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Recently much effort has been spent to niake the generator coordinator method applicable
to problems concerniag the dynamics of collective motion at high spin, which goes beyond the
possibilities of standard mean field approaches. Using the so-called horizontal expansion, we
report in this paper on first calculations about how fluctuations in the triaxial shape can affect
the band crossing process among high-spin states in deformed nuclei. For the yrast band in

Pt, we find that the neutron i&3g2 pair first starts to align smoothly, but is followed by a
sharp alignment of a proton h9g2 pair. These two rotational alignment processes take place in a
frequency range where there is a strong mixture of shapes with different p values ranging from
—15 to 4'. The second vi&s12 pair alignment occurs at a higher frequency (h~ ) 0.45 MeV).
Such theoretical results can explain nicely the double crossing observed in the yrast band of

Pt and the relevant blocking experiments in the neighboring odd-A nuclei. The result on
Pt is very diferent, as only the she~2 crossing is observed in the calculations up to a frequency

of 0.40 MeV. This compares well with the data, which indicate one sharp band crossing in ' Pt
at low frequency.

I. THE HORIZONTAL EXPANSION

It has been established that the generator coordinator
method (GCM) is a powerful approach to the problem of
large-amplitude collective motion. Particularly in the
1970's, there was much activity in applying the GCM to
nuclear collective phenomena. For example, the Faessler
group successfully developed the GCM for investigating
a variety of collective and collective plus single-particle
motions. Our recent effort in treating these phenomena
follows a similar spirit. The new element, which we have
incorporated into the GCM, is the so-called horizontal ex-
pansion (HEX) of the Hamiltonian kernel, as described
earlier in detail. In this paper we provide a qualitative
discussion of the physical basis of HEX in these calcula-
tions rather than repeating the original derivation. This
paper concentrates on what can be practically achieved
by this technique through a calculation of the character
of the yrast band crossings in Pt and Pt.

In the GCM (see Ring and Schucks) the total wave

function 4 is written as a superposition of the generating
states ~q) that imply the collective variable q as an ex-
ternal parameter. In the calculation presented here, this
collective variable is the triaxial deformation p. The de-
sired weighting function of the superposition that finally
determines 4 is found by solving the Hill-Wheeler equa-
tion, which is merely Schrodinger's equation in terms of
the chosen generating basis ~q). One should be clear on
an important and well-known feature of the Hill-Wheeler
equation. Since the variable q may, in principle, contin-

uously change, the different generating states do have a
finite overlap (q'~q). This means that in the GCM one
is not working with an orthogonal basis set, unlike the
"normal" diagonalization of a Hamiltonian matrix (as in
the nuclear shell model).

The horizontal expansion takes advantage of using
Hartree-Fock-Bogoliubov (HFB) determinants as gener-
ating functions. The collective variables q are to be
identified with one or more parameters specifying the in-
volved nuclear mean field, e.g. , the deformation parame-
ter(s), the pairing gap, and/or the rotational frequency.
Using such parameters as collective variables, q is obvi-
ously a good choice, since t, he nuclear many-body system
responds directly to any change of these parameters. For
example, the nucleonic orbitals have to be accommodated
in an average potential that may be altered in its geomet-
rical shape, in its superfluid properties, or in the angular
frequency if it is rotated in space.

Each HFB state ~q) can be considered as a quasipar-
ticle (qp) vacuum state with regard to the creation and

annihilation operators a;(q) and a, (q) defined locally at
a given parameter point q, where the index i refers to
the qp orbital. Any alteration of the mean field param-
eter q translates Into a change of the vacuum state and
simultaneously modifies the qp operators belonging to
it. Generally, we can define two alternative changes of a
given HFB state ~q).

(1) "Vertical" changes are obtained by any 2 qp exci-
tation at a given point q, i.e. , ~q) ~ [aI(q)at2(q)j~q). The
vertical changes are characterized by having zero overlap
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with the initial state ~q). In addition, any 2 qp excitation
is normally connected wit, h a nonzero energy jump, since
one is abruptly changing the vacuum configuration.

(2) "Horizontal" changes of the HFB state are achieved

by shifting the parameter value q, i.e. , ~q) ~q'). The
horizontal changes are determined by nonzero overlap
with the initial state, thus enabling one to perform qua-
sicontinuous alterations of the initial configuration. (To
siniplify the calculation, we do not consider here changes
simultaneously in both the horizontal and the vertical
directions. )

The aim of the GCM is obviously to follow horizon-
tal changes of HFB configurations, i.e. , to move in the
direc/ion of the collective mode under consideration.

The Hamiltonian H can, of course, be expressed in

terms of the above local qp operators. Assuming the
normal ordering one realizes immediately the following
identity when operating on the corresponding vacuum
state ~q):

H lq) = (qlHlq) lq) + H' " tai(q)az(q)j lq)

+H~ qi' [aI(q)at(q)ast(q)a4(q)] ~q), (I)

where the notation H q~ and H qi' shows the inherent

number of quasiparticles in the subsequent bracket. (Be-
cause of possible constraints such as angular momentum
conservation, the term H q& might be nonzero. ) Equa-
tion (I) states only the simple fact that in the expanded
Hamiltonian there survive only those terms that have no

qp annihilator on the right side. Except for the contri-
butions involving zero, two, and four quasiparticles, all

other combinations of the above qp operators vanish in

acting on the local vacuum. The 0 qp term is the lo-

cal expectation value (q~H ~q), which is often referred to
as the static energy or the potential energy surface with

respect to variations of the variable q.
Concerning Eq. (I) one should realize that the opera-

tion of the Hamiltonian yields a horizontal (0 qp) term
as the leading-order part, plus two vertical terms (2 qp
and 4 qp). Consequently, we call the decomposition in

Eq. (I) the horizontal expansion (HEX).
Now we are in the position to formulate the HEX ap-

proximation for the EIamiltonian kernel (q'~H~q) that en-

ters the Hill-Wheeler equation. This kernel is the coun-

terpart of the Hamiltonian iaatrix when referring to an
orthogonal basis.

In the crudest ap proximation (which will be used
throughout this paper), one neglects totally the vertical
2 qp and 4 qp terms. Forming the overlap with another
HFB state ~q') (which is in the above sense horizontally
connected with the initial IIFB state), one gets the ap-
proximated Hamiltonian kernel

(q'IHlq) = I/2((q'IIIlq') + (ql&lq)) (q'lq), (2)

which has been symmeterized with respect to the points

q and q'.
The building blocks of the Hamiltonian kernel (Eq. 2)

are given by the diagonal energy surface E(q) = (q~H~q)

and the nondiagonal overlap matrix (q'~q).
As usual the Hill-Wheeler equation is practically solved

by discretizing the collective variable q. This procedure
then takes the form of a diagonalization of a nondiagonal
Hamiltonian kernel matrix and overlap matrix, and yields
automatically quantized energies and solutions. We re-
call the fact that without any other approximation it is

impossible to split the Hamiltonian kernel into kinetic
energy and static potential parts ~ This separation only
makes sense when applying the Gaussian overlap approxi-
mation (GOA) for the EIamiltonian kernel. s According to
our experience wit, h realist, ic HFB states, one can hardly
describe the structure of the resulting overlap matrix by
a Gaussian shape, especially in regions of level crossings.
For collective modes where the overlap matrix behaves
smoothly, GOA is applicable, and then the Hill-Wheeler
equation assumes the form of a differential equation with
kinetic terms and mass parameters. Our approach is to
diagonalize the IIamiltonian kernel (2) in a straightfor-
ward manner and not apply GOA, which clearly does not
invalidate our approach. FIowever, one can still interpret
the diagonal elements (q~H~q) as potential energy terms
(as in the GOA) and relate the nondiagonal elements in

Eq. ('2) to kinetic effects. Even more relevant for appli-
cations is the following option.

The simple structure of the HEX kernel (Eq. 2) allows
one to use the techniques and results from the advanced
Strutinsky mean field calculations. These calculations
not only provide potential-energy surfaces but also yield
HFB states parametrized in terms of the desired shape
parameters. This option leads to the great advantage
of performing GCM calculations without explicit use of
complicated effective interactions and without need for
a self-consistent HFB procedure, Because of the demon-
strated success of the Strutinsky mean field approach in

high-spin physics, it seems to be the appropriate basis for
the next step of GCM calculations in which the qp states
belonging to various shapes and configurations become
mixed.

The expression (2) obtained by EIEX shows explicitly
the important role of the overlap matrix for the coupling
of the generator states. The detailed study of the over-
lap matrix provides a way of surveying the collective mo-

tion beyond the usual static information contained in the
potential landscape. This is because a sizable overlap
between two points q and q' tells us immediately that
a direct transition q ~ q' is favored, whereas a small
overlap forbids such a direct transition (i.e. , in zeroth or-
der). Thus, in rigorous calculations of overlap "trees, "
there are clearly revealed structural details that other-
wise ~ould be smoothed out in a Gaussian overlap ap-
proximation. This is particularly true for cases of simul-
taneous consideration of several degrees of freedom, e.g. ,

in nuclei where the interplay of pairing gap vibrations
and various shape fluctuations (axial versus non-axial or
reflection asymmetric shapes) are of interest.

In the following, the horizontal expansion (2) is ap-
plied in zeroth order to solve the Hill-VVheeler equation
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and get the evolution of the eigenstates as a function of
rotational frequency. We apply this new approach to in-

vestigate the structure of the yrast bands in ~Pt and
8 Pt, which have been difficult to understand using con-

ventional techniques.

II. THE OVERLAP MATRIX
FOR THE YRAST BAND OF i Pt

The band crossing process in the yrast sequence of
Pt has been a puzzle for several years. s ' The first

measurement on the yrast band of ' Pt led to the con-
clusion that the large increase in the aligned angular mo-
mentum is a result of a neutron i&s/z crossing. Kahler
et al. compared the characteristics of band crossings
in 1 sAu to that in ' Pt and concluded that the ro-
tational alignment of a proton hs/z pair is the dominant,
effect. More recently, experimental information on the
band crossings in the yrast and nonyrast sequences of

Pt has been compared to that on band crossings in
a number of neighboring odd-A nuclei. From this
more detailed blocking analysis, it can be concluded
that both of these alignment processes (vi&s/z and s.h9/z)
occur in the range of hu from 0.2 to 0.4 MeV, and are
responsible for the measured upbend in Pt. These
experimental comparisons also give some indication (al-
though not conclusive) that the xhs/2 crossing occurs
first, at a slightly lower frequency than vits/z. In con-
trast, many theoretical calculations with Nilsson and
Woods-Saxon cranked-shell potentials [including large-
scale total Routhian surface (TRS) calculationsj indicate
that the vi&3~q pair alignment must occur at a lower fre-

quency than the other. There is another possibility, as
pointed out by Bengtssoni4 and discussed also by Car-
penter et al. ,

' that two neutron iq3~~ pairs align sequen-
tially (the AB and CD crossings in the standard no-

tation) in this frequency region, without a nhs/z pair
alignment.

In order to investigate the dynamic aspects of the
band-crossing process, we have calculated the overlap
matrix for the yrast band of ' Pt. First, the rotational
frequency was taken as the collective variable of inter-

est, in order to investigate individually the characteris-
tics of the two types of band crossings for specified defor-
mations. Secondly, we solved the Hill-Wheeler equation
numerically by taking deformation and frequency as the
generator variables, so that we can trace the evolution of
the complete band-crossing process. These overlap func-
tions from both of these calculations may then describe
the dynamics of the collective motion.

The total Routhian surface calculation is known to pro-
vide the static description of the possible shapes a nucleus
may take at high rotational frequency. Such shapes cor-
respond to the TRS minima for any selected frequen-
cy. The TRS has been a powerful tool for interpreting
high-spin data and predicting specific phenomena, e.g. ,

the expected mass regions for superdeformation. How-

ever, such static TRS calculations cannot tell us what
the transmission probability between distinct minima
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FIG. 1. Calculated wave function overlaps between states
with different frequencies for neutron (dashed lines) and pro-
ton (solid lines) components in the yrast band of ' Pt, as a
function of rotational frequency. Separate calculations were
carried out for P2 = 0.217, P4 = —0.029, p = 0 (squares); P2
= 0.218, P4 = —0.038, p = —15' (circles); and Pq = 0.235,
P4 ———0.031, p = 4' (triangles), as described in the text.

in such potential landscapes is. For this purpose, one
needs to calculate the distribution function over this TRS
to get insight into what path through the deformation-
frequency plane the nuclear system is really going to take
during an excitation or deexcitation. This means actu-
ally accounting for the dynamics of collective processes.

In the specific examples considered here we demon-
strate that the overlap matrix is one of the proper instru-
ments to answer the questions raised above. Minima from
the TRS calculation for ' Pt are as follows:" ' '5 the
yrast state just before the first band crossing, h~ = 0.15
MeV: P2 ——0.217, P4 ———0.029, y = 0; the neutron

its/z aligned state at h~ = 0.15 MeV: Pz —— 0.218,
P4 ———0.038, p = —15', and the proton hs/z aligned
state at M = 0.2 MeV: Pz ——0.235, P4

——0.031, y = 4 .
Using the cranking model with the Woods-Saxon po-

tential (including Strutinsky shell corrections), we have

obtained the overlaps of the wave functions (i.e. , (q~q'))
between diAerent frequencies over a range of h~ = 0.15—

0.45 MeV. These calculations were performed at these
three deformation points, without particle-number pro-
jection. We find that the dimension of the subspace is

two for both the neutron and proton parts of the wave

function. This means that there is only one neutron and
one proton crossing in this frequency range. The values

of these overlaps are plotted in Fig. 1 as a function of
frequency. It is clear in Fig. 1 that, there is a smooth de-
crease in the values of the overlaps for the neutron part.
This indicates a very gradual change of the neutron con-

figuration over a wide frequency region, starting from
~ = 0.2 MeV for p = —15'. This pattern of decreasing
overlap is shifted towards higher frequency as 7 increases.
However, the corresponding m'h9~2 crossing behaves quite
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differently. It is much sharper and higher in frequency,

starting to occur at hu = 0.325 MeV for the deformation

P2 = 0.235, P4: 0.031, 'y = 4', and at h~ = 0.4 MeV
for the deformation Pq

——0.218, P4
——0.038, p = —]5 .

In the latter case, i.e. , if the neutron i~3~2 pair is already
aligned completely, the difference between the xh9~2 and

viis~2 crossings is about 0.'2 MeV. Generally speaking,
such a difference increases if p becomes more negative.
In contrast, the systematic blocking experiments
in this mass region seem to indicate that these two band
crossings (viis~z and n'hs~&) are much closer together in

frequency, and that the proton ha~2 crossing may occur
at a slightly lower value than the neutron i&s~z crossing.

In order to investigate fully the competition between
these two band-crossing processes, the Hill-Wheeler
equation was solved numerically for the nucleus Pt
by descretizing the collective variables and calculating
the overlap matrix. Such a calculation was done with a
Nilsson-cranked-shell model with modified parameters'
ic and p in two-dimensional (deformation and frequency)
space. For simplicity, the coupling between different N

shells is neglected, as is usually done.
In the calculation, we included five frequency mesh

points (from 0.20 to 0.45 MeV) and eight deformation
mesh points, keeping ez ——0.212 (the average of the three

p~ values mentioned in the previous paragraph) with 7
varying from —25' to +150. A decreasing pairing gap was
assumed, i.e. , 100%, 80'%%uo, and 60% of the odd-even mass
difference for h~ = 0.20 and 0.25 (100'%%uo), 0.30 and 0.35
(80%%uo), and 0.40 and 0.45 MeV (60%). The results showed
that if we take tlute same cut on the norm eigenvalue, the
dimension of the subspace is three to five, varying with
frequency. That is, at low frequency there are apparently
three distinct configurations that contribute to the wave

function of the yrast band. At a higher frequency, there
are five contributing configurations, indicating a struc-
ture of increased complexity. The general observation for
the whole frequency region is that the lowest eigenstates
are formed from neither a specific configuration nor of
a definite shape but are instead spread over all the de-
formation mesh points. However, one finds a structural
change in the wave function as a function of frequency.
This can be seen in Fig. 2, which plots the normalized
square of the expanding coefficients of the eigenfunction
(amplitude) on the basic HFB determinants with cer-
tain values of y. As shown in Fig. 2, the wave function
of the lowest eigenstate is spread over different 7 values

with the concentration around —15' to +4' at h~ = 0.2
MeV. This concentration shifts to more negative y with
increasing frequency up to 0.3 and 0.35 MeV, where the p
average value equals —14'. This means that the neutron
i&3g2 aligned state makes a substantial contribution in
this frequency region, whereas afterwards (at higher fre-

quency) the concentration goes to positive p values, the
proton h9~2 alignment process clearly becoming domi-
nant. Both alignment processes are thus found to occur
at or belo~ a frequency of 0.4 MeV.

As mentioned above, an alternative explanation for the
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FIG. 2. The structural evolution of the eigenstate as a
function of frequency in the yrast band of Pt. The basis
states have the same cq but diR'erent p values, as mentioned in
the text. The amplitudes are normalized squared expansion
coe%cients of the eigenstates, and the p values are given in
degrees.

double band crossing in '"Pt is that there are two vils/2
pair alignments. In order to carefully check for a sec-
ond vi/3/Q pair alignment in this frequency region, we

performed another calculation where once again the fre-

quency is taken to be the only generator variable, but this
time with a different value of the pairing correlation. The
p value is chosen to be —14', which results from the align-
ment of a. neutron iq3~2 pair. The neutron pairing gap is
taken to be small (150 keV), and the proton pairing gap is
assumed to be 80'%%uo of that for the ground state. We find
that the dimension of the subspace for the neutron part
is still only two in this frequency region. This means
that there is only one band crossing, only one neutron

ii3g~ pair aligned in this frequency region. Consequently,
from the calculation in one- and two-dimensional space,
one can conclude that the upbend in the yrast band of

Pt is really caused by the gradual alignment of a neu-
tron i~3'~ pair followed closely by the sharp alignment
of a proton h9~~ pair. In P t, however, our calcula-
tion shows a second neutron iq3y~ pair aligned in this
frequency region, as described by Bengtsson recently.

It is important to emphasize here that one should be
careful in drawing conclusions about the band-crossing
mechanism of a. transitional even-even nucleus based on
the blocking experiments of neighboring odd-A nuclei
(e.g. , see Ref. 17). This is simply because the even-even
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core of the neighboring odd-A nucleus may have a quite
different deformation and pairing correlation from that, of
the even-even nucleus. A quantitative discussion of the
diA'erence in deformation among diA'erent configurations
in odd-A and even-A nuclei was presented recently for
this mass region. It shows that the polarization of the
extra proton or neutron in an odd-A nucleus does lead
to the variation in the crossing frequency of the vi/3/'9
and/or the xhsy~ band compared to the values found in
even-even nuclei. Therefore, for a transitional nucleus
like Pt, the blocking experiments of odd-A neighbors
can only tell the existence of certain kinds of band cross-
ings in the neighboring even-even nucleus, but not the
exact crossing frequency.

Generally speaking, our calculations show that such
a band-crossing phenomenon in is4Pt is a more compli-
cated process than one expected earlier, and explains why
the normal cranked-shell model calculations with a con-
stant deformation cannot describe this process properly.
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III. THE OVERLAP MATRIX
FOR THE YRAST BAND OF is~Pt
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The experimental information on the yrast band of
'ssPt indicates a band crossing pattern quite different
from that in 8 Pt. Whereas the yrast band of Pt ex-
hibits two strongly interacting band crossings below ~
= 0.4 MeV, that of issPt displays a single sharp back-
bend at h~ = 0.24 MeV. The addition of two neutrons
has a profound effect on the nature of the low-frequency
band crossings. Blocking comparisons of the alignment
features of the N = 108 isotones show sharp crossings in

the irds~q band of Ir (Ref. 19) and in the 7riis~2 band
of s7Au (Ref. 20) at frequencies very similar to that of
the yrast band of Pt. In contrast, the crossings in the

ebs~2 band of issIr (Ref. 19) and of is"Au (Ref. 20) are
delayed. This leads to the conclusion that the xh9~2
crossing occurs at a low frequency (h~ = 0.24 MeV) for
N = 108, and that the viq3~~ crossing seems strongly de-
layed. However, cranked-shell model calculations cannot
produce such a low-frequency ~69~& crossing without an
unreasonable reduction of the proton pair gap.

We have performed GCM calculations on ' Pt to ad-
dress this dilemma. In the solution of the Hill-Wheeler
equation, mesh points were taken for p varying from —40'
to +16' in steps of 4', with a constant c2 ——0.174. Con-
stant proton and neutron pairing gaps (obtained from
a self-consistent calculation for the ground state) were
used over the frequency region of interest for the ease of
calculation. The results are shown in a plot of the am-

plitudes as a function of p and h~ in Fig. 3. It is clear
that the concentration of the wave function shifts to pos-
itive y values already at hu = 0.'20 MeV, which must be
indicative of a very low-frequency xhg~~ crossing. This
is in striking contrast to the pattern of the amplitudes
shown in Fig. 2 for Pt, where the wave function ini-

tially shifts to negative p values (i.e. , a vi&s~& crossing)
and then finally moves to positive values (7rhs~-& crossing)

FIG. 3. The structural evolution of the eigenstate as a
function of frequency in the yrast band of Pt. The basis
states have the same eq but different p values, as mentioned in
the text. The amplitudes are normalized squared expansion
coe%cients of the eigenstates, and the p values are given in

degrees.

only at her = 0.40 MeV. Indeed, in the calculation shown

in Fig. 3, there is no indication of the viq3~2 crossing up
to fin = 0.40 MeV. The addition of the two neutrons to

Pt obviously has the effect of greatly increasing the
crossing frequency for the vi~3~2 pair, because of an N =
108 gap in the single-particle neutron scheme.

The calculations thus seem to verify the experimental
proposal 9 that, the single low-frequency band cross-

ing in ' Pt results from the alignment of a xh9~2 pair.
Such a conclusion would not, have been made from the
usual type of "st,atic" calcula. tions based on the TRS re-

sults. The dynamic aspects of the structure are appar-
ently quite important for these transitional nuclei.

IV. SUMMARY

From a general discussion on the solution of the Hill-

Wheeler equation in previous sections, it was seen that
significant information is involved in the overlap matrix.
From this, one can not only solve the Hill-wheeler equa-
tion numerically by discretization of the continuous gen-
erator variables but can also learn much about the dy-
namical aspects of the collective motion, such as the pro-
cess of band crossing, the evolution of the eigenstate, and
the dimension of the collective subspace. Such a dimen-
sion is closely related to the band-crossing mechanism in
high-spin physics because it, provides information about
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the contributing configurations. The calculated overlap
matrix in one- and two-dimensional space for the yrast
band in Pt, oH'ers for the first time a more detailed
picture describing the band-crossing process. The calcu-
lations indicate a smooth neutron iq3~& pair alignment
closely followed by a sharp proton h9~2 alignment, which
causes the upbend in the yrast band of ~ Pt. In con-
trast, the yrast band in Pt is marked only by the low-

frequency mhg~~ crossing, as the vi~3~~ alignment process
moves to much higher frequency.

It is true that the calcula, tions leading to the ampli-
tudes in Figs. 2 and 3 assume eq —0. This simplifying
assumption was made to permit the solution of the Hill-

Wheeler equation with both deformation (c2 and 7) and
rotational frequency as generator variables. Especially
the xh9~2 crossing is dependent on cq, which means that
one cannot quantitatively stress the position of this cross-
ing relative to that of iq3~2 neutrons in either Fig. 2 or
Fig. 3. However, our main conclusion stands —there is a
marked change in the pattern of the wave function from

Pt (Fig. 2) to Pt (Fig. 3), a change that matches
the experimental pattern of two low-frequency crossings
in ' Pt and only one in ' Pt. The calculations indi-

cate that the change results from a lowering of the xhg~~

crossing in ' Pt, compared to ' Pt.
With this powerful calculational technique, we expect

to have the proper theoretical scheme for the investiga-
tion of the dynamical aspects of other high-spin phenom-
ena, such as the connection between superdeformed and
normal bands, the decay process of the high-I~ isomers,
shape coexistence and pairing isomer phenomena, etc.
Large-scale calculations of the overlap matrix and solv-

ing the Hill-Wheeler equation in multidimensional space
(including deformation, frequency or spin, and pairing
degrees) are neecled in orcler to bring new light to the
dynamics of high-spin physics.
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