tion g, , 45 different terms of the form (X, ),b(X ),da, af, 60 different terms of type g„(X;),b(X )„,a„ada, af, and 15

different contributions in

g(X;),„(X )„a„aa, ada, af .

None of these terms contributes to C„(i,j)~0). The third commutator contains, under the summation g, k, 15 con-
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stant terms, 90 terms of the form g„(X;),6(X ),d (Xk ),„a„af,90 terms

g(X, ),&(X ),„(Xk )d a„a„a,af,
PV

and 20 terms in

g (X; ),„(X,)6 (Xk ), a„a„a ada, af .
PVP

Only the constant terms contribute to C 1 1, (i,j,k) ~0) and one has

111( ~J~k) ~ = g I (Xi )12(Xj )34(Xk )56 (Xi )12(Xj 35(Xk )46+( i )12(Xj )36(Xk )45
ijk

(Xi )13(Xj )24(Xk )56+ (Xi )13(Xj)25(Xk )46 (Xi )13(Xj)26(Xk )45

+(Xi )14(Xj )23(Xk )56 (X& )14(Xj )25(Xk )36+(Xi )14(Xj )26(Xk )35

(Xi )15(Xj )23(Xk )46+ (Xi )15(Xj )24(Xk )36 (X& )15(X/ )26(Xk )34

+(Xi )16(Xj )23( k )45 (X& )16(Xj )24(Xk )35+(Xi )16(Xj )25( k )36 I ~
(A9)

The fourth commutator contains, under the summation g+k/, 45 different terms of the type
g„„(X,),„(X,),~(Xk),„(X/)f apa, that contributes to C~», (i,j,k, l)~0) and will be given below, 60 diff'erent terms
of the type g „(X,),6(X ) (Xk )d,(X/), a„a„a af and 15 different terms of the type

C 1 1 i 1 (I,J, k, l) l0) —g g [ [(Xi )12(X& )34 (Xi )13(X& )24+ (X~ )14(X& )23](Xk )sx(XI )6/
ijkl Ap

[(Xi )12(Xj )35 (X( )13(XJ )25 (Xi )15(Xj )23](Xk )4k(XI )6p

+ [(Xi )12(Xj )36 (Xi )13(Xj)26+ (Xi )16(Xj )23](Xk )4k(XI )sp

+ [(X )12(Xj )45 (X )14(Xj )25+ (X' )15(Xj )24](Xk )3k(X/ )6p

[(X, ) „(X,)4, (X, ),4(X, ),6+(X, )16(X, )24](Xk )3k(X/)sp

+[(X )i2(X, )s6
—(X )is(X, )26+(X;)i6(X,»s](Xk)3k(X/)4„

—[(X, )13(Xj )45 (X, )14(X )35+(X, )15(X )34](X/, )2k(X/)6p

+[(Xi )13(Xj )46 (X( )14(Xj)36+(Xi )16(Xj )34](Xk )2k(XI sp

l(X )13(X )56 (X' )15(X )36+(X )16(X )351(Xk )2k(XI )4

+ [(X, )14(Xj )56
—(X, )15(X, )46+ (X, )]6(X, )45](X/, )2k(X/ ),„

+ [(Xi )23(Xj )45 (Xi )24(Xj )35+ (Xi )25 XJ )34](Xk ) lk(XI 6p

[(Xi )23(Xj )46 (Xi )24(XJ )36+ (X& )26(Xg )34](Xk ) liL(XI )sp

+ [(Xi )23(Xj )56 (Xi )25(Xj )36+(X( )26(Xg )35](Xk )lk(XI )4p

[(Xi )24(Xj 56 (Xt )25(Xj )46+ (Xi )26(Xg )45](Xk ) lk(XI 3y.

+ [(X )34(X )s6 (X )35(X )46+ (X )36(X )4s](Xk ) iz(Xi )2„1atka„'I0 &

The fifth operator contains under g,"k/, 15 diff'erent terms of the form

g (X;),„(X,),k(Xk)d„(X/)„(X )f aka„a„a
A,P VP

which contributes to C, »»(i,j,k, I, m) ~0) and are given below and six different terms of the form

(X;) z(X )6„(Xk ),„(Xi)d (X ), a&a„a,,a a af,
kP VPCT

(A 10)
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C]]]]1(ij,k, l m)l0& = g g t(X~)]2(XJ )3k(Xk )4q(XI )5 (X )6p

ij klm kpvp

—(X, ),3(X )2k(Xk )4„(XI)5,(X )6 +(X; ),4(X, )2k(Xk )3p(XI )5„(X )6

(XI )15(XI )2k(Xk )3p(XI )4v(Xm )6p+ (Xi )16(X )2k(Xk )3p(XI )4v(Xm )5p

+(Xi )23(Xj )lk(Xk )4p(XI )5v(Xm )6p (Xi )24(XI )]k(Xk )3p(XI 5v Xm 6p

+ (X; )25(XJ ) ]q(Xk )3p(XI )4 (X

+ (X; )34(X, )]k(Xk )2„(XI)5„(X

(Xi )36(X')lk(Xk )2 (Xl )4 (X

—(X; )46(X )]k(Xk )2„(XI)3,(X

)6p (X' )26(XI )lk.(Xk )3p(XI )4 (X )5p

)6p
—(X; )35(X, )]k(Xk )2„(XI)4„(X )6p

)5 +(X; )45(X )]q(Xk )2„(X()3„(X )6

)5p+ (Xi )56(+g )]k(Xk )2p(XI )3v(X )4, }aka„'a',apIO )

(Al 1)

Finally, the sixth and last commutator leads easily to

C]]1]]](ij,k, l, m, n)= g g (X, )]„(XJ)2„(Xk)3p(XI)4 (Xm)5,(X„)6„,a„a„a a a,a„
ij klmn pvpcr rv

(A12)

which contributes to C, »», (i j,k, l, m, n) 0).
To shorten as much as possible the relations (A6), (A7), (A9), (A10), and (Al 1), we introduce the following abbreviat-

ed notations:

P 4

C» (i j)~0) = g g sg(P4)(X; ),b(XJ ) d ~0) . (A6')

where g4 is the sum over all permutations P4 of the four indices 1234 such as a &b and c &d. Note that

g (p ) =( 1)a+6+ 1.

P 4

C, »(i j,k)~0) = —g g g sg(P4)(X;),b(X~ ),„(Xk )d„a„a,l0~
ijk pv

6

C]]](i,j,k)l0) ——g g sg(P6)(X;),b(X, ),d(Xk ),f l0),
ljk

where g is the sum over all permutations P6 of the six indices 123456 such as a & b, c & d, and e &f. Note that

sg(p )
—

(
1)a+b+c+d

P 6

C„„(ij,k, l)~0) = g g Qsg(P6)(X;),b(X, ),d(Xk), q(XI)f„a„a,~0) .
ijkl pv

Finally,
'I' 6'

C„„,(i j,k, l, m)~0) = g g g gs(P )6( X), ( b)X),q( X)kd( X)„l(X )f aqa„a„a ~0),
igk1 A.p vp

(A7')

(A9')

(A 10')

(A 1 1')

where g is the sum over all permutations P6 of the six indices 123456 such as a &b and c &d &e &f. Note that
sg(P6)=( —1)'+ .
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