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A model of a superconducting phase transition is studied in terms of two competing dynamical

symmetry chains. It is shown that a sharp phase transition occurs in the limit of large-dimensional
representations and that, for finite representations, the smoothed-out phase transitions can be un-

derstood clearly in analytical terms. It is also shown, both numerically and analytically, that the
Mottelson approximation becomes exact for large-dimensional representations.

I. INTRODUCTION

An analysis of the detailed behavior of a system in the
neighborhood of a phase transition poses interesting and
challenging problems. A basic difficulty is that the sys-
tem invariably undergoes a transition from one type of
symmetry to another with the consequence that methods
which work on one side of the transition point often
break down at precisely the point of interest.

Many examples of phase transitions are to be found in
both classical and quantal physics. Consider, for exam-

ple, the small-amplitude normal-mode vibrations of a
classical system about equilibrium and their behavior as
some parameter in the Hamiltonian is varied. Situations
arise where the frequency of one normal mode falls with
increase in the value of the parameter and at some criti-
cal point vanishes. If the parameter is further increased
one invariably finds that the normal-mode theory returns
an imaginary, and hence unphysical, value for the fre-
quency in question indicating that the assumed equilibri-
um configuration is no longer stable. Physically, one in-
terprets the situation as corresponding to a decrease in
the restoring force for small displacements in the associ-
ated normal mode until, at the critical point, the restor-
ing force vanishes and the system moves to a new equilib-
rium configuration. Frequently the new equilibrium
configuration has a different symmetry. If it has less sym-
metry, one can associate a Goldstone boson with the cor-
responding normal mode. Parallel situations are familiar
in the quantum mechanics of many-body systems when
the normal-modes are treated in the small-amplitude
time-dependent Hartree-Fock approximation or,
equivalently, in the random-phase approximation.

In this paper we examine a familiar model of a many-
fermion system in which a phase transition from a nor-
mal to a superconducting state is induced by a change of
the strength of a pairing interaction. We show exact nu-
merically calculated results for this model in a form
which reveals the particular features of the ground-state
wave function that characterize the phase transition. We
show, for example, that the essential ingredients of the
phase transition are present in finite as well as infinite sys-
tems. A new approximation is introduced which admits
simple analytical solutions to the model and enables one
to predict all the results of the numerical calculations to a

high degree of accuracy. Comparisons of exact ground-
state wave functions are also made with those obtained in
the BCS approximation and in the number-projection
approximation of Mottelson. The remarkable success of
the latter is explained.

The analysis presented in this paper is directed
specifically towards understanding pairing phenomena
and the nature of superconductivity. It is also a prelimi-
nary exploration of the more general situation in which
there are competing dynamical symmetries such that
with a small change of some term in a Hamiltonian one
can have a dramatic change in the character of the sys-
tern. Changes in the Hamiltonian can be brought about
in physical situations in many ways. For example, in
looking at a sequence of nuclear isotopes or isobars, one
often encounters sudden changes in their behavior over a
small range. The changes at closed shells are familiar ex-
amples of this. Others are given by shape changes sig-
naled by the onset of rotational bands. The competition
between dynamical symmetries that reflect the domi-
nance of pairing correlations, which favor spherical
shapes, versus those characteristic of deformed rotational
nuclei is an old and essentially unsolved problem. The
analysis of this paper is thus a first study of some of the
kinds of behaviors one can expect in the neighborhood of
a phase transition.

II. THE MODEL

The model is a relatively realistic caricature of a situa-
tion that occurs in nuclear physics and other many-
fermion systems in which, in the absence of residual in-
teractions, one has an independent-particle Hamiltonian
Ho with a ground state described by a set of fully occu-
pied single-particle levels below the Fermi surface and a
set of empty single-particle levels above.

In this paper we consider, for simplicity, just two lev-
els, one above and the other below the Fermi surface.
The lower (occupied) level comprises a set of single-
particle states labeled by an index m, spanning the range
m, = —j, , . . . , +j, in integer steps and the upper (unoc-
cupied) level similarly comprises states with
m 2

= —
g2, . . . , +g2. The independent-particle Hamil-

tonian is then expressed
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2

Ho=pe; g at a
m — J ~

with c2) c, . The ground state of the system is the state

+jl
[yo) =

m1 — J1

(2)

where
~

—) is the bare particle vacuum state. Excited
states are given by the states a a~ ~go) at excitation

J2 2 Jl 1

energy e2
—e„ the states aj a~ a. , a. , ~Po) at ex-

J2 2 J 1 1 J2 2 J1 1

citation energy 2( e2 —e I), etc.
One can interpret j~ and j2 as single-particle angular

momenta or simply as labels each representing a set of
angular-momentum states which, in the model, have been
assigned common single-particle energies. For example,
if level one comprises a set of single-particle states of an-
gular momentum j =—'„—'„and —,'then m would index
g(2j+1)=18 states and we would set j, = —", . For sim-

plicity we set j &

=j2 in the model.
The residual interaction is assumed to be of the pairing

type

1,0
S=V/2

where

I&, 1

mk, mi )0

(3)
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The eigenstates of the Hamiltonian

H =H0+ V (4)

are easily determined numerically and one finds that as
the coupling constant G increases from zero, the ground
state goes from the independent-particle (closed subshell)
state to one in which both levels are equally occupied.
The transition from one limit to the other is character-
ized by the ground-state pair correlation function
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shown in units of (2j+1)(2j+3)/4 in Fig. 1 for two
values of j&=j2=j as a function of y=G/G„;„where
G„;,=e/(2j + 1). One notes that there is a rapid increase
in the value of E with G in the neighborhood of G„;, and
that the increase is much sharper for the larger value of j.
The indications are that a sharp phase transition occurs
at G =G„;, in the limit j~~. Our objective in this pa-
per is to investigate the nature of this transition.

III. BCS AND MOTTELSON APPROXIMATIONS

The conventional interpretation of a superconducting
phase transition is given in terms of the BCS approxima-
tion. The BCS ground state is a quasiparticle vacuum
state,

~ ), defined by the equation

I

1.0 2.0

crtt

4.0

where

ej m =ulaJ m
—Ula.

I I I I j, m

with

i =1,2

FIG. l. The pair correlation function of Eq. (5) plotted as a
function of G/G„„ for two values of s =t,'2j+1)/4 with

J 1
=J2 =j. The results for finite s are from exact numerical cal-

culations and are seen to approach the BCS approximation as
s~ 00.

u, +U,-=1.
The parameters u, and U, are chosen to minimize the free
energy ( IH —A.A'I ) of the quasiparticle vacuum state
where
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j, m g, m,
(9) an su(2}, Xsu(2)2 quasispin algebra by means of the

identification

& lkl &=N (10)

is the fermion number operator and A, , the chemical po-
tential, is a Lagrange multiplier introduced to ensure that
the mean fermion number

S'+= g a, a'
m )0

S' =pa a,
m )0

I

(14)

has the desired value (in our case N = 2j+ 1).
The pair correlation functions for the BCS solutions

are shown in comparison to those of the exact solutions
in Fig. 1 and are seen to indicate sharp phase transitions
for all (nonzero) values of j. The BCS predictions accu-
rately reproduce the exact results for very large j. How-
ever, in the absence of exact results it would be hard to
know if the phase transition predicted by the BCS ap-
proximation were genuine or an artifact of the variational
constraint to quasiparticle vacuum states. Thus the BCS
approximation is not very useful for explaining the nature
of the rapid transition that takes place in finite systems.
It also has the disconcerning property that it only con-
serves the fermion number of the system on average.
Indeed, one easily shows that the quasiparticle vacuum
(the BCS ground state) is given to within a normalization
factor by

and has a distribution of fermion number values of width
given by

( ~(N N) ) =2+(2j, +—1)(u, v, ) (12)

The component of the BCS ground state of particle
number X is seen to be given by

' X/2

~N&=, g '
ga,' a,

' (13)
I

which is of the variational form of the approximate
ground-state wave function proposed by Mottelson. It is
therefore of interest to compare the results of the best
wave function of this form with those of exact calcula-
tions. The approximation (13) is known to be remarkably
accurate even for more general situations. We find that
the pair correlation function calculated for the best wave
functions of the form (13) are indistinguishable from ex-
act results on the scale of Fig. 1. Thus, in addition to un-
derstanding the nature of the phase transition at G,.„, we
would also like to understand why a wave function of the
Mottelson type should be such a good approximation for
the ground state.

IV. THE DYNAMICAL SYMMETRY
OF THE PAIRING HAMILTONIAN

Before proceeding, it is useful to express the Hamil-
tonian in terms of its spectrum generating algebra in or-
der to explicitly expose the nature of the dynamical sym-
metries involved. Following Kerman, Lawson, and
Macfarlane, the Hamiltonian (4) is expressed in terms of

0'= s(S 0
—SI, )

—GS+S

where

(15)

S+ =S++S„
is a summed quasispin operator. Since the eigenvalues of
So and So span the respective ranges —(2j, +1)/
4, . . . , (2j, +1)/4 and —(2jz+1)/4, . . . , (2j~+ I)/4,
the relevant representation of the su(2), Xsu(2)2 algebra
for the calculation of the ground state is the one with

s, =(2j, +1)/4 and sz =(2j2+1)/4. In this paper, we
restrict consideration primarily to the states of this repre-
sentation, all of which one notes have angular momentum
J=0. We refer to these states as states of maximum
su(2), X su(2)~ symmetry. Excited J =0 states of maximal
symmetry are sometimes referred to as broken pair states
(cf. Ref. 7 and references therein). They are also de-
scribed as pairing vibrational states. '

In the G =0 limit, the ground state of the system is the
state s, , m, =s „s2,m2 = —s2 ), where the quantum
numbers are those of the subalgebra chain

su(2), X su(2)~ 0 u (1),X u (1)2 .
$1 Sp t7l

l m,
(16)

On the other hand, when E. =0, the eigenstates have good
coupled quasispin and reduce the subalgebra chain

su(2), X su(2)2Dsu(2) Du (1),
S S

5
1 2

M
(17)

where the intermediate su(2) algebra is spanned by the
sum quasiparticle operators

So =So +So S+ =S +S+

The ground state is then the state ~s, ,sz, S=s& +s2,
M=s& —sz). Thus the system has two limiting dynami-
cal symmetry chains reminiscent of the I.S versus jj cou-
pling symmetry limits of fermion wave functions which
can be discussed in much the same language.

Now, as the ratio G/E increases from zero to a large
value, one would expect a transition to occur from a
ground state of u(l), Xu(1)~ symmetry to one of
su(2}Du (1) symmetry. However, it is clear from Fig. 1

that, for finite s, =s2=(2j+1)/4, the pair correlation
function changes continuously, even if rapidly, in the
neighborhood of G —G„„. Thus the system does not
jump discontinuously from one symmetry extreme to the
other, even for large spin values. Our problem then is to

m, )0

With A, = —,
'

( e~+ 8, ) and c =cz —c„ the Hamiltonian
0' =H —

A,X is then expressed
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understand why the first derivative dE/dG of the pair
correlation function

for the subspace of states of maximal su(2)& X su(2)2 sym-
metry. The eigenvectors of H' are then expanded

becomes discontinuous at G„;, as s =s, =s2 ~~.

V. NUMERICAL SOLUTION

To understand what is happening, we consider the di-
agonalization of the Hamiltonian H' in the uncoupled
basis

Im &
= Is, =s, m, =m;s2 =s, mz = —m &,

pl= s, . . . , +s

(19)

From the well-known matrix elements of the su(2) alge-
bra

(s, m, +1IS+ Is, m, &=+(s, +m, )(s, +m, +1),

(s, m, ISO Is, m, & =m ~,

one then easily determines that
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FIG. 2. The wave functions p(x)= =m s or i erenp( )=C = / f d 6'erent g=G/6 obtained by exact numerical calculations for s =
—, and

s =—'. The results for y= 1 are shown on an enlarged scale.2.
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(m ~IH'~IQ) = —[2Em+2G (s s+1)—2Gm~]C m

—G[s(s +1)—m (m —1)]Cm —1

—G[s(s+1)—m(m + l)]C (20)

1((x)= C (21)

The eigenvalue equations are thereare t erefore easily solved nu-
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of s and 6 ))6„;„the independent-particle ground state
is a negligibly small component of the correlated ground
state. Interestingly enough, the results suggest that a per-
turbative expansion about an excited independent-
particle state, with ~m) given by the centroid of the
Gaussian wave packet, might possibly converge.

The ground-state energy of the Hamiltonian H' is
shown in units of 2sc for two values of s in Fig. 3. One
sees that as s ~ ~ the ground-state energy approaches a
constant value of —2sc for G (G„„and that it asymp-
totically approaches the line Eo= —6/2G„„as G~ ~.
For all values of s the ground-state energy Eo and its
derivative dEO/dG are continuous. However, the second
derivative d EoldG becomes discontinuous at 6 =6„;,

s= v/2

3rd excite

at the s~ ~ limit.
The wave functions of the first excited J =0 (pairing

vibrational) states of maximal su(2), Xsu(2)2 symmetry
are shown for s = —", and several values of g in Fig. 4.
Like the ground-state wave functions the first excited-
state wave functions closely resemble harmonic-oscillator
wave functions for sufficiently large g.

The excitation energies at the first few excited J =0
states of maximal symmetry are plotted in Fig. 5 in units
of c.. One sees that the spectrum is harmonic with
bE„=vbE, and that db.E„/dG becomes discontinuous
at G =G„„in the s~ ~ limit.

VI. ANALYTICAL SOLUTION

The eigenvectors of H' are easily determined when
@=0. In particular, the ground state is then the state of
maximum coupled quasi-spin S =2s with So component
M, =0. The corresponding eigenvalue of —GS+ S has
value —26s (2s + 1) and the coefficients of the wave func-
tion are the Clebsch-Gordan coefficients

o 60
C =(sm, s —m ~2s0) = (»)!(»)!

V(4s)! (s+m)!(s —m)!
(22)

4,0

0
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2.0

0
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4.0

20

0.5

S=-49/2

crit

2.0
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These coefficients can also be obtained by solving the
eigenvector equation for H' as a recursion relation for
C . As shown below, cf. Eq. (32), the Clebsch-Gordan
coefficient (22) has the asymptotic form of a Gaussian,

2
i.e., C -Ce ' as s~ ~, consistent with the numeri-
cally computed result for P(x =m/s)=C for yahoo
shown in Fig. 2.

When a@0, 1((x) is an eigenfunction of the Hamiltoni-
an

H' = —GS+ S —2sx c.

and one sees that the second terms is simply a constrain-
ing field that has the effect of displacing the wave func-
tion in the positive x direction. Thus one is not surprised
to see numerically computed wave functions that for
sufficiently large s and small c are given to a good approx-
imation by

g'(x) =P(x —a)

for some suitable value of a.
To understand better the numerically calculated re-

sults, it is helpful to express the eigenvalue equation as a
differential equation by defining

&i((x)= (m H'~!l/i) = (sx ~H'~1)'j) .

Expanding

C ~, =g x + — =g(x)+ — + +. . .1 1 dij'j 1 d g
25 Gx

0
0 0.5 1.0

I
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we immediately get

%= —2sx E —46s (s + 1 )

G/G

FIG. 5. Excited-state energies for J =0 (pairing-vibrational)
states of maximal su(2), X su(2)2 symmetry in units of c.

+G 4s x +2x
GfX

2
2

l2
S GX jx

(23)
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Making the substitution

x = —(b+b ),
2 s

=&s (b b—},
dx

we obtain

&=—46s(s +1)—v's E(b+b )+2Gs(b b +bb )

+6[(b+b )(b b)—+(b b—)(b b—)

+ ,'(b+—b ) (b —b ) ]+
Then, for large s, we may neglect the higher-order terms
in the 1/s expansion and keep only

&=—46s(s+1)—&s e(b+b )+26s(b b+bb ) .

(24)

The ground-state wave function for this Hamiltonian is
given to within a normalization factor by

VII. THE MOTTELSON GROUND-STATE
WA VE FUNCTION

g2
(S++PS ) 'i —&=k 1+P is&,

where is & is the independent-particle closed-shell state

kis & =(S+ )
' —

&

The utility of this expression is seen by writing

im &=
v'(s —m +1)(s+m)
XS+ is, =s, m, =m —1;s2 ——s, m2 ———m &,

whence one determines that

We now consider why a wave function of the Mottel-
son form (13) should be such a good approximation for
the ground state. This wave function can be expressed, to
within a normalization factor,

Po(x)=exp[ —s(x —a) ] (25)
S+

im&=im —1& for m) —s .
s]+

with a =c./46s. We conclude that, for large s, the wave
packet should be a Gaussian of width I /&2s with cen-
troid at x =a. Recall, however, that x is restricted to the
domain —1 ~ x ~ + 1. Moreover, the full wave packet
(25) lies within this domain provided s (1—a ) ))1. This
condition is clearly satisfied for large s when G))6,„„,
where

One then immediately finds that

(S++PS' )"i —&=+ ' P' im & . (29)
(s + m)!(s —m)!

Now, in the G~ &x) limit, this wave function approaches
the exact p= 1 state

G crit 4
(26)

m

But, when 6 approaches 6„;,from above, we see that the
centroid of the wave packet approaches the x = 1 bound-
ary. The wave function has a sharp cutoff at x =1 and it
is not surprising, therefore, that its properties should un-

dergo a rapid change as G~6,„;,.
For G )G,r„and large s, we can use the above wave

packet to obtain the ground-state pair correlation func-
tion

(s +m)!(s —m)!

It follows that

(30)

Comparison with the analytical solution (25) for a =0,
which is also exact for 6~ ~ and s ~ ~, then gives the
large s asymptotic expression

&OoiS+S- iso& 2sK= =1-
2s (2s + 1 ) 2s + 1

Gent

G

2

(27)
(S I +pS2 )2si & geese

—m /sps —
mim &

However, we note that because of the cutoff of the wave
function for x ) 1, K is bounded from below by
E;„= /I(2 s+).ITherefore, in the s~ ~ limit, we pre-
dict

Therefore, setting p=e ', we obtain

(S++PS+ ) 'i —&-exp[s(1 —a) ]

Xgexp[ —(m —sa) /s]im & (31)

1 —(G„„/G) for G )G,„„K=
0 f'or G Gcrlt

(28)

in full accord with the numerically computed results
shown in Fig. 1.

We also obtain from the analysis a prediction of
excited-state wave functions given by (displaced)
harmonic-oscillator wave functions and having excitation
energies of 46sv where v is a positive integer. These pre-
dictions are in good qualitative accord with the exact nu-
merically computed results, shown Figs. 4 and 5, when s
is large and G ))6«„.

which, to within a normalization factor, is precisely the
analytical solution (25} for large s. It follows that the
Mottelson approximation is exact for the two-level prob-
lem in the large s limit. One also knows that it is exact,
for arbitrary s, in the two limits when 6 /c =0 and
G/c. ~~, for which it corresponds to the two exact
dynamical symmetry chains (16) and (17). Thus, one un-
derstands why it should give such excellent results in gen-
eral and provide a smooth interpolation between the vari-
ous limiting cases.

As an aside, we note that Eq. (30) implies the interest-
ing and possibly useful asymptotic expression for the
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SU(2 ) Clebsch-Gordan coefficients (22)

(sm, s —m ~2s0)— exp[(s —m )/s] (32)

for large s.
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VIII. CONCLUDING REMARKS 3.0

In the above analysis, we have concentrated on the
properties of the J =0 states belonging to the representa-
tion of the su(2), Xsu(2)2 dynamical symmetry algebra
having the maximal values s, = (2j + 1)/4 and
sz=(2j+1)/4 of the quasispin. This is appropriate be-
cause, as one can easily ascertain, the ground state be-
longs to this representation. Excited J =0 states of maxi-
mal symmetry are sometimes referred to as broken pair
states (cf. Ref. 7 and references therein). These states are
pairing-vibrational excitations in the terminology of
Bohr and Bes and Broglia. Pairing-vibrational excita-
tions of this kind were first considered, to our knowledge,
by Hogaasen-Feldman. '

Other representations obviously feature in the spec-
trum and are of essential importance for the considera-
tion of excited states. In particular, the lowest JAO ex-
cited states belong to the representation with quasispins
s, =(2j —1)/4 and sz =(2j —1)/4. An exact solution of
the pairing Hamiltonian for these and other states in the
multiple quasi-spin formalism presents no problems and
has been studied on previous occasions in a variety of ap-
proximations. " The energies of the first excited J=O
pairing-vibrational state and JAO states are shown as
functions ofg for s =—,'and —", in Fig. 7.

Two features of the figure are noteworthy. First, ob-
serve that the excitation energy of the lowest JAO states
increases slowly for G (6,„;, and rapidly for 6 & G„„.
These states are described as two quasiparticle states in
the BCS theory and the rapid increase in their excitation
energies with G for G )G„;, is associated with a rapidly
increasing gap parameter. Second, observe that the ener-

gy of the J =0 pairing-vibrational excitation falls rapidly
with energy and approaches zero excitation energy in the
s~~ limit. After the phase transition its character
changes and it increases rapidly. In the language of the
random-phase approximation (RPA) and quasiparticle
RPA one says that the ground state becomes unstable
against pairing vibrations with increasing 6 and becomes
superconducting at 6 =6„„.For 6 &6,„;, the excited
J =0 state starts to behave like a two-quasiparticle state.
An anlaysis of excited states within the framework of the
RPA has been given by Heiss et aI. "

In conclusion, we recall that one of our primary
motivations in this analysis was to study a prototype of a
phase transition in a system with competing dynamical
symmetry chains. Unfortunately, it remains unclear to us
what aspects of the model we have investigated will be
shared with other models. To find out, it would be in-
structive to make similar analyses of other models. In
particular, it would be interesting to determine if such
systems, presumably in the limit of large-dimensional
representations, generally feature sharp phase transitions
in proceeding from one symmetry chain to another. This
is a very fundamental question to which we are unaware
that the answer is presently known.

Several models with competing dynamical subalgebra
chains are known. For example, the interacting boson
model' with its u(6) dynamical symmetry algebra and
three subalgebra chains
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FIG. 7. The energies of the first excited J=0 and JWO states
for s =
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provides a range of possibilities. Another example is pro-
vided by the competing su(3) (Ref. 13) versus quasispin
subalgebra chains of the harmonic-oscillator shell model.
Such a study could be important for understanding the
competition between quadrupole and pairing correlations
and the corresponding phase transitions between de-
formed (rotational) and superconducting nuclei.
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