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Nuclear equation of state with derivative scalar coupling
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A relativistic nuclear mean field model is developed involving nucleons coupled to effective scalar
and vector fields. It differs slightly from the usual Walecka model in the form of the coupling of the
nucleon to the scalar meson. We calculate the equation of state for symmetric nuclear matter at
zero temperature. The model, which has no arbitrary parameters, once we fit the empirical density
and energy of nuclear matter, yields a compression modulus of 225 MeV and an effective nucleon
mass =0.85.

I. INTRODUCTION

In order to describe the hadronic matter at both nor-
mal nuclear density (n =no=0. 16 fm ), and at high
density produced in heavy-ion collisions, a complete field
theoretical treatment would be very elegant and desir-
able. However, at least at present, it does not seem possi-
ble to construct such a treatment.

The next best approach could be relativistic effective
mean-field description. ' Since the early works of Walec-
ka and Chin, a lot of work has been done to investigate
the properties of self-consistent relativistic field models.
Such models, involving coupling of baryons to scalar and
vector mesons, seem to be successful in describing many
properties of nuclear matter. There is, however, a prob-
lem: at moderately high density and temperature, the
efFective mass of the nucleons become very small (or
even negative, if b particles are also included). This
strong change in the effective mass has serious effects in
the calculation of the production of new particles in
heavy-ion collisions.

Our aim in the present paper is to investigate whether
it is possible (a) to keep the general framework of the
effective two-parameter relativistic mean-field model, and
(b) by use of a less conventional form, for the coupling be-
tween the fields to avoid the problem of the too-small
effective mass at high densities.

II. RELATIVISTIC FIELD EQUATIONS

Lorentz scalar (o ) meson and vector (co) meson, and
F„„=B&to„i)~„.—(We use the following notation of
Bjorken and Drell: g = 1, g

' ' =g =g = —1,
A'=c =1.)

For uniform matter, the time component co of the
vector-field component is

co —g~p/m ~ (2)

where p is the baryon density.
Our proposed model involves a change in the form of

the coupling of the nucleons to the scalar o. field. We
shall investigate a coupling of the form

in addition to coupling to the vector field. Accordingly,
let us consider the following modified Lagrangian:

g~CT
&M= 0M~0+—1+ l4tr„d"0 g.A—„4~"1'

N

'F F" + 'm —co co"+——'(tl"o —m o ) .4 L(I, V 2 P 2 0' (4)

This gradient or derivative coupled Lagrangian is
Lorentz invariant, since y„B"is a Lorentz scalar, but not
renormalizable. The Lagrangian also contains a coupling
between scalar and vector mesons. We will, however, not
use X~ in this paper, but the Lagrangian obtained from
it by rescaling the fermion wave function,

Q~(1+g o/M~)
Let us first briefly review the conventional model, here

referred to as the Walecka model (and in some of the
literature as the cr-co model), and then discuss our sug-
gested modification. We follow the notation of Maruya-
ma and Suzuki. In the Walecka model, the Lagrangian
density is given by

Thus

I 4MN 0]+4t r„~"0 g.A'„4~"—

,'F„„F""+—,'m „to„to—"+ ,'(t)„trap ——m cr ) . (6)

=[pic„aug yM„q+,'(a„~B"o—mcr )]+g o PP—

—,'F„,F""+ ~ m ' co„c—o" g„gy„Pco", —

where il'j, o, and co denote the fields of the baryon, the

We may, in fact, use the rescaled Lagrangian (6) as a
starting point of our mean field model rather than the
original Lagrangian (4).

The coupling between scalar meson and nucleon is
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L,„,=g oft/(I+g o/M~)=m'g oft,
where the effective mass is now defined by

m ' = [1+g o /Mz t

(7a)

(7b)

Note that in our Lagrangian, the m * approaches zero
only when cr becomes infinitely large. Up to first order in
o., the rescaled Lagrangian agrees with the conventional
one, where

m'=1 ger/—M&,

which vanishes when o=M~/g . However, there are
now also couplings between nucleon and scalar meson in-
volving higher powers of o'

X,„,=g erg/ g—o PP/M~+g'o Pg/M +

(11) except that the effective mass is defined slightly
differently, namely M* =M —S, which is a more sensitive
function of S, vanishing for S=M.

The main difference between the two models is that for
the gradient coupling, the effective mass is less sensitive
to the strength of the scalar potential. Two alternative
forms for the gradient coupling are discussed in the Ap-
pendix.

III. EFFECTIVE MASS AND ENERGY PER PARTICLE

For plane waves, our equation for the energy per nu-
cleon, W(p) can be written as

W(p)=((M m' +p )' )

(9)
(1—m')

2g p m 2m
(15)

(iy„r)" Mzm—"—g y„B")/=0

a„r""+m „~"=g,„qy"q

(B„B"+m )o =g m' 1(g

The nucleon field equation can be written as

(a p+PM+m *+g cP) =Q= EQ

(10a)

(10b)

(10c)

(1 la)

(neglecting the three space components of the vector
field), or in terms of the scalar and vector potentials:

(a p+PM')g=(E —V)g, (1 lb)

The field equations for nucleon and vector field have
the same form as the conventional ones, and that for the
scalar field differs only by a factor m ': Here ( ) denotes the average over the Fermi sea.

At high densities where the amplitude of o is large, the
terms in M~ and o become small, and we approach the
extreme relativistic expression, except for the vector
meson contribution

2

W(p)=(p)+
z p .

2m „

2
g NPO

11

m M~
(17a)

We will find it convenient to express the energy in
terms of the effective mass rather than o.. It is also con-
venient to define dimensionless coupling constants

where

M=M„, M*=M(1+S/M)

2
g ~PO

m M~
(17b)

S=g o, V=g„co
(12)

where po is the normal nuclear matter density, and Mz is
the nucleon mass, and the normalized density

Neglecting time derivatives, the Hamiltonian density
can be written as follows: P P~PO . (17c)

&=/ (a p+Pm~m")P+ —,'(Vo ) + —,'m o.

+ —,'(Vco )
—

—,'m (co )~+g 1tyoPa) (13)

Then the energy per particle can be written as

W(p) =(m*'+2r, P'"/M )'"

We can express the Hamiltonian density for uniform
matter in terms of the effective mass and density:

1 (1—m*)
2

(14a)

By comparison, in the Walecka model, we get the very
similar expression:

%=gt(a p+PM~m*)g+ (1—m') +
2 p

2g 2m

(14b)

For this case the nucleon field equation is the same as Eq.
+——(1 —m*) + ~~B,p 1. —

2B,P
(19)

where To is the average kinetic energy per particle at
normal density. All energies are expressed in units of
Mzc . Replacing p by 2M~Top ' is a good approxi-
mation up to high densities. Even in the extreme relativ-
istic limit, the ratio of the two terms is 15/16.

For comparison, for the usual scalar coupling, and no
self interaction between scalar mesons, i.e., the original
Walecka model, we obtain

Ww, )„k,(P)=(m* +2Top /M~)'
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1 1 —m
43m

(20)

As can be seen these two expressions differ only by
powers of m ' in the scalar term.

The field equations for o are equivalent to the condi-
tion that 88'/Bm *(p)=0 (for any value of p). This leads
to 1 m

43 =B,p,

and the equation for W is

8, = [1+Wo —m*] .
1

m

The equation for m * becomes

(29b)

(30)

where

e"=(m" +2T )'op (21)
W=m*+, + —,'B,p —1 .

1 (1—m*)

2B,p m* (31)

1 (1 m )

m+2

2To/

The saturation condition (BW/Bp)(1) =0 gives

(22) , ~8(1+38+68 +108 + )
8

(1 8)— (32a)

Now let m*(1)=1 B. T—hen we find, also with the ex-
pansion for small B:

If the saturation energy is Wo ( (0), then we have B„=B(1 8), — (32b)

2Tp l3
W( I )+ (1)=8, +e'+

Bp e

2T /3

(23) Wo= —B

Wo =28 ~28 (1—38+68 + ' ' ' )(1+28 )

(33a)

(33b)

(24)

We can solve for B, and B, in terms of the values of
m '(1).

Note that

Wo'/l Wol =2(1—38+68'+ ) .

We can also obtain an expansion for m *:

m '=1 Bp 38 —p(1 ——p) —68 p(1 —p)(1 —2p)

(34)

B,= (1—m')
42

2T0/3
1+ Wo —e*+ (25a) —8 p(1 —p)(10—53p+55p )+ (35)

B, 1+ Wo —e*—2To/3
(25b)

For comparison, in the Walecka model, we obtain the
same result for B„„while the result for B, does not have
the factor m*

2To/3 m *
1+ Wo —e'+ =pm "(1—m*)

e* (26)

The nuclear compression modulus is defined as

, aW= po
p ~o

(27)

Writing W as function of m* and p, it is readily shown
that:

Substituting these results into the equation
(BW/Bm')(p)=0, we obtain an equation for m' as a
function of p:

IV. LOW DENSITY EXPANSION

m*=1 —B,p,
W= —,'(8„8,)p+ T—op + TDB,p

' +
(36)

(37)

Including the kinetic energy has only a small effect on
m ", giving an extra contribution of ( Top M ). The
effect on the energy is, of course larger, and is included in
our calculations.

We give here the low density expansions for the two
models discussed here. For the Walecka model, we ob-
tain

Wo' = 0 W

p 8'
Bp m*=m'(i) ~p™

'2
8 W

m

(2&)

Note that if the kinetic energy is neglected, then the mod-
el does not saturate at all; i.e., there is no stable minimum
energy. Thus for this model, relativity is crucial for satu-
ration.

For the derivative model, we have

m '=1—B,p+3B, p
—128,p +558,p + - - .

Wd„;, = —,
' (8„, 8, )p+ 8, p 38,—p + 1—28, p

We can obtain analytic expressions if we neglect the ki-
netic energy. In this case:

~2/3+ Z B ~5/3+ (39)

We note that for this case, we can get saturation even
in the nonrelativistic limit, i.e., if the kinetic energy is
neglected. Expressing the coupling constants in terms of

8, = /[1+ Wo —m *],(1—m ')'
m* (29a)
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the parameter B, we obtain

W(p)=B (
—2p+p ) —3B p(1 —p)

B—p( 1 —
p )( 5 —11P)

+ To(p i —', p—)+ TOB(p i —=', p) .

and the compression modulus is

K = 18B ( 1 —3B )
—2TO(1 —10B)+ .

The ratio is approximately given by

(40) K/~ W~ =18(1—3B )+4TOB (1+2B)+

(44)

(45)

Note that

W'( l)=0 . (41)

Thus the nonlinear terms in B tend to lower the ratio
K/ W~, while the kinetic energy terms in T tend to in-
crease it.

This can be obtained in the Hartree approximation
with the following density and momentum dependent
zero-range interaction:

v(p&2, p)=[B ( —2+p) —6B (1 —P) —4 To

"
, TOB—+2M„'p f2B ]5(r ), (42)

W(1)= B+—'To—(1—2B )+
3 (43)

where p» is the relative momentum. The term of order
B contains two- and three-body interactions, just like
the Skyrme interaction. However, the B term contains
four-body interactions as well. The terms proportional to
p» correspond to momentum dependent terms in the
Skyrme interaction.

We find for the energy at equilibrium

V. EXACT RESULTS FOR THE EQUATION OF STATE

W(p)= Wo( —2p+p ) . (46)

This leads to a compression modulus K=18~ Wo~ =288
MeV for

~ Wo~ =16 MeV. For this model, the energy
vanishes for twice normal density.

We use here the following values of the parameters:
M„=938 MeV, To=22 MeV, W= —16.0 MeV.

We now give the results including the kinetic energy.
For comparison, we also give results for the Walecka
model. Also, we list the energy per particle for what we
can call a standard model with the simple equation of
state:

For the Walecka model: B, =0.487, B,=0.368, m *(1)=0.547, K =560 MeV,

For our derivative model: B, =0.252, B„=0.888, m*(1)=0.855, K=225 MeV .

(47a)

(47b)

The value of K=225 MeV agrees with Blaizot's value
extracted from energy of breathing modes. However, re-
cent work by Sharma et al. ' points to a higher value of
K. This point remains to be settled. The value of 0.85 for
the effective mass is in good agreement with a recent
analysis by Mahaux and Sartor. ' Both K and m * agree
closely with the results for one of the Skyrme interac-
tions, namely SkM*, which is widely used in the litera-
ture. "

In Table I, we list the effective mass and energy per nu-
cleon versus density (see also Fig. 1).

We find that for B=1—m *(1)=0. 15, T=22 MeV, the
approximations (43) and (44) give W= —16.0 MeV,
K=230 MeV, in good agreement with the exact values.
Expansion (45) gives a ratio K/~ W~ =15.3, to be com-
pared with exact value 220/16= 13.8.

At high density, derivative coupling implies an
effective mass proportional to p

' neglecting kinetic en-

TABLE I. Effective mass and energy per nucleon for nuclear matter.

P

0.1

0.2
0.5
0.8
1.0
1.2
1.5
2.0
3.0
5.0
7.0

10

Walecka

0.951
0.904
0.762
0.629
0.547
0.474
0.386
0.290
0.203
0.140
0.112
0.089

m *(p)
Deriv

0.977
0.956
0.908
0.870
0.850
0.832
0.809
0.777
0.730
0.669
0.630
0.591

Walecka

—0.61
—2.87
—9.88

—14.82
—15.94
—14.59
—6.75
23.43

133.1
438.8
781.2

1313

W(p ) (MeV)
Standard

—3.04
—5.76

—12.00
—15.36
—16.00
—15.36
—12.00

0
48

240
560

1280

Deriv

—2 ~ 30
—5.47

—12.32
—15.47
—15.99
—15.51
—13.26
—6.34

15.48
76.74

149.9
270.2
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E&R (NeV) Nao
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If we proceed just as before, we obtain the following
for the energy per particle of nuclear matter:

lit 2

W=(m' +2T /M )' +OP
,p m

Dens& ty&Normal Nuclear Dense ty

FIG. 1. Energy per particle for symmetric nuclear matter.
+ —,'B,m* p

—1 . (A2)

ergy, and p
' in the extreme relativistic limit, accord-

ing to Eqs. (30) and (20). The dominant contribution to
the energy comes from the vector mesons. At some den-
sity about 5 to 10 times normal, the energy exceeds that
for a quark gluon plasma, so that the model considered
here would be expected to lead to some kind of transition
between the hadron and quark phase.

VI. CONCLUSIONS

The model developed in this paper, like the original
Walecka model, has only two parameters, both of which
are fixed by the nuclear matter density and binding ener-
gy. However, it yields what appear to be much more
reasonable values for two key properties of nuclear
matter, namely the compression modulus, and an
effective mass. Although this equation is much softer
than the Walecka model, it has in common with it the
high density behavior dominated by vector meson ex-
change, implying some kind of phase transition to a
quark gluon plasma at high density. An alternative mod-
el discussed brieAy in the Appendix leads to essentially
the same EOS near normal nuclear density, but a much
softer EOS at very high densities.
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As we will see, for this model, there would be no binding
at all, were it not for the effect of kinetic energy. Let us
consider this expression neglecting kinetic energy. We
can write

5'=m '+ 1 (1—m') +—'B„pXm "—1 .
4Q

sp m
(A3)

For the model considered in the main part of the text, we
have a, =2 and e, =0, while for the alternative model

a, =a, =2. For the Walecka model, a, =a, =0.
Minimizing 8' with respect to m* and applying the

saturation conditions at p = 1, we obtain the following ex-
pression for the ground state energy.

Wo= —,'(a, —a, )8 /[1 —[1—
—,'(a, —a„)]8I . (A4)

Thus, if a, =o.„and if we neglect kinetic energy, there is
no binding at all. For the case discussed in the text, i.e.,
a, =2, a, =0, we recover our earlier result 8'0 = —B .2

A better alternative model of gradient coupling is one
with a, =2, a, = 1. Here the Lagrangian is given by

PM~ g+ 1—+ [Pi y„d"g ggy„—/co"
N

+ —,'(c)„oc)"cr—m cr ) . (A5)

P~+m 'g, co„~m *co„,

then the rescaled Lagrangian reads

(A6)

Z, =qiy„a 0™[4M~0+g.Py„y~ ,'F„,F——

If we rescale the nucleon wave function as before, but
also the vector meson

APPENDIX: ALTERNATIVE FORMS
FOR DERIVATIVE COUPLING

(g„oc)"o.—m 2 cr2)

The energy per particle of nuclear matter is given by

(A7)

The form of the Lagrangian (4) is somewhat arbitrary.
For example, we have added a scalar coupling not only to
the nucleon derivative term, but also to the interaction
between nucleon and vector meson. Perhaps this might
be understandable on basis of Gauge invariance. let us
consider an alternative Lagrangian where only the nu-
cleon term is modified by scalar coupling.

)2
W=(m "+2T ""'/M )'"+

OP N
,p m

+ —,'B,m p —1, (A8)

which differs from the one used in the main part of our
paper only in that the vector meson contribution is multi-



42 NUCLEAR EQUATION OF STATE WITH DERIVATIVE SCALAR. . . 1421

plied by m*.
For this case, the nuclear matter equation of state near

normal density is very similar, though slightly softer than
for the main case discussed in this paper, a, =2,a, =0.
Thus K =205 (225) Me V, and m *=0.82 (0.85) for
ct, =l(2). However, at very high density, the EOS is
much softer for a, =1. This follows since the contribu-
tion of the vector meson to the energy is multiplied by
m *=-p at high p, so it is proportional to p ', which
is the same density dependence as for a quark-gluon plas-

ma. In this model there might well not be any quark-
hadron phase transition. There are no convincing a priori
arguments for choosing one or the other of the Lagrang-
ians. Our form (4) may be the simplest. On the other
hand, the form with a, =2, a, =1, might simulate chiral
symmetry restoration at high density. ' However, any
gradient coupling implies that a, =2, which, in turn,
leads to an EOS with K slightly larger than 200 MeV, re-
gardless of uncertainty in its behavior at very high densi-
ty.
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