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The widely used coupled cluster method (CCM) in quantum many-body theory has recently pro-
vided very accurate descriptions of a large number of extended systems. Although its earlier appli-
cations to closed-shell and neighboring finite nuclei were also very successful, they have been
shrouded in algebraic and technical complexity. Furthermore, they are difficult to compare with
more traditional calculations of generalized shell-model theory since, at least at the important level

of two-body correlations, they have been largely implemented in relative-coordinate space rather
than the more usual oscillator configuration space. The CCM is reviewed here in the precise con-
text of applications to simple finite systems. Special attention is paid to formulate it in such a way
that comparison may be made with generalized shell-model or configuration-interaction (CI)
theories. Particular regard is paid to an exact incorporation of translational invariance, so that any
spuriosity associated with the center-of-mass motion is always avoided. An important side benefit is
that the number of many-body configurations in the usual oscillator basis is dramatically reduced.
We are thereby able to present both CI and CCM calculations on He up to the essentially unpre-
cedented level of 6(Hico in oscillator excitation energy, for two popular and quasirealistic choices of
the nucleon-nucleon interaction for which exact Monte Carlo results are available for this nucleus.
Although even our simplest approximations attain about 95% of the total binding energy, the con-
vergence in the oscillator configuration space is shown to be both very slow and of a complicated
nonuniform nature. Strong implications are drawn for standard implementations of generalized
shell-model techniques for heavier nuclei.

I. INTRODUCTION

The coupled cluster method (CCM) has become rather
widely acknowledged over approximately the last decade
as providing a widely applicable method for attacking the
quantum many-body problem at a rather general and
completely microscopic level. It has, by now, been very
successfully applied to an extremely diverse array of
physical systems, ranging from few-body, and larger,
finite problems in nuclear physics' ' and quantum
chemistry, " ' which nowadays include applications to
relatively complex nuclei, atoms, and molecules, to vari-
ous many-body (infinite) problems in both condensed-
matter physics and (nonrelativistic and relativistic) quan-
tum field theory. The former of these many-body appli-
cations includes such systems as the one-component
Coulomb plasma (or electron gas), and nuclear
matter, ' while the latter includes various anharmonic
oscillators considered as (0+1)-dimensional model field
theories, a model nucleon-pion field theory, ' and

P -field theory in (1+1)dimensions. In nearly all of
these applications, the results obtained by the CCM are
at least as accurate as those from any other microscopic
formulation of the many-body problem, as pointed out in
a recent review. In the majority of cases, the CCM pro-
vides results of the highest accuracy attained by funda-
mental methods.

The CCM formalism has also been further developed
to deal with such topics as sum rules, pairing correla-
tions and higher-order clustering in many-fermion sys-
tems, ' and a temperature-dependent formulation via
the Bloch equation for the statistical density operator. '

Recently, a rather powerful extended version of the CCM
has been formulated ' which has also permitted such
applications as to the zero-temperature quantum hydro-
dynamics of a strongly interacting condensed Bose
fluid, and to the problem of a charged impurity in a po-
larizable medium. This latter application is of particu-
lar relevance to the very important experimental tool of
positron annihilation in metals, for example. The extend-
ed CCM has also been shown to be capable of describing
the phases on both sides of a phase transition in an appli-
cation to the SU(2) quasispin model of Lipkin, Mesh-
kov, and Glick. This model contains the spontaneous
breakdown of parity as a good quantum number, and has
been widely used to model the spherical to deformed
shape transition in nuclei which occurs at high spins.

It is clear from the above discussion that while the
CCM was originally invented by Coester and Kummel
within the framework of nuclear physics, its applications
have nowadays extended very much further afield. Nev-
ertheless, it seems both appropriate and timely to investi-
gate anew some of the basic concepts of the method, par-
ticularly within the context of its applications to finite
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systems, and to discuss it in relation to the various
configuration-interaction (CI) and other extended shell-
model calculations that have been very widely applied to
nuclear systems after the older pioneering CCM work in
nuclear physics. ' Since the underlying conceptual sim-

plicity of the method has often been greatly obscured in
much of the previous literature involving applications to
nuclear physics, by the details of the technical
machinery necessary to implement it, we concentrate in
this paper on applications to the He nucleus.

The main motivations for this work have been four-
fold. Firstly, by concentrating on the four-body system
and by considering only Wigner-type internucleon poten-
tials, we can avoid the purely algebraic complications due
to the discrete spin and isospin degrees of freedom and to
antisymmetrization. Nevertheless, within these self-
imposed constraints we shall present results for two wide-

ly used semirealistic microscopic potentials, namely the
S3 potential of Afnan and Tang and the MT-V potential
of Malfliet and Tjon. We stress from the outset that the
restrictions imposed are by no means necessary in order
to carry out CCM calculations. Their imposition does,
however, considerably clarify the analysis of the main
points that we wish to stress.

Our second, and perhaps most important, aim has been
to show very explicitly and for the first time how the
center-of-mass motion can be exactly removed within the
various approximate implementations of the coupled
cluster methodology considered here. We show that
there is absolutely no spuriosity associated with the lack
of either rotational or translational invariance in the for-
malism that we develop. Indeed, the exact incorporation
of these invariances from the outset has the beneficial
effect of greatly reducing the number of independent exci-
tation amplitudes. Thirdly, by concentrating on the
model He problem, we shall be able to examine the con-
vergence properties very critically as a function of the
size of the harmonic-oscillator configuration space.
Indeed, we shall present some results up to the almost
unprecedented level of 6(Hico in oscillator excitation ener-

gy. Finally, by working with these simple four-body
problems, we may also compare our results both with our
own essentially exact results from the diffusion Monte
Carlo method, ' and with those of other techniques. Of
particular interest here is the comparison with more trad-
itional extended shell-model calculations for this nu-
cleus, which operate within a shell-model space re-
stricted to considerably fewer quanta of excitation ener-

gy. Our results for the CCM convergence properties
have wide-reaching implications for shell-model calcula-
tions in general.

The remainder of this paper is organized as follows.
Section II presents a rather general overview of the CCM
formalism. Particular attention is paid to its relationship
with CI techniques and to how the formalism is both ern-
bedded within and yet transcends the general confines of
either nondegenerate or degenerate perturbation theory.
The formalism is specialized to the four-boson model
problems considered here in Sec. III, and special ern-

phasis is placed on the incorporation of translational (and
rotational) invariance. The various calculational schemes

that may be used to implement the method at different
levels of approximation are described in Sec. IV, and the
numerical results from them are presented in Sec. V. Fi-
nally, the results are compared with those of other calcu-
lations in Sec. VI, and their wider implications are criti-
cally discussed in Sec. VII.

II. OVERVIEW OF COUPLED CLUSTER THEORY

The coupled cluster method may be introduced within
the context of many-body perturbation theory. For a
given system this requires the assumption of an unper-
turbed basis (or model space) with a one-to-one
correspondence with the particular physical states (or
target space) being discussed. There is a wide choice for
the model space, as has been discussed elsewhere. A
prime consideration is the dimensionality d of the model
space, which must be the same as the number of eigen-
states of the full Hamiltonian H to be determined. In
particular, in order to study the ground state of a closed-
shell atomic nucleus, we may choose d to be unity.

A convenient formulation proceeds in terms of the

effective interaction description. The goal is to deter-
mine a new Hamiltonian H,z which acts only in the mod-
el space and which generates the same set of d eigenval-
ues as the full Hamiltonian H. Thus, in correspondence
with the exact eigenvalue equation

&l+'"') =E„l+'"'&, n =1,2, . . . , d,
one seeks the equivalent equation

(2)

where the states 40"') are the vectors in the model
space. In this way one can write down an integral equa-
tion relating H and H,z, the so-called Bloch equation,

OH, ffP =HOP,

where P is the projector onto the model space and Q is
the so-called wave operator which connects the model
space with the physical space

(4)

A useful generalized form of the Bloch equation has been
given by Lindgren. ' '

Some properties of 0 are of special interest within the
context of the CCM. Within the configuration-
interaction method, ' or generalized shell-model theory,
it is customary to introduce the correlation operator F as

0=1+F,
where F is restricted to act only on ket states in the mod-
el space by the requirement F =FP. In nuclear physics
applications, F is thus conveniently parametrized in
terms of linear combinations of several particle-hole exci-
tations.

Without doubt the most important property of the
wave operator is a consequence of the size extensivity' of
the energy of a many-body system. This requires the
effective Hamiltonian to be additively separable over the
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possible subsystems in the various dissociation limits. In
turn, this requires the wave operator to be multiplicative-
ly separable. The importance of maintaining the separa-
bility conditions at any level of approximation has been
stressed by Primas, although it was already realized by
Brueckener in the context of lowest-order Rayleigh-
Schrodinger perturbation theory.

Perhaps the most obvious way of ensuring the separa-
bility of 0 is to write it in the exponential form,

A=exp(S), (6)

where the so-called cluster operator S must be additively
separable, and hence must correspond to a sum of con-
nected diagrams. The long path which leads from pertur-
bation theory to the exponential ansatz of Eq. (6), has its
origins in the linked cluster theorem of Goldstone as
well as in the analyses of perturbation series due to
Hugenholtz and Hubbard in the case of closed-shell
systems, and the corresponding linked valence theorem of
Brandow for open-shell systems. The exp(S) ansatz for
the wave operator was first exploited by Coester and
Kummel within the context of closed-shell nuclear sys-
tems. It was later independently introduced into quan-
tum chemistry by Cizek. " Several extensions to open-
shell systems have been given by a number of au-
thors, ' ' in the case of so-called complete model
spaces, which contain all possible configurations of the
valence particles over the valence orbitals.

A particularly important property of the exp(S) ansatz
is that even when using an approximated (but connected)
form for the operator S, the separability requirement is
maintained. It is also clear why an approximate CI cal-
culation with a correlation operator F truncated at a cer-
tain level of excitations will fail to preserve the separabili-
ty property of the exact wave function. Thus, after F has
been partitioned into its various k-body pieces F&,
k =1,2, . . . , A (with A being the total number of parti-
cles), a typical CI calculation at the SUB(n) level will re-
tain only those operators I FI, ) with k ~ n, and the
higher-order partitions with k ) n are set to zero. On the
other hand, the same SUB(n) truncation scheme, when
performed instead on the cluster operator S, will still con-
tain the excitation of multiple independent k-tuples
which result from the higher powers of S which arise
from the expansion of the exponential. We remark finally
that recently several workers have shown how the con-
nectivity of the cluster operators and the effective Hamil-
tonian can even be maintained for open-shell systems in
the case of incomplete model spaces.

The violation of the separability property of the wave
function and the consequent breakdown of size extensivi-
ty in SUB(n)-truncated CI calculations that we have dis-
cussed above is only one particular example of the much
wider phenomenon of approximate calculations not shar-
ing the symmetries or other intrinsic properties of the ex-
act system. A very well-known example of the breaking
of symmetries is the Hartree-Fock solution of fermion
systems, with its lack of translational invariance, and
indeed even its violation of rotational invariance for de-
formed solutions. Similar problems can also occur in the
CCM. ' The symmetry violations may originate here ei-

ther with their violation by the model state or by their
nonpreservation by the cluster operators I Sk I. A
symmetry-conserving calculation must involve both a
model space which satisfies the required symmetry and
cluster operators which commute with the generators of
the transformation. We note, however, that a complete
(nontruncated) calculation, when performed either in the
CCM or in the CI scheme, will restore any symmetry im-
plicit in the Hamiltonian. On the other hand, such full
(exact) calculations are seldom practicable.

The two symmetries of particular interest for present
purposes are the invariances under spatial rotations and
translations. Most calculations in nuclear physics have
dealt with the problem of invariance under translations
by using the internal Hamiltonian, H~H;„, =H —T,
where T, , is the kinetic-energy operator of the center
of mass (c.m. ), while continuing to use a model space
which is not explicitly translationally invariant due to the
complexity of using the appropriate set of intrinsic coor-
dinates. This approach is essentially a compromise be-
tween solving the exact equations and neglecting the c.m.
motion entirely. A similar problem also arises, in princi-
ple, with the angular-momentum operator J for Hamil-
tonians which are rotationally invariant. However, this
problem often does not arise in practice since the single-
particle basis states are themselves usually chosen to be
angular-momentum eigenstates. In this case there exist
straightforward procedures to construct states of good
total angular momentum.

All of the above points are specifically illustrated in the
next section in the case of a four-boson system. In partic-
ular, the question of translational and rotational invari-
ance is discussed in considerable detail.

III. SPECIFIC FORMALISM
FOR THE FOUR-BOSON MODEL PROBLEM

As a concrete example of how the above general for-
malism may be implemented in practice, we now consider
the lowest doubly closed-shell nucleus, namely, the four-
body (A =4) problem of He. In order to keep the ensu-
ing discussion as conceptually simple as possible, we also
restrict ourselves from the outset to spin- and isospin-
independent two-body forces, i.e., to pairwise interaction
potentials of the Wigner type. The He nucleus may thus
be described in terms of a four-boson system in the sense
that the spatial part of the wave function may be taken to
be totally symmetric. The only role of the spin and iso-
spin coordinates is hence to ensure overall antisymmetry.
For all other purposes they may essentially be ignored.

In view of the closed-shell nature of the A =4 nuclear
system and the fact that we shall constrain the discussion
to the ground state only, we therefore henceforth special-
ize to the simplest case where the model space is one di-
mensional. The projection operator is thus given as
P = ~4)(N~ in terms of the single model-space or un-
correlated four-body spatial wave function ~@). In order
to construct

~

N ) and all other operators, we need first to
choose a suitable single-particle basis. Our choice is the
standard orthonormal harmonic-oscillator basis

[ ~nlm ); n =0, 1,2, . . . ; l=0, 1, . . . , n; —l ~m ~ 1 I,
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with a free parameter a=(mcolfi)'~. In terms of the
vacuum state l0), we may write these single-particle
wave functions in the form

lnlm ) =at, l0),
where the creation operators [a„& } and their Hermitian
conjugates (the destruction operators) obey the usual bo-
sonic canonical commutation relations

[a.I a'i ]=f)-&n 5

[a„r,a„ I ~ ]=0 .

The r-space representation of these single-particle wave
functions is given as usual in terms of the spherical har-
monics and the associated Laguer re polynomials,
L I+1/2(~2r 2) 71

n

The obvious choice for the A =4 model wave function
l
4 ) is thus where each of the four uncorrelated nucleons

is put into the Os orbital,

l4 &=(4~)-'"( ' )'l0&,

(+le) =1.

s(k)
k=1

(15)

Furthermore, from our prior discussion, we need only
consider operators S' ' such that, in our second-
quantized notation,

S'"'=$' . $'S'"'(P». . . , PI, )a . a aooo . (16)

product of an intrinsic wave function with a Os

harmonic-oscillator wave function for the c.m. motion.
The intrinsic wave function is readily seen from the expli-
cit forms of Eq. (14) to be both translationally invariant
and rotationally invariant. Our immediate goal is now to
construct a correlated wave function within the CCM
which can be decomposed in an analogous way and
without exciting the c.m. motion. In this way, the c.m.
motion can be removed absolutely unambiguously and
the remaining intrinsic wave function can be guaranteed
to be invariant under rotations and translations.

Turning firstly, therefore, to the construction of the
cluster operator S for the A-body problem, we immedi-
ately partition it into its various k-body pieces as

We thus have the explicit form

(r]r2r3r4l@ &
= g oooo(r; )

~6 4

exp —
—,'a g r;

7r' i=1
(12)

If we define the center-of-mass position coordinate of the
A-body system in the usual way as

Its r-space representation is most easily given in terms of
the field operators

P(r) = g P&(r)a&, (10)
P

where the single index P is used henceforth to represent
the set of indices (nlm). The symmetrized four-particle
position bra vector may be written as

The primes on the sums in Eq. (16) over the single-
particle labels remind us that the indices

IP; } = I(n; I;m; ) } run over all "unoccupied" orbitals
only, i.e., the term P; = (0,0,0) is excluded for each value
of i.

For most practical calculations within the CCM, the
resulting set of (nonlinear) equations must be truncated.
We have described one such truncation scheme, namely,
the SUB(n) scheme in which all operators S'"' with k ) n

are set to zero, and the remaining approximate equations
for the set of matrix elements
Is'"'(P, , . . . , Pk ); k = 1,2, . . . , n I are solved exactly. In
our ensuing discussion we shall assume the SUB(2) ap-
proximation, in which, for the A =4 problem, the proper
(connected) three- and four-body correlations are neglect-
ed. Since it will transpire that in order to preserve
translational and rotational symmetry, the matrix ele-
ments of the one-body and two-body partitions S"' and
S' ' are strongly coupled, it will be convenient to write
our SUB(2)-approximated cluster operator from the
outset as

(13) S S""=y yS(p, p, )a,' af'3 a
Pl 132

(17)

6 2 4

i (j=1

Xexp( —
—,'a AR ) . (14)

The uncorrelated wave function is thus the simple

Eq. (12) may be trivially reexpressed in either of the
equivalent forms,

6 4

(r, r2r3I4l4) =
3 exp —

—,'a g (r; —R)
i=1

Xexp( —
—,'a AR )

where the primes on the summations have been removed
to indicate that the double sum may now include terms
where either (but not bath) P& or P2 may be the "occu-
pied" (or hole-state) index (nlm) ~(000). The terms
S(P,P2) with P, and P2 both unoccupied (or particle-state)
labels then refer to the real two-body correlations,
whereas those with either P, or P2 the occupied (000) la-
bel refer to the one-body correlations. We also remind
the reader that the S"' partition of the cluster operator
may be regarded in the light of the well-known Thouless
theorem as being responsible for an arbitrary change of
the single-particle basis. Alternatively, an unrestricted
SUB(1) approximation leads to the usual Hartree approx-
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imation in the present bosonic case.
Let us now consider the state S" 'l4). It is well

known that an arbitrary admixture of (lp-lh and) 2p-2h
states is not, in general, either rotationally invariant or
translationally invariant. Rotational invariance may
rather easily be imposed, however, by coupling the angu-

lar momenta of the two excited particles to states

leap�

) of
good total angular moment k =0 and its projection p =0
onto a fixed axis, in terms of the usual Clebsch-Gordan
coefticients. Thus, after the imposition of rotational in-
variance, our cluster operator has fewer independent ma-
trix elements,

S'' '~ g QS(n&I&m&, nzl& —m&)(I&m&I& —m&li&l&00)[a„ I Xa„ I ]oaooo
nl n~ll ml

S(n, nial, )[a„( Xa„( ]oaooo .
nl n2ll

(18)

Translational invariance may now also be imposed by recoupling the product of single-particle harmonic-oscillator
states into sums of comparable products of oscillator states for the relative and c.m. motion of the pair. This is accom-
plished as usual in terms of the well-known Brody-Moshinsky brackets, defined for operators acting on the vacuum
state as

[a„ I Xa„ I ]„l0)= g (nlNLA. ln&l, nz12A, )[a„~.„iXa, .~L]&l0),
nlÃL

(19)

where the indices (nl) and (NL) refer, respectively, to the relative and c.m. motion of the pair, as indicated. Equation
(18) may thus be rewritten as

S" '= g S(n~nzl~) g (nINLOln, l~nz1, 0)[a„,~. „&Xa, ~L]oaooo.
ni n2ll nlNL

(20)

This operator will only produce a translationally invariant state S" 'l4) if the c.m. motion of the pair destroyed by
the operator aooo acting on l4) (i.e., the two holes) is the same as that of the pair of particles created by the product of
the two creation operators for each term in the sum. The product a can clearly itself be reexpressed in terms of a
product of operators for the relative and c.m. motion. It is clear that both of these latter operators will destroy a Os

harmonic-oscillator state in the relevant variable. Thus, translational invariance is guaranteed if and only if the sums in
Eq. (20) are restricted to terms with N =L =0. The angular momentum coupling then further requires that I =0 also.
In this way we are led to the cluster operator

S" '~g g S(n&n21&)(n0000ln&l&nzI~O)[a„~. „oXa, .Oo]oaooo
n n) n~l)

0 2:QSn [a re); no X a c.m 'Oo ]Oa ooo

i in2 &0)[a,I, Xa, i, ]oaooo
n =1 nl n211

(21)

~here, in the last form, we have used the reality and orthonormality of the Brody-Moshinsky coef5cients.
We note firstly that the imposition of the invariance with respect to spatial translations and rotations has drastically

reduced the number of independent matrix elements. Secondly, we note that the terms in Eq. (21) with (n &, I &
) =(0,0)

or (n2, 1, ) =(0,0) must clearly be included for the invariances to hold. These terms give precisely the lp-lh excitations
as explained above. Finally, the sum does not include the term with both (n~, &)I=( 00) and (nz, l, )=(0,0), since this
can only occur for n =0 also, and this case is excluded as it simply reproduces the uncorrelated state l4 ).

The explicit coordinate-space representation of the wave function generated by the cluster operator of Eq. (21) may
also be rather easily found. One must project over the four-particle position bra vector of Eq. (11},and after some stan-
dard transformations we easily obtain the final result,

4 00 4 2n
exp —

—,
'a g r„2 g S„

(2n +1)"

1/2

L I/2( i 2 2)
n T /j (22)

By comaparison with Eqs. (12) and (14), we observe that
the c.m. motion factors out exactly as in the uncorrelat-
ed wave function, and the remaining intrinsic wave func-
tion is manifestly invariant under translations and rota-
tions as now expected. An equivalent representation to
Eq. (22} is the somewhat simpler form

I

( r, rzr3r4lS""
l
&0 )

g C„g (r; ) "exp —
—,'a g rk, (23)

n=0

where the coefficients [C„J may easily be constructed in
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terms of the corresponding parameters {S„]by making
use of the explicit form of the associated Laguerre poly-
nomials.

We note, in particular, that the step leading to Eq. (22)
may be performed because we are indeed summing over
all values of the indices n, , n2, and I, which lead to a
non zero value for the Brody-Moshinsky bracket
(n0000~n, l, n21, 0), i.e., over all values which satisfy the
(number of quanta) relation,

n1+n2+l1 =n

Most importantly, the specific terms with n, =I, =O,
n2=n, and n2=l]=0, n, =n must be included. It is pre-
cisely these terms which correspond to the effective 1p-1h
excitations, i.e., to the partition S'" of the cluster opera-
tor S. The presence of these terms also leads to one final
minor complication when the quadratic term —,'(S" ')

arising from the exp(S} form of the CCM wave function
is now also considered. Thus, simply because the linear
term in S" ' leads to a state which is invariant under ro-
tations and translations, we are by no means guaranteed
that so does the corresponding quadratic term. When
carrying out the projection over the four-particle position
bra vector for the quadratic term —,'(S" '), there are two

distinct classes of contractions. In the first place are
those terms in which none of the creation operators in
the representation of Eq. (21) for either S" ' operator is
contracted with an (occupied-state} destruction operator,
even if its own index takes the occupied-state value (000).
The set of such contractions is readily seen to lead to a
wave function analogous to Eq. (22), but now with a
product of two Laguerre polynomials, one involving the
relative coordinate r, as before, and the other the relative
coordinate rkI of the remaining pair once particles i and j
have been selected. Such terms again clearly lead to a
wave function which is invariant under rotations and
translations.

There remains, however, a group of terms which corre-
spond to the case where at least one of the creation
operators in the representation of Eq. (21) of either of the
two S" ' terms bears the index (000) and is contracted
with one of the corresponding destruction operators. It
is simple to show that such terms correspond to an exci-
tation of the c.m. motion, and hence to a wave function

~W2&=:exp(S""):~a &, (25)

with a cluster operator S" ' given by Eq. (21). It also
has the more explicit form

~%, )=(4!) '" (a' )'+12 g S„8„
n=1

+12 y y S„S„,8„„, ~0),
n =1 n'=1

where the operators 8„and 8„„.are defined as

(26)

8„= g (n0000~n, ln210)[a„ I Xa„ 1]0(aooo)
n) n21

8„„= g g (n0000~n, ln 10)
"~ "21 n

'
n

' I'
1 2

X ( n '0000
~

n ', 1'n 21 '0 )

X[a„(Xa„I]0[a, Xa, ]o,0 ~ f 0
1 2 nl n2

(27)

and where the normal ordering has explicitly been taken
into account.

The coordinate-space representation of the wave func-
tion given by Eq. (26) is

which is not invariant under translations. Nevertheless,
such unwanted terms are easily excluded by the simple
device of taking the exp(S" ') representation of the wave
operator 0 in normal-ordered form. Furthermore, once
this has been done, the cubic (and higher-order} terms in
the expansion of the exponential now become identically
zero for the A =4 system when acting on the model state
~4), thereby restoring the original property of the usual
formulation of the CCM for this system. Such a normal
ordering leaves all of the usual characteristics and
features of the CCM quite unchanged, and indeed also
arises quite naturally within the open-shell CCM formula-
tion. '

Thus, we may summarize our discussion to date. The
most general CCM wave function at the SUB(2) level of
approximation for the A =4 bosonic system under con-
sideration, which is invariant under rotations and transla-
tions, has been found to be given by

a6
(r,r,r3r4~e, ) = 4

exp —
—,'a g r

7T m=1

00 4 QO 00 4

n =1 n'=1n=1
1+2 g S„g V„(r, )+2 g g "S„s„g 9'„(r; )9'„(rk&), (28)

where

2"n!9'„r)—=
(2n +1)!!

1/2

L 1/2( i 2r2)
n (29)

6 4

(r, r2r3I4~% 3) 3
1+ p h (r;1 )

7T' i &j=1

and where, in the last term in Eq. (28), the notation for
the unsummed indices is that the pair {kl I represents
the two remaining particles after the pair {ij I has been
chosen. The wave function of Eq. (28) may finally also be
written in the equivalent form

4
+—,

' g h (r&)h (rkI )

4
Xexp —

—,
'~2 g r2

m=1
(30)
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in terms of the two-body cluster correlation function h (r)
defined as

h (r)—= 2 g S„V„(r) .
n =1

(31)

Before proceeding to describe our numerical calcula-
tions, we first make some observations on both the above
SUB(2)-approximated CCM formalism and its simpler
linearized version in which the terms quadratic in the
coefficients [S„)or, equivalently, in the correlation func-
tion h (r), are neglected. This linearized subapproxima-
tion is clearly equivalent to the corresponding CI treat-
ment at the SUB(2) level implementation.

For either the CCM or the CI method to be utilized in
practice at this SUB(2) level, we thus have to solve either
a coupled set of algebraic equations for the coefficients
[S„j from the representation in either Eq. (26) or Eq.
(28), or some suitable integro-differential equation for the
function h(r) in Eq. (30). In the CCM these equations
are intrinsically nonlinear, whereas in the corresponding
CI approximations the analogous equations are linear.
Since it is one of our primary aims in the present work to
compare the present CCM techniques with those of other
generalized shell-model approaches, we shall be mainly
interested here in working directly in the harmonic-
oscillator basis by using either Eq. (26) or Eq. (28) as our
starting point. The former Pock-space form is particular-
ly suited to the standard shell-model machinery as de-
scribed in Sec. IV and Appendix A. The explicit
coordinate-space representation of Eq. (28) is also useful
in cases where one may readily utilize various properties
of the associated Laguerre polynomials and their generat-
ing function. Further details of this approach, which is

especially useful in the case of two-body potentials which
are specified as a linear combination of Gaussian factors,
are given in Appendix B.

It is clear that whenever the CCM representations of
Eqs. (26) or (28) or their linearized CI counterparts are
utilized in practice, the otherwise infinite sums over the
principal oscillator quantum number must be truncated
at some maximal value n,„, in common with all other
comparable generalized shell-model schemes. We first
note that such a SUB(2) calculation in either the CI or
CCM scheme is equivalent to considering 2p-2h
configurations up to a total excitation energy of 2n, „%co

(with co=fia /m) The imposi. tion of translational and
rotational invariance has dramatically reduced the num-
ber of corresponding CI basis states to just n,„+1,
which is far fewer than in most conventional CI calcula-
tions. For example, in a conventional full CI calculation
of He, the number of fully antisymmetric positive-
parity basis states, all of which are constructed so as to
have good total angular momentum and isospin, is equal
to 7, 45, 221, 853, and 2765, respectively, in the 2n, „%co

spaces with n,„=1,2, 3, 4, and 5. This basis size grows
so rapidly with n,„ that most earlier calculations have
been restricted to much smaller values of n, „ than are
now considered in the detailed calculations reported
below.

Secondly, in contrast with what seems to be a widely

IV. THE CALCULATIONAL SCHEMES

The CCM parametrization of Eq. (26) may now be used
in various different ways in order to perform several dis-
tinct approximate calculations of the ground-state energy
eigenvalue E of the bosonic A =4 system. It is of consid-
erable interest to compare and contrast these various ap-
proximations, which we therefore now describe.

The simplest calculation is that of the corresponding
CI method at the same SUB(2) level of approximation in
which the last term of Eq. (26) is neglected and only the
remaining (1p- 1h plus) 2p-2h configurations up to
2n, „%co in oscillator excitation energy are considered.
The equivalent coordinate-space representation is given
by Eqs. (12) and (22). The (approximate) CI eigenvalue
equation is thus

max

(H E) (a ) +12 g—S„O„~O)=0 .
n=1

(32)

By projection of Eq. (32) onto the uncorrelated ground

held opinion to the contrary, and which stems from a
misunderstanding of the true situation, it is not neces-
sary to work with a basis which is complete in the sense
that it includes a11 possible states of all possible
configurations up to a given amount XAco of oscillator ex-
citation energy in order to avoid spuriosity in connection
with the c.m. motion. Thus, we have explicitly demon-
strated that a selected set of 2p-2h configurations with a
prescribed 1p-1h admixture can provide an incomplete
space in which the c.m. motion may also be exactly re-
moved. Finally, our findings correspond to a very
simplified version of the group-theoretical methods
which have been designed to select many-particle
configurations in the harmonic-oscillator basis which
preserve translational invariance.

As a last point, we note that the discussion above has
focused on the expansion of the CI or CCM equations in
terms of the oscillator basis from which it originated.
This is in keeping with one of our main aims which is to
maintain as close contact as possible with other general-
ized shell-model schemes, which also employ a truncated
oscillator basis. Nevertheless, as can be seen from Eq.
(30), the formulation can also be completely given in
terms of the coordinate-space representation, where the
cluster operator S is now represented by the cluster
correlation function h (r) in the coordinate basis rather
than in terms of the cluster amplitudes [S„) in the oscil-
lator basis. It is purely a matter of calculational conveni-
ence to decide which representation to use. In practice,
one needs to truncate both spaces, either by some choice
of n, „ in the oscillator basis or by some analogous de-
vice in r space. The rate of convergence of the numerical
scheme with respect to this truncation parameter is what
then usually leads us to prefer one representation over
another. One of our main conclusions from the numeri-
cal results presented below is that the convergence in the
(usual shell-model) oscillator basis is inordinately slow in
comparison with equivalent calculations in the
coordinate-space basis.
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state (aooo) ~0) and onto all independent and invariant
(lp-lh and) 2p-2h states 0„~0) with n ~ n,„, we have a
system of n,„+1 linear equations to be solved for the
unknown coefficients I S„;n = 1,2, . . . , n,„j and the en-

ergy eigenvalue E. This set of equations is fully
equivalent to its usual formulation of diagonalizing the
Hamiltonian in the truncated (and unnormalized) basis.
For future reference we denote the above method as the
CI2 method. The resulting approximation for the energy
eigenvalue from such a CI calculation is a strict upper
bound to the exact value, and the estimate is a monotoni-
cally decreasing function of the configuration-space size
parameter n,„. The particular interest in this kind of
calculation is that we may fairly readily go to very high
values of n,„ in order to examine the rate of conver-
gence as a function of the size of the configuration space.

The standard CCM equation at this SUB(2) level of ap-
proximation is similarly obtained by projecting the ap-
proximate Schrodinger equation (H —E}~+z)=0, where

~4z) is given by the full Eq. (26), onto the set of states
~4) and 8„~0) with n ~nm, „Th.e resulting set of
n,„+1 approximate equations is now nonlinear in the
amplitudes IS„j and linear in the energy eigenvalue E.
The resulting CCM estimate for E will not, in general,
provide an upper bound to its exact counterpart, unlike
the corresponding above CI calculation which is its
linearized version. A variant of this standard CCM ap-
proach consists in calculating the expectation value of the
Hamiltonian (+zjHj+z)/(%~~4&) in the state ~%z) of
Eq. (26) and with the coefficients IS„j calculated in the
standard CCM scheme above. A comparison of these
two CCM estimates, where the latter is now a strict
upper bound, thereby also provides an internal consisten-
cy check on the accuracy of the CCM. We shall hence-
forth refer to these two CCM computational procedures
by the respective abbreviations CC2 and CC2-E.

We may also envisage extending the above CCM
scheme in SUB(2) approximation to an extended varia-
tional method by replacing the products IS„S„jin Eq.
(26) with a new set of independent amplitudes IS„„.j, and
then minimizing the expectation value of the Hamiltoni-
an in this basis. This extended variational calculation is
clearly also completely equivalent to an extended CI cal-
culation in the correspondingly enlarged (but still incom-
plete) basis that now also includes (some) 4p-4h excita-
tions, namely, those that comprise two independent 2p-2h
excitations. It will henceforth be referred to as the re-
stricted CI4 method, or by the abbreviation CI4-R. Fi-
nally, a restricted version of the above procedure would
be to minimize the expectation value
(0'z~H~%'z)/('Pz~'Pz) directly in the basis of Eq. (26)
with respect to the parameters IS„j. We denote this
variational procedure by the abbreviation CC2-V. A
comparison of this estimate with its standard CCM coun-
terpart again provides an internal check on the accuracy
of the approximation,

We remind the reader that in each of the above calcu-
lational schemes, apart from the number n,„ofstates in
the basis, the harmonic-oscillator parameter o; is also still
a free parameter. In those calculations which have a

variational basis, the optimal choice for cz is clearly that
which minimizes the energy estimate. One of the partic-
ularly interesting outcomes of the numerical results
presented in Sec. V is their dependence on the oscillator
parameter, as discussed below in more detail.

V. RESULTS

—21.5e " —11.5e "
) MeV, (33)

where the internucleon distance r is measured in units of
1 fm. The fact that this potential is a combination of
Gaussian factors will allow us to carry out very precise
calculations by using algebraic techniques. The MT-V
potential comprises a sum of a repulsive and an attractive
Yukawa term

—3. 11r

VM(r }= 1458.27
r

e
—1.55r—578. 18 MeV, (34)

with r again measured in units of 1 fm. Both the S3 and
MT-V potentials are considered to be fully local poten-
tials (i.e., acting in all partial waves), and we do not in-
clude a Coulomb force between the pair of protons. In all
calculations we have used a value of the nucleon mass m
such that fi /m =41.5 MeV fm .

We now briefly consider some of the technical details
involved in the numerical calculations. The actual equa-
tions that we solve in the various approximation schemes
described in Sec. IV are themselves relatively simple.
Thus, the standard CC2 method involves the solution of a
coupled set of nonlinear (actually bilinear) multinomial
equations in the truncated set of coefficients
'I S„;n = 1,2, . . . , n,„j. The remaining methods are of
the basic form of generalized eigenvalue problems. Even
for truncation indices n,„as high as the value 30 which
we use here, the solution of such given sets of equations is
both relatively straightforward and computationally rap-
id. By far the greatest part of the computational effort
goes, however, into calculating the coefficients of the
various terms in the equations. It is this latter task which
is not a computationally trivial one, and we therefore out-
line the procedures that we have adopted.

Our first procedure involves solving the various cou-

We now present the numerical results for the ground-
state energy of the He nucleus corresponding to two
popular choices of the nucleon-nucleon potential which
contain only Wigner components. These are the Wigner
part of the S3 interaction of Afnan and Tang, and the
MT-V interaction of Malfliet and Tjon. Both potentials
may be considered quasirealistic in the sense that they are
a compromise between simplicity and providing a reason-
able fit to the nucleon-nucleon scattering data.

Since there exist several parametrizations of these in-
teractions, particularly in the MT-V case, with small
differences, and given that modern techniques are able to
give results of high precision, we specify below the partic-
ular forms used here. The Wigner part of the S3 interac-
tion has been taken as

Vs(r }=(1000e " —163.35e ' " —83e
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pled sets of equations not in the previous Fock-space rep-
resentation, but rather in the coordinate-space represen-
tation. Furthermore, for potentials such as the S3 in-
teraction, which consist of combinations of Gaussian
terms, we have made use of a recurrence relation for the
relevant matrix elements which is described in Appendix
B. This procedure is very economical with respect to
computer time, even when coded in quadruple precision
(i.e., using 128-bit real variables). By using this level of
precision it has been possible to perform CI2 calculations
for the S3 potential up to the extremely high value of
n,„=30 (corresponding to 60%co in excitation energy)
without encountering the instability problems which
plague calculations at appreciably lower values of n~,„
done even in double precision. This instability arises due
to the eigenvalue problem becoming unstable with regard
to the compounding of small rounding errors.

These coordinate-space techniques have also permitted
us to perform the comparable calculations for the S3 po-
tential for the more ambitious CC2, CC2-E, and CI4-R
approximations for values of n,„~12. In the case of the
MT-V potential, not all of the coordinate-space integrals
can be exactly calculated by such recursive schemes.
Certain remaining integrals need to be performed numer-
ically, and their approximate evaluation limits the accu-
racy attainable and the highest n, „ that can be reached
without instability problems. Nevertheless, we have
found it possible to perform CI2 calculations for the
MT-V potential in this manner up to values of n, „=19
before rounding errors again start to accumulate serious-
ly.

Our second procedure has been to solve the equations
directly in the original Fock-space representation. The
formulas needed for these calculations are presented in
Appendix A. We have concentrated our efforts here on
the CI2 and CC2 approximations, and for both potentials
we present results below for n,„29. These very high
values of n, „have been achieved, however, only by a
considerable investment in computational effort in terms
both of program development and of running time. In
both of these respects, the majority of the effort has gone
into the calculation of the needed Brody-Moshinsky (BM)
brackets. Unfortunately, there are simply too many of
these to store them all for the highest values of n,„. On
the other hand, it is fortunate that most of the actual
coefficients in the CI2 and CC2 equations involve only
the subset of BM brackets with a total angular momen-
tum equal to zero. Even handling this subset still
presents a formidable problem. Thus, for n, „=29,there
are approximately 5 X 10 distinct nonzero brackets.
These were calculated once, stored, and retrieved when
needed by using a modified Fibonacci hashing algo-
rithm. The remaining BM brackets are too numerous
to store, but fortunately are sufficiently simple to be able
to be calculated as needed.

The calculations in the original Fock-space representa-
tion were performed on an Amdahl VP 1100 vector pro-
cessor. This machine has an optimal vector speed of
286 X 10 flops. Each run for a given value of the
harmonic-oscillator basis parameter a took 6 h of CPU
time with n „=29,after a great deal of both scalar and

vector optimization. The final code was 81% vectorized
(with a vector efficiency rated between good and excel-
lent). It required 30X10 bytes of real memory, 22X 106

bytes of which were used for the hash table. Since this
latter portion of the memory is intended to be accessed
essentially randomly, it is clear that a virtual-memory
machine would not have sufficed for our purposes.

The behavior of the ground-state energy E as calculat-
ed in the CI2 approximation is shown in Fig. 1 with
respect to the order n,„(i.e., where the number of basis
states is n,„+1). For both potentials the calculations
have been performed at a fixed value of the harmonic-
oscillator parameter a, namely, 0.7 fm ' for the S3 po-
tential and 0.8 fm ' for the MT-V potential. These
values correspond approximately to the values which
minimize the ground-state energy estimates for the
highest value of n,„=29used. We note that the results
for the S3 potential have almost fully converged at this
value of n,„,being undoubtedly within a few tenths of 1

MeV of the infinite basis-size limit for this approxima-
tion. Indeed, at a value of n,„=20 for the S3 potential,
we obtain an energy estimate that is only approximately 1

MeV away from the fully converged limit. Conversely,
even at an excitation energy of 58Acu, the MT-V result is
still probably somewhat more than 2 MeV away from
convergence. This difference in the rate of convergence
presumably stems largely from the fact that the MT-V
potential has both a much more repulsive core than the
S3 potential and an attractive tail that falls off more slow-

ly at large separations.
In Table I we compare the CI2 data illustrated in Fig.

1, with both the corresponding CC2 results and the essen-
tially exact results obtained by the diffusion Monte Carlo
(DMC) method. ' It is very clear that the bilinear terms
which comprise the extra ingredient in the CC2 method
contribute only a few tenths of 1 MeV additional binding

10.0

.0 .

—10.0

—20.0.

—30.0
0 5 10 15 20

znax
30

FIG. 1. The ground-state energy of the He nucleus calculat-
ed in the CI2 approximation as a function of the order (n,„)of
truncation, for the S3 potential (S} with a=0.7 frn ' and the
MT-V potential (M) with a=0.8 frn ', where a is the oscillator

parameter of the single-particle basis.
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~ max CI2
S3

CC2 CI2
MT-V

CC2

0
1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

—3.250
—5.357
—5.637
—7.275
—8.080
—9.795

—11.364
—13.101
—14.735
—16.289
—17.695
—18.952
—20.050
—20.997
—21.803
—22.482
—23.048
—23.515
—23.899
—24.210
—24.462
—24.664
—24.824
—24.951
—25.051
—25.128
—25.188
—25.234
—25.269
—25.294

—5.379
—5.671
—7.367
—8.159
—9.901

—11.464
—13.211
—14.847
—16.407
—17.818
—19.081
—20.186
—21.140
—21.952
—22.636
—23.207
—23.678
—24.065
—24.380
—24.634
—24.837
—24.999
—25.127
—25.228
—25.306
—25.366
—25.412
—25.447
—25.473

9.512
—3.347
—3.629
—7.104
—7.981
—9.997

—11.476
—13.117
—14.562
—15.941
—17.181
—18.315
—19.331
—20.246
—21.064
—21.797
—22.451
—23.035
—23.558
—24.026
—24.445
—24.820
—25 ~ 158
—25.461
—25.734
—25.981
—26.205
—26.408
—26.595
—26.769

—3.640
—3.947
—7.696
—8.507

—10.590
—12.024
—13.665
—15.080
—16.441
—17.657
—18.771
—19.768
—20.665
—21.468
—22.186
—22.827
—23.401
—23.913
—24.372
—24.783
—25.151
—25.482
—25.780
—26.048
—26.290
—26.509
—26.708
—26.891
—27.062

TABLE I. Results for the ground-state energy in MeV for
He as a function of the basis size, calculated via the CC2 and

CI2 approximations described in the text, for the S3 and MT-V
potentials, with the basis parameter a set to 0.7 and 0.8 fm

respectively. Also shown are the essentially exact DMC results
from Ref. 51.

energy for both potentials investigated and for large
values of n,„at values of e near that which minimizes
the energy. The precise value of the difference in binding
energies obtained by the two methods depends (in a rath-
er complicated fashion) on the order n,„but the
difference is always small. We note that the CI2 approxi-
mation for the S3 potential already by itself gives about
95% of the total binding energy. Of the missing 5%, the
extra bilinear terms in the CC2 approximation, which
represent the independent excitation of two 2p-2h pairs,
contribute only a relatively small fraction. This result is
further reinforced in Table II where the CC2 results are
compared with the variational upper bound results of the
corresponding CC2-E calculations. We note, in particu-
lar, that for all basis sizes used in this comparison,
n,„12,the CC2 and CC2-E results are within a few
hundredths of 1 MeV of each other, thereby providing a
good internal consistency check on the CCM approxima-
tions.

In Table II we also show the corresponding results for
the S3 potential with the CI4-R approximation. A corn-
parison of the two variational results from the CC2-E and
CI4-R approximations indicates that the enlargement of
the variational space to include the restricted class of 4p-
4h excitations admitted by the latter approximation, re-
sults in a lowering of the energy estimate by less than
about 0.1 MeV. It is clear from all of these results that
the CI2 calculation does very well indeed by itself (once it
has converged), and furthermore that the binding energy
that it misses is difficult to attain by any of the other
means discussed. These same general features are also
displayed by the MT-V potential, with the main
difference being the slower convergence. Nevertheless,
even for this potential, the fully converged CI2 approxi-
mation almost certainly yields over 90% of the total
binding energy.

DMC —26.9+0.2 —31.5+0.2

(Mev)

TABLE II. Results for the He ground-state energy in MeV
as a function of the basis size, calculated in the various approxi-
mations discussed in the text, for the S3 potential and with the
basis parameter a =0.7 fm

—10.

~ max

1

2
3

5

6
7
8
9

10
11
12

CC2

—5.379
—5.671
—7.367
—8.159
—9.901

—11.464
—13.211
—14.847
—16.407
—17.818
—19.081
—20.186

CC2-E

—5.394
—5.693
—7.424
—8.202
—9.954

—11.505
—13.248
—14.875
—16.429
—17.833
—19.092
—20.193

CI4-R

—5.432
—5.761
—7.529
—8.281

—10.061
—11.581
—13.321
—14.930
—16.476
—17.870
—19.121
—20.216

—20.

—30
0.5 0.6 0.7 O.S

CX (1/fm)

FIG. 2. The ground-state energy of the He nucleus calculat-
ed with the S3 potential and at various levels of basis truncation
in the CI2 approximation, as a function of the oscillator param-
eter 0. which characterizes the single-particle basis. The
different curves are labeled by the respective order I,'n, „)of the
truncation.
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We turn now to the question of the role of t»e
harmonic-oscillator constant a in the convergence of the
results. In Fig. 2 we examine the ground-state energy of
the S3 potential as a function of the parameter a for
different values of the basis size in a CI2 calculation.
These data display several strong features which are not
easily intuited. In particular, they demonstrate both the
very complex nature of the convergence process, and the
critical importance of the choice of parameter a, even at
very large values of the basis size F. urthermore, the op-
timal choice of a to minimize the energy is seen to be
quite sensitive to the choice of n,„. Indeed the optimal
value of a only stabilizes after a large value of n, „ is

reached.
Perhaps even more importantly, one observes from

Fig. 2 several examples of regions of extremely nonuni-
form convergence and of seeming, but false, convergence.
Thus, for the fixed value of a of about 0.5 fm ', the CI2
calculation gives every indication of converging to the
very false value of about —7 MeV for basis sizes up to
n,„=5,before the calculation "depins" from this value

as n,„ is increased further. Even more seriously, for
values a 0.95 fm ', the CI2 calculations appear com-
pletely converged for values of n,„as high as 30, and

probably even much higher, although to quite the wrong
minimal value. Although in a full CI or CCM calcula-
tion, the results must be independent of the original mod-
el state, and hence of a, the limit n,„~~ of our CI2
calculation need not be wholly independent of G. since we
have neglected 3p-3h and 4p-4h excitations. Naively, we

might expect, however, that as n, „ is increased the CI2
energy estimate would smoothly become more indepen-
dent of a as the large basis limit is approached. Curious-

ly, the calculations with n,„=4 are appreciably less

dependent on a than those with n,„=30, even though
the former give extremely poor estimates for the energy
eigenvalue.

The same general behavior is also true for the MT-V
potential, although it presents a greater challenge to our
techniques in view of the overall slower pattern of con-
vergence. In view of the very complex nature of the con-
vergence process, it is clear that any attempt to extrapo-
late the CI2 results from our highest basis size n,„=29
to the infinite limit will be fraught with danger at whatev-
er value of a is chosen. While this is undoubtedly the
case, all such attempts indicate that the CC2 estimate for
the energy is unlikely to converge to a greater value of
the binding energy than about 29.5 MeV. Once again,
the remaining 2 MeV or so must be due to the neglect of
three- and four-body correlations. The detailed depen-
dence on the harmonic-oscillator constant a of both the
CI2 and CC2 results for the MT-V potential is displayed
in Fig. 3. We observe again the very Aat curves for
n,„=5, and the possibility that exists if one had only
data for bases of up to this size, to make the natural, but
false, assumption that the energy estimates are (nearly)
converged, especially for the lower values of a shown. It
is also worth pointing out that the nonlinear terms in the
CC2 approximation produce a non-negligible lessening of
the dependence on a, though, as noted above, we see that
near the large-n, „energy minimum they have little

0.0

—10.0 ..

—20.0 .. 20

—30.0
0.55 0.65 Q.75 0.85

tx (t/fm)
0.95

FIG. 3. The ground-state energy of the He nucleus calculat-
ed with the MT-V potential and at various levels of basis trun-
cation in the CI2 approximation (solid lines) and the CC2 ap-
proximation (dashed lines), as a function of the oscillator pa-
rameter a which characeterizes the single-particle basis. The
different curves are labeled by the order (n,„)of the truncation.

eft'ect.
We now turn to an examination of the coordinate-

space representation of our CI2 wave function. It is clear
from either Eq. (23) or Eq. (30) that this may be written
in the form

( r[r2r3r4I +,i~ &
= 4 4

f (r;J ) exp —
—,'a g rk

«g=1 k=1

(35)

where f (r) is a polynomial in r of order n, „, which is
determined from the eigenvectors of the eigenvalue prob-
lem described above in Sec. IV. For convenience, we now
choose the normalization of the approximate wave func-
tion so that the correlation factor f (r) takes the value
unity at the origin f (0)= I for the potentials which are
themselves finite at the origin, like the S3 potential. Fig-
ure 4 illustrates a plot of the CI2 correlation factor f (r)
for the S3 potential for various values of the basis-size pa-
rameter n,„. We note the clear convergence, at least for
the range of values of the separation distance r shown, as
n, ,„ is increased. Clearly, for large distances r, the func-
tion f (r) will become infinite for any value of n, „due to
its finite-polynomial nature. This behavior is not
dangerous, since the Gaussian factor in Eq. (35) will kill
any such polynomial growth, and the proper asymptotic
behavior of the wave function may thereby be restored.

Finally, for purposes of comparison we consider the
analogous implementation of the above approximations
wholly within the coordinate representation. In the first
place, we may seek the form of the correlation factor
f (r) in Eq. (35) which minimizes the energy expectation
value over the CI2 class of trial wave functions. The
solution of this problem is wholly equivalent to the CI2
approximation. Rather than attempting a direct solution
of the resulting Euler-Lagrange equation, a very con-
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venient and efficient method is to parametrize the func-
tion f ( r ) approximately as a linear combination of
Gaussian functions of different ranges,

N

f (r)= g A„exp( b„—r ),
n=1

(36)

0
and to seek the minimum of the resulting energy expecta-
tion value over the set of variational parameters
[a,b„,A„j. If the set of nonlinear parameters [a,b„j is
first specified, the problem of then determining the linear
parameters [ A„j is a straightforward generalized eigen-
value problem. The main part of the search for the
minimum thus involves the set [ a, b„j. As is well known,
the nonorthogonality of the basis in Eq. (36) leads to the
minimization problem rather easily becoming ill condi-
tioned if the values of the parameters [b„j become too
close to each other. Thus, one should not attempt to use
too large or too dense a Gaussian basis.

It is clear from Eq. (30) and from our previous discus-
sion that the comparable CI4-R analysis is also quite
similar. The coordinate-space wave function is now ap-
proximated as

—5
0 r(fm)

FIG. 4. The correlation factor f(r) that characterizes the
CI2 approximation to the He ground-state wave function via
the parametrization of Eq. (35). The calculation employs the S3
potential and a value a=0.7 fm ' for the oscillator parameter
of the single-particle basis. The different curves are labeled by
the respective order (n,„)of the truncation.

N 4 4

3r4I Wc&4 —R & = g A„„g exp( b„r,,
' b—„»„1)e—xp (37)

n, n'=1 m=1

in terms of a set of parameters [b„j which includes the
value zero, so that both the one- and two-pair terms in
Eq. (30) are now represented, and where both indices k
and I are different from both indices i and j, as before.
Once again, the CI4-R approximation results in a gen-
eralized eigenvalue problem for the set of amplitudes

1.0

0.5 .

0.0

[ A „„jfor fixed values of the set [ rr, b„j .
Using a set of values [ b„j= [

—0.08, 0, 0.35, 1, 2, 4, 8,
16, 32, 64j fm, we obtain CI2 and CI4-R estimates for
the ground-state energy of —25.36 and —25. 55 MeV, re-
spectively, for the S3 potential, and —29.40 and —29.58
MeV, respectively, for the MT-V potential. These ap-
proximately rninirnal values are attained in each case
with oscillator parameter @=0.71 fm ' for the S3 poten-
tial and a=0.74 fm ' for the MT-V potential. We be-
lieve that these approximately minimal energy eigenval-
ues are very close to the precise results that pertain to
each level of approximation, since, by making further
changes in any of the variational parameters or by mak-
ing further increases in the basis size X, we are unable ap-
preciably to lower these estimates any further. In Fig. 5

we compare, for the S3 potential, the corresponding CI2
correlation factors f (r) from the oscillator basis repre-
sentation and from the present coordinate-space basis
representation of Eq. (36) with N =10 and with the set

[b„j as given above.

—1.0
r( fm) VI. DISCUSSION AND COMPARISON

FIG. 5. The correlation factor f(r) that characterizes the
CI2 approximation to the He ground-state wave function via
the parametrization of Eq. (35) and using the S3 potential. The
curve labeled 20 corresponds to the n,„=20curve in the trun-
cated oscillator representation of Fig. 4 with a =0.7 fm ', while
the curve labeled C corresponds to the coordinate-space repre-
sentation of Eq. (36) with N=10, a=0.71 fm ', and [b„j
values as given in the text.

It is of interest to compare and contrast our own CI
and CCM calculations reported here with the more stan-
dard shell-model calculations. These latter calculations
are usually performed in a so-called complete space
which includes all possible configurations with a bare
(noninteracting) excitation energy up to a given maximal
value NA~ in order to guarantee no spuriosity associated
with the center-of-mass motion. Thus, in such complete
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spaces, it is known that it is possible to construct a basis
in which every state is an eigenstate of the center-of-mass
Hamiltonian. The problem, in practice, with such com-
plete model spaces is that their dimensionality grows
alarmingly rapidly with the truncation index N. Further-
more, a CI calculation in such an energy-truncated basis
leads to a replication of the approximated intrinsic states,
with each possible center-of-mass eigenstate being sepa-
rately associated with each intrinsic state attainable
within the overall constraint on the maximum excitation
energy. One of the most important findings of the
present paper is that it is perfectly possible to construct
many-particle bases in which the number of
configurations, constrained to 1p-1h and 2p-2h excita-
tions, is dramatically decreased for a given value of N,
but wherein the center-of-mass motion is again always
properly factorizable. Indeed, it is actually always in the
lowest (Os) state.

Furthermore, we have seen that these translationally
invariant CI and CCM calculations, built from the
harmonic-oscillator single-particle basis and incorporat-
ing only one- and two-body correlations, are capable, in
practice, of obtaining approximately 90—95%%uo of the to-
tal binding energy of the He nucleus for the quasirealis-
tic potentials used. The sole, but important, proviso is
that the calculations must be performed in a large enough
truncated basis to reach convergence. We have clearly
observed the necessity to use bases which include very
high values of the oscillator excitation energy in order to
attain convergence. Values of N=60 are necessary for
the S3 potential for the energy estimate to have con-
verged to a few tenths of 1 MeV. Appreciably higher
values still are needed for the MT-V potential to reach
the same degree of convergence. To include such states
in calculations involving complete spaces would involve
such enormously large numbers of configurations as to be
computationally quite impracticable to handle.

Before we compare our numerical results with those of
other calculations, we shall attempt to understand why
the convergence of our translationally invariant CI and
CCM calculations is so slow with respect to the trunca-
tion index n,„. The first point to note is that an A-body
wave function of the form given in Eq. (35) obeys the
cluster property in the following sense. Suppose that one
of the A particles, say, particle 1 at position r&, is moved
far away from the remaining ( A —1) particles, whose
center of mass is at the position

Thus, in the limit as r', =—~r,
—R'~ ~~, the intrinsic part

of the Gaussian factor in Eq. (35) will decrease like

exp[ —
—,'r', a (3 —1)/A],

once the center-of-mass wave function has been removed
by use of Eqs. (12}—(14). Given the polynomial nature of
the correlation factors in the truncated CI2 calculations,
the correlation part of Eq. (35) will increase in the same
limit as (3 —1 )f (r', }. The polynomial growth of this
last factor is more than compensated by the exponential

decay of the uncorrelated wave function. The product of
the two factors thus approaches zero whenever any one
of the particles becomes far removed from the remainder.

On the other hand, in an exact treatment of this disso-
ciation limit, one expects the wave function to decrease
exponentially, i.e., as exp( —Er I ), where e is proportional
to the dissociation energy to remove one particle from
the A-particle nucleus. Undoubtedly, it will be necessary
to include many terms in the power series expansion for

f (r) before the correlation factor can correctly compen-
sate for the incorrect limiting behavior of the uncorrelat-
ed Gaussian wave function. In conclusion, the form of
f (r) as a polynomial in r is simply not very appropriate
to reproduce accurately the long-range behavior, and
hence many terms are needed. Of course, this basic form
for f (r) stems ultimately from the basic harmonic-
oscillator form of the uncorrelated wave function or,
equivalently, from our choice of single-particle orbitals to
characterize the Fock space. Furthermore, this choice of
harmonic-oscillator orbitals was motivated by the desire
to remove easily and exactly any spuriosity associated
with the motion of the center of mass.

From the above considerations, we observe that while
the harmonic-oscillator basis is an extremely convenient
one for purposes of handling the center-of-mass motion,
its main disadvantage is that one has to include
configurations of very high excitation energy in order to
reach convergence or, equivalently, in order to reproduce
accurately the large-distance behavior of the many-body
wave function in the dissociation limit. From such gen-
eral observations and from our own numerical investiga-
tions, one is then forced to conclude that such an expan-
sion in the intrinsic oscillator wave functions is not neces-
sarily the most sensible way to handle the various CI and
CCM equations at any of the several levels of approxi-
mate implementation of these methods. From this
viewpoint it is particularly interesting to compare our re-
sults both with the corresponding CCM calculation of
Zabolitzky for the He nucleus which also employed the
MT-V potential among others, and with such more tradi-
tional shell-model calculations of the same system as
those of Ceuleneer et al. , who employed a complete
basis space of configurations up to 10k'co in excitation en-
ergy.

The CCM calculation of Zabolitzky is based not on
our own translationally invariant basis discussed here,
but rather on the more usual CCM approach of handling
the center-of-mass motion, which has been enunciated by
Fink. The aim is to work directly with the internal or
intrinsic Hamiltonian H;„,—:H —T, and to solve for its
corresponding ground-state wave function

~ 4;„,) in the
usual CCM form,

~V;„,) =exp(S;„, )~4;„,),
where ~%;„,) and ~4;„,) are now functions of some suit-
able set of (A —1) internal coordinates, g, , . . . , g„
As usual, the difficulty in obtaining ~%;„,) is that the
coordinates are not treated symmetrically. The same
simple remedy is adapted as in our own work, namely,
the use of harmonic-oscillator wave functions for the
many-body model state ~4;„,). A simple multiplication
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where 4) is a Slater determinant of oscillator wave
functions [or the simple product of Eq. (12) in our own
bosonic case for He with Wigner forces]. The corre-
sponding eigenvalue equation is

(H;„, E;„,—}exp(S;„,)(r, . . .r„~4)=0, (39)

and the exact wave function in a state where the c.m. has
momentum K is

exp(S;„, )( r, . . .r „~4)
R4,

(40)

where Vis the normalization volume.
In the standard procedure outlined above, the 1p-1h

excitations have to be calculated explicitly via the one-
body partition S;„, , of the cluster operator S;„,. Further-
more, the treatment of the c.m. motion is exact only as
long as the CCM parametrization is not truncated. Oth-
erwise, its treatment is as accurate as the particular
SUB(n) truncation used. Zabolitzky has performed cal-
culations at the SUB(2},SUB(3), and SUB(4) levels for the
He nucleus with the MT-V potential. At the SUB(2) lev-

el, his doubly self-consistent numerical treatment of the
one- and two-body equations was essentially exact,
whilst, at the SUB(3) level, some small inhomogeneous
terms in the resulting three-body Bethe-Faddeev equation
were neglected. At the SUB(4) level, the solution of the
relevant four-body equation was no longer feasible, and
only the factorizable contributions from this equation
and those omitted in the three-body equation were in-
cluded.

At the SUB(2) level, where the c.m. treatment is not
exact, no constraints are imposed on the matrix elements
of the one- and two-body cluster operators, in contrast to
what is done in our own treatment. Furthermore, and
very importantly for comparison purposes, although the
analysis was based in the first place on an oscillator wave
function basis for the Fock space, the two-body equation
was actually solved in coordinate space by a further
transformation from the intrinsic oscillator basis

~

nl ) to
the relative coordinate basis ~rl ). In this way the conver-
gence problem is side-stepped. By this procedure, Zabol-
itzky obtained a SUB(2) estimate for the ground-state en-

ergy of He with the MT-V potential of —30.24 MeV.
This may be compared in the first place with our own
CC2 results in Table I, which give —27.06 MeV at
n „=29,but which are not yet fully converged. It may
perhaps also be more closely compared with our own
coordinate-space CI4-R variational result of —29.58
MeV, which we believe is close to the precise (converged)
values for both this approximation and, from the results
of Table II, the CC2 approximation.

The remaining difference of approximately 0.6—0.7

by the oscillator wave function ( R~ 4, ) for the ground
state of the center of mass then leads, for doubly magic
nuclei, to the form

(g, . . .g„,~O,„,)(R~4, ) =exp(S;„,)(r, . . .r„l@&,

(38)

MeV is due to the inclusion by Zabolitzky of a self-
consistent lp-lh cluster operator (and the corresponding
inaccuracy in handling the c.m. motion). In our own
calculations, such effects would be subsumed into the
omitted 3p-3h and 4p-4h correlations. At SUB(3) and
SUB(4) levels, Zabolitzky finds the corresponding energy
estimates of —31.24 and —31.36 MeV, but in view of the
inherent approximations in the latter calculation, the best
estimate is probably the SUB(3) result. In any case, both
of these latter estimates are gratifyingly close to our own
essentially exact DMC result ' of —31.5+0.2 MeV, and
indeed also to an earlier comparable Green's-function
Monte Carlo (GFMC) result of —31.3+0.2 MeV.

We turn next to a comparison with the more tradition-
al shell-model (CI) calculations. Typical of the most am-
bitious of these is the work of Ceuleneer et al. These
authors have performed calculations for He with the
MT-V potential, using complete model spaces of total ex-
citation energy NAco with N 10. The numbers of four-
particle configurations involved with N=2, 4, 6, 8, and
10 are 7, 45, 221, 853, and 2765, respectively. Their cor-
responding results for the ground-state energy, optimized
for the choice of oscillator constant e for each value of N,
are —6.40, —7.29, —8.28, —13.77, and —18.31 MeV,
respectively. These results are not immediately compara-
ble with our corresponding results in Table I for the
values n,„=1, . . . , 5 since our own results are shown at
a fixed value of a. A closer comparison with Fig. 2 of
Ref. 54, which shows the estimates at each value of N as
a function of a, does, however, indicate that their re-
sults lie below ours, at the same value of a, as they should
do (since they also include some 3p-3h and 4p-4h
configurations), but not by a very large amount. In any
case, it is clear that even at the optimized values, their re-
sults up to 10%co in excitation energy are both far from
convergence and far from the exact result, as would be
expected from our own work. Similar results and con-
clusions have been obtained by other authors (see, e.g. ,
Ref. 79), although typically from calculations which have
not converged.

VII. CONCLUSIONS

The starting point of our discussion has been to build
the He ground-state correlations on top of the uncorre-
lated four-body model state ~(0s) ) formed from single-
particle oscillator states. The strict incorporation of
translational invariance at the level where all independent
(lp- lh plus) 2p-2h excitations are included, has led to the
CC2 form of Eq. (30} as our approximate form for the
ground-state wave function in coordinate space. By
starting with this ansatz, the unknown two-body cluster
correlation function h (r) may, in principle, then be deter-
mined in several different ways.

In the first place, the standard CCM machinery may be
utilized to write down an integro-differentia1 equation for
h (r) following similar lines to the SUB(2) calculation of
Zabolitzky which gave a value of —30.24 MeV for the
He ground-state energy using the MT-V potential, but

which did not exactly incorporate translationa1 invari-
ance. Secondly, one could derive an Euler-Lagrange
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equation for h (r) by a functional minimization of the en-

ergy expectation value along very similar lines to the
comparable calculation of Bracci et al. These latter au-

thors employed a Jastrow correlated trial form for the
wave function, g;,f~(r,, ), and thereby obtained a
minimal value of —31.35 MeV for the ground-state ener-

gy using the MT-V potential It is particularly interesting
to note that, by writing fJ (r)—:1 +h I (r), our own Eq. (30)
is of precisely the same form as is obtained by expanding
the Jastrow correlation factor hJ(r), and, furthermore,
keeping only those (disconnected} second-order terms
which relate to two independent pairs. Thirdly, the func-
tion h (r) could also be determined by a method analo-
gous to the method of hyperspherical harmonics, '
which has given a value between —31.22 and —30.48
MeV for the ground-state energy of the He nucleus with
the MT-V potential. Indeed, the corresponding CI2 form
of our wave function in which the bilinear term in h (r) is

omitted from Eq. (30), is very similar to that used in hy-

perspherical harmonic theory, as may be seen by a com-
parison with Eq. (5) of Ref. 82.

For the present purposes, we have mostly chosen not
to work directly with the cluster correlation function
h (r) itself, but rather with its decomposition in terms of
the oscillator basis. Thus, we have put most effort into
solving directly for the amplitudes IS„) in Eq. (26) or Eq.
(28), in order to make comparisons with and draw impli-
cations for other generalized shell-model calculational
schemes. In particular, our own exact treatment of
translational invariance has enabled us to reduce the size
of the many-body oscillator configuration space so
dramatically that we could perform calculations up to the
very high level of 60%co excitation energy.

The four main conclusions of our work may be summa-
rized as follows. Firstly, we have shown very clearly
that, at least for energy calculations, the most important
part of the wave function of the He nucleus may be ex-
pressed in the form

Its use corresponds both to a configuration-interaction
calculation in a restricted 2p-2h subspace which incorpo-
rates translational invariance, and to the corresponding
linearized version of translationally invariant coupled
cluster theory at the SUB(2) level of approximation. This
form of the wave function is also both very similar to that
used in the hyperspherical harmonics approximation, and
equivalent to a small correlation expansion of the Jastrow
counterpart. We may thereby understand how and why
all of these calculational schemes provide such good
descriptions of such light systems as the He nucleus.

Secondly, we have demonstrated that the coordinate-
space methods are computationally much more efticient
than the corresponding oscillator-basis expansions in at-
taining convergence to comparable levels of accuracy.

It has long been clear that the CCM provides one of
the most efficient and systematic ways of incorporating
the multiparticle correlations beyond the various pair-
correlation approximation methods described above.

Our third conclusion is that the errors made in the earlier
standard implementations of the CCM, which do not ex-
actly incorporate translational invariance at the various
SUB(n) levels of truncation, are small. We have clearly
seen, for example, how the errors at the SUB(2} level are
no worse than those made in neglecting the three- and
four-body clusters.

By contrast with the above main points, we have
stressed the calculations in the harmonic-oscillator basis
in view of what they imply for standard shell-model cal-
culations, even the biggest of which are generally only
able to include configurations with much lower excitation
energy than those handled by us in the present work.
These implications are striking and clear. They form our
fourth and final main conclusion. Thus, it is certainly a
perfectly valid approximate procedure to use an e+ectiue
interaction, fitted to a number of nuclear properties, in a
fixed and highly restricted shell-model space. However,
there is no theoretical basis then to enlarge this space to
higher-energy shell-model configurations without read-
justing the effective interaction at the same time. The
logical endpoint of this procedure is clearly to use the
bare microscopic internucleon force and no curtailment
of the many-body configuration space, except that per-
mitted by considerations of convergence. What we have
seen only too clearly here is that this convergence is then
so disappointingly slow as to bring the whole procedure
into question.

It is apparent that there is little or no future in pursu-
ing the translationally invariant calculations described
here in the oscillator representation, due to the extremely
slow convergence. The preferred future strategy for the
inclusion of trans1ational invariance is clearly to concen-
trate on the cluster correlation function in its
coordinate-space representation h (r). We also intend to
calculate h (r) directly by solving the resulting appropri-
ate Euler-Lagrange equation. The approximate CI2 and
CI4-R calculations, in which the minimization is per-
formed instead with respect to the (nonlinear) parameters
of some predetermined form (e.g. , a linear combination of
Gaussian functions), have also been seen to be sufficiently
simple and accurate to consider extending for the in-
clusion of three-body correlations via the cluster operator
S' '. Finally, the coordinate-space representation tech-
niques can also, in principle, be extended to include the
state-dependent effects of realistic potentials. Work is in
progress on each of these fronts.
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APPENDIX A: THE CC2 EQUATIONS

E=(4!) '"(Ola04III+, & . (A 1)

The cluster coefficients [S» j are similarly calculated by
projecting the approximate CC2 Schrodinger equation
onto the basis H„lo), n =1,2, . . . , to give the standard
result

(ol~'. Hlq'i & =E(OII).'Iq'2& . (A2)

In order to give a very brief discussion of the technical
derivations of the actual equations solved and the neces-
sary reduction of the matrix elements, we use the CC2
method as a typical example. The comparable deriva-
tions of the related terms in the other approximations are
very similar. The starting point for the derivation is the
basic CC2 wave function in the oscillator Fock space
given by Eqs. (26) and (27). In terms of this CC2 wave
function, the corresponding estimate for the energy is
evaluated as usual by

The Hamiltonian H=T+ V is expressed in second-
quantized form in the harmonic-oscillator basis as usual,

T= y T,,ata, ,
I,J

V= —, g V; »Ia;a a&a»,
i,j,k, I

(A3)

where we have used a single index i, for example, to
represent the complete set of one-particle indices

[n;I;m; j. The matrix elements of the one-body kinetic-

energy operator may readily be reduced to the form

T;, =5& I 6m ~ T(n; I; n~ ) .
' J i J

(A4)

In the case of the Wigner-type (i.e., spin- and isospin-
independent) forces with which we are solely concerned
here, the potential matrix elements may be reduced to the
form

V,~ »I
= g ( I; m; IJ m J I I; I) kp ) ( I» m» II m( I I» Ii &p )

X g g 1+(—1)" ' (nlNLA. ln;I;n&l A)(n'INL. A, ln»l»nil&A)V(nln') , .
n, n', N 1L

(A5)

Our final forms for Eqs. (Al) and (A2) will thus now involve the reduced matrix elements T(nln') and V(nln'), the
Brody-Moshinsky and Clebsch-Gordan recoupling coefficients, and the cluster coefficients IS» j as unknowns. The fur-
ther reduction of the equations to this final form is completely straightforward but tedious. It proceeds in two stages.
In the first place, the vacuum expectation values of each of the products of creation and destruction operators must be
evaluated using Wick s theorem. In fact, we did this by the use of algebraic computer routines. Secondly, a consider-
able amount of simplification occurs by use of the completeness relations for the various overlap integrals. A typical ex-
ample which occurs in Eq. (A2) is

n, n' n,.l, m,. n I.m

(I;m;I m ll,.l 00) (nooooln, l;n I 0) (n'0000ln;l, n I 0) V(non')S„= g V(non)S„. (A6)

The final equations can be more compactly written in terms of the shorthand notations,

(n ln; In~ )o—= (nooooln;lnjlo),
I3 +14+L

V»(n, l, n212, nilin414):—g g [1+(—1) ' ' ](nlNLAln, l, n l zA,2)(n'INLAlnilin4I4A. ) V(nln') .
nn'I NL

(A7)

(A8)

We also make liberal use of the particular value of a special case of Eq. (A7),

( n ln 00)o= 2

By these means, Eq. (Al) for the CC2 estimate of the ground-state energy can be written as

E =4T(000)+6V(000)+6+ [2' "T(oon)+(1+2 " "')V(oon)]S„

(A9)

+12 g 2 '"+" '(n+n'lnon')OV(o, o, n +n')S„S„
n, n'

(A 10)

Similarly, the set of equations (A2) for the cluster coefficients may be evaluated as
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0=2' "T(00n)+(1+2 " "')V(00n)+ [(2+2 " "
) T(000)+ V(000) —(1+2 " "')E]S„

+22 "g [2 '[T(nOn, )+Vo(n000;n, 000)]S„+(n+n; ~(n;On )o[T(00n,. )+2 ' V(00n;)]S„+„I

+ g 2 (n~ n, Onb) o[T(00n, ) +2 'V(00n, )]S„
nanb

+2 g (n ~n, lnb )op I2 'Vo(n, lnbl;n, 000)S„+(n;+nb+I ~n;Inb )()[T(n, ln, )+2V((n, 100;n;100)]S„+„+(I
n nb 1 n

+2' " g (n, +nb+lln, lnb)oVo(n000;n, lnbl)S„+„+,
n nb

+-,' g & &nln. inb)o&n, +n, +I'l(n, l'n, )oVo(n, lnbl;n;I'n, I')S„+„+,
I J

n nbl n, n t'

+ g [2 'T(00n, )+ V(00n, )]S„S„—E g 2 ' ' (n~n, Onb)oS„S„
nanb

+4 g 2 '(n ~)n, Onb )o[(n, +n; ~n;On, )oT(00n; )S„S„+„+2 'T(n, On;)S„S„]
n nbn

+ g &n ~n, lnb &o&n, +n;+I~n, ln; &o&nb+nj+ll(nblnj &o
2

n n nb, n( 21+1

X (n, +n +I ~n, ln ) oV( 0, O, n; +n& +1)S„+„„S„+„

+2 '(n ~n, Onb )o(n, +n +I)n;In~)oVo(n, 000;n;lnjl )S„S„+„+(
b

+2 '(n~n, lnb )o[2 'Vo(n, lnbl;n;OnJO)S„S„
I J

+4(n;+nb+I ~n; Inb )oV)(n, 100;n;In~0)S„S„+„+(]' .
J I b

(A 1 1)

Equation (Al 1) holds for all n =1,2, . . . , and it hence provides an infinite set of coupled nonlinear equations for the
cluster coefficients t S„].As discussed in the text, this set of equations is truncated in practice by setting all coefficients

SI =0 for / & n, „,and solving the lowest n, „equations exactly.

APPENDIX B: RECURSION FORMULAS FOR GAUSSIAN MATRIX ELEMENTS

When the interaction potential is a linear combination of Gaussian factors, as in the case of the S3 potential, it is pos-
sible to use recursive means to generate all of the integrals needed to compute the required matrix elements that arise in
our various CI and CCM approximations. By expressing the associated Laguerre polynomials in their explicit form, '

the matrix elements of interest can all be written as a linear combination of the general quantities D(p, q, mn) defined
as

D(p, q, n, m)= f d r, Jd rq exp[ a(r)+rz+—r3+r4)]exp( br)2)(r; ) p—(r; . ) q(r; ) "(r; ) (Bl)

where the first term in the integral corresponds to the
square of the (Os) oscillator wave function, the second
term is one of the Gaussian components of the potential
with range I2 '~, and the polynomial part (with integral
values for the indices p, q, n, and m) may take several dis-
tinct topological forms according to the values of the in-

dices [i„,j„; n =1, . . . , 4), chosen from the set

I 1, . . . , 4I. For ease, we maintain the interaction term
fixed between the pair (1,2) of particles. Furthermore, we

may assume that all pairs (i„,j„) are diff'erent, since we

may obviously combine two like pairs into a single term.
It is not difficult to show that the particular structure of

and

( )2(p+n)( )2(q+m)
12 "34

)2(p+n)( )2(q+m)
13 r24

p n q mr12"13"34"24

p q n m~ 13~241 14~ 23

the CCM wave function generates needed matrix ele-
ments that fall into four distinct categories. They gen-
erate the distinct topological forms
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4

Xexp g k„r, ,
k=1

(B2)

The general form of the integrals actually needed from
Eq. (Bl) may then be obtained by differentiation.

(Y O' 8" 8

c}V M,) M. M, =A. =0
1 4

(B3)

Our main task is thus reduced to obtaining a simple
method to handle Eq. (B3) after we have first computed D
from Eq. (B2). Clearly, this procedure has to be repeated
for each distinct topology of the terms according to the
choice of indices [i„,j „)(.

The integral D may be evaluated in Cartesian coordi-
nates in terms of which it is the product of three four-
dimensional integrals, one for each product of one-
dimensional integrals in the respective x, y, and z vari-
ables. Each of these identical integrals has an integrand
which is the exponential of a positive-definite quadratic
form, namely, exp( v; E, v, ),—where v =x,y, z,
i,j =1, . . . , 4, and the summation convention is implied.
Thus, D may be immediately evaluated as

D =rr (detE) (B4)

The 4 X 4 matrix E depends on the oscillator parameter
a, the parameter b which determines the range of the
specific Gaussian term in the potential, and on the four
subsidiary parameters A,„.. . , A,4. The explicit form of
E; depends upon the specific topological structure of the
integrand. However, a very important property common
to all forms is that detE is a multinomial in the pararne-

We first introduce, for each distinct topological form, a
basic quantity D defined as

4

D —= J d3r~ f d r4 exp —a g r& exp( b—r, z)

d, , d[f(x)] '= sf'(x)—
, [f(x)] (B7)

which is valid when f"(x)=0, for each of the four vari-
ables A,„.. . , A,4. In particular, use of Eq. (B7) with x re-
placed by 1 readily yields the relation

D (p, 0,0,0;s)= sP, ,„,X~213A—4D (p —1,0,0,0;s + 1),
(B8)

where here and henceforth we employ the summation
convention over the indices (i,j,k, I), each of which takes
the values 0 or 1 only. Repeated partial differentiation of
Eq. (B8) with respect to the remaining variables A, 2, A, 3,
and k4 easily yields the final result,

ters A. , which involves no higher than first powers in each

parameter. It is not difficult to verify that the quadratic
terms, which at first sight might be expected to appear, in
fact vanish identically. More explicitly, we have the gen-
eral form

1 1 1 1

detE= g g g g P;~&&A, ', A, 2A3A, 4
I =0j=0 k =01=0

We observe from Eq. (B3) that we now require the par-
tial derivatives of the multinomial in Eq. (B5) raised to
the power —

—,'. In order to establish a recurrence rela-

tion, it is now convenient to introduce a further quantity
that slightly generalizes Eq. (B3), namely,

a a~ a" a-
D (p, q, n, m;s) =— (detE )

' . (B6)
BA,) BA,3 BA,4

We note, in particular, that, in comparison to Eq. (B3),
the trivial factor m has been removed, and the partial
derivatives are no longer evaluated at the point

=A4=0. Thus, the factor D(p, q, n, m;s) is still
a function of the parameters [A,&}. The partial deriva-
tives may now be performed recursively by making use of
the simple relation

D(p, q, n, m;s) = s[P,J&&A2A3A4D— (p —l, q, n, m;s+ I)+qP&&z&A3A4D(p
—l, q

—l, n, m;s+1)

+nP, ~, &AJ2A4D(p —l, q, n —l, m;s+1)+mP, i&, AJ2A3D(p —l, q, n, rn —1;s+1)

+qnP„»A4D(p —l, q
—l, n —l, m;s + I )+qmP„&, A3D(p

—l, q
—l, n, m —1;s +1)

+nmP& &&A~&D(p
—l, q, n —l, m —1;s + I)+qnmP& &&&D (p —l, q

—l, n —l, m —1;s +1)] . (B9)

D (0,0,0,0;s) =(detE ) (B10)

It is initialized by setting s =
—,'+4N, where N is the rnax-

imurn value of the indices p, q, n, and m required.

In practice, the recursion relation of Eq. (B9) is utilized
by putting all A.;=0, i =1, . . . , 4, and using the initial
value

We note that the normalization matrix elements be-
tween the uncorrelated oscillator states are also easily
found as the particular case of Eq. (Bl) where b =0.
Similarly, the necessary matrix elements involving the
kinetic-energy operator can also be cast into the general
form of Eq. (Bl) after a simple transformation of the
operators V, .
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