
PHYSICAL REVIEW C VOLUME 42, NUMBER 4 OCTOBER 1990

Finite temperature random phase approximation with the inclusion of scattering terms
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Effects associated with the inclusion of scattering terms, in the random phase approximation
treatment of a two-body interaction at finite temperature, are investigated. Numerical results, for
the case of quadrupole excitations in " Sn, are discussed. It is found that these terms could
influence the low-energy region of the intensity distribution, for multipole excitations at finite tem-

perature.

I. INTRODUCTION

The extension of the standard random phase approxi-
mation (RPA) method to the case of nuclear correlations
at finite temperature has received some attention. ' Fi-
nite temperature RPA (FTRPA) equations have been ob-
tained in both matrix and functional forms and applica-
tions of the formalism can be found in the literature.
Although minor changes in the nuclear response at finite
temperature, with respect to the zero-temperature case,
have been reported, ' some questions can still be raised
concerning the basic elements of the theory. Particularly,
the validity of the mapping of the RPA Hamiltonian at
finite temperature, namely, with reference to the inter-
play between fermionlike and bosonlike terms of it, is
currently being reviewed. Recent papers ' have dealt
with this problem in the framework of the thermofield
dynamics (TFD)." One of the main conclusions of Ref. 9
is related to the inclusion, in the FTRPA treatment of a
residual two-body interaction, of the so-called "scattering
terms" or H» terms of the force' in a foot of equality
with pair-creation —pair-annihilation and double pair-
creation (-annihilation) terms of the form H» and H40,

'

respectively. Following this method the three terms,
namely, Hz2, H4o, and H», should be included in dealing
with FTRPA equations. Moreover, and in a consistent
manner, scattering terms should be also included in the
definition of FTRPA phonons and transition operators.
Since the numerical examples given in Ref. 9 correspond
to a schematic two-level model situation, the inhuence of
these new terms upon observables extracted from the
FTRPA approach is not established yet, although the
consistency requirement of the TFD theory seems to indi-
cate the need of such an inclusion.

In the present work we would like to discuss the results
of the above-mentioned formalism for a realistic case.
We have applied TFD concepts to the FTRPA treatment
of quadrupole excitations in a superfluid nucleus, " Sn,
and we have calculated intensity distributions for quadru-
pole transitions in this nucleus. We have used, for the
microscopic description of quasiparticle and boson de-
grees of freedom, a Hamiltonian which includes a single-
particle term and an isospin-independent 6 force' and we
have solved state-dependent BCS (Ref. 12) and FTRPA

equations in the temperature domain 0 ~ T ~ 2 MeV. The
formalism is brieAy reviewed in Sec. II and the results are
discussed in Sec. III. Conclusions, related to the
inAuence of the new terms added to the FTRPA equa-
tions upon the quadrupole response function, are drawn
in Sec. IV.

II. FORMALISM

We can write, for the Hamiltonian, the expression

H —QE c c + g V psc cpcsc
a aPy5

in standard notation, where V
& & are antisymmetrized

matrix elements of the residual two-body interaction. We
have adopted, for this residual two-body interaction, an
isospin-independent 5 force. " The RPA treatment of (1)
has been developed long ago' and here on we shall intro-
duce only the definitions which are needed for our discus-
sion. In the following we shall handle (1) in terms of the
building blocks of the FTRPA, namely, fermion and bo-
son degrees of freedom. First, we have to solve finite
temperature BCS equations, in its state-dependent ver-
sion, ' in order to account for quasiparticle degrees of
freedom which originates in the monopole channel of the
residual interaction. Let us write (1) in a temperature-
dependent quasiparticle basis. We therefore have

H =Ho +H ) ] +H2O +H (2)

where E are quasiparticle energies and a (a ) represent
creation (annihilation) operators in the quasiparticle
basis. Next, we have to introduce boson degrees of free-
dom and to do, it let us now start with the discussion of

where each term in the right-hand side of (2) represents,
in the notation given in Refs. 9 and 12, the following:
constant (Ho), one-body (H»), single pair-creation and
-annihilation (H2O), and two-body (H„„) contributions,
respectively. We have followed the method outlined in
Ref. 12 to solve the monopole part of the Hamiltonian (2)
and we can write, for the quasiparticle term, the usual ex-
pression

Hqz =g F- a«a~
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our main problem which is the treatment of the residual
interaction, H„„at finite-temperature and in the pres-
ence of pairing correlations. The structure of H„, can be
defined by

H =~~ H +H +H +Hres ~ 40 22 31 qp-qp
JM

where

(4)

H~ = g Ihqo(abcdJ):A (abJM)A (cdJM): H. c.],
a&b
c~d

HJ2M2= g h22(abcdJ):A (abJM)A(cdJM):,
a~b
c&d

H3P= g I [h3~(abcdJ):A (abJM)N (cdJM):+h3~(abcdJ):A (abJM)N(cdM):]+H. c.I,
a&b
c~d

Hqzqz= g I[h~qz(abcdJ):N (abJM)N (cdJM):+H. c.]+h (abcdJ):Nt(abJM)N(cdJM):]
a~b
c~d

with

h40(abcdJ)=2u~u&vrv&G(abcdJ) (u —v&v~u&+v u&urvs)F(abcdJ)+(v~u&veau&+u v&urv&)8(abJ)F(bacdJ),

h22(abcdJ)=2[ (u —u~urus+v v&v~v&)G(abcdJ) (u —v&urvs+v u&vru&)F(abcdJ)

+(v u&u„v&+u v&vru&)8(abJ)F(bacdJ)],

h»(abcdJ)=2[ (u u&v—us vv&u~—vs)G(abcdJ)+(v u&u us uv—&v vs)F(abcdJ)

—(u v&u us vu&v vs—)8(abJ)F(bacdJ)],

h»(abcdJ)=2[ —(u u&u~v& vv&—vous)G(abcdJ)+(u v&urus v~u&vrv&—)F(abcdJ)

—(v u&u„us —u v&v vs)8(abJ)F(bacdJ)],

h (abcdJ)= —(u v&v us+v, u&urvs)G(abcdJ)+(v v&u us+u u&v vs)F(abcdJ)

+(u u&u us+v v&v vs)8(abJ)F(bacdJ),

h zqz(abcdJ)=2[ (u v&uzv&+v u&vrus)G(abcdJ) (u u&uzu&+v v&vzvs)F(abcdJ)

—(v v&u us+u u&v vs)8(abJ)F(bacdJ)] .

The quantities F(abed, J), G(abed, J), and 8(abJ) are
defined as in Ref. 12 and u and U are temperature-
dependent BCS occupation numbers. The operators A,
A, X, and Rare defined by

A (a, b, JM)= g (j j m j&m&~JM)a a&,
m m&

A (a, b, JM) =[A (a, b, JM)]
(7)

N (a, b, JM)= g (j m j&m&~JM)a a&,
m m&

N(a, b, JM)=(N (a, b, JM))

Each term of (4) collects terms which are originated by
the thermal Bogoliubov transformation of the original
single-particle basis defined by the operators (c,c ).

The RPA method, in its extended TFD version,
prescribes that the Hamiltonian

HRP& =Hqp +Hres

should be linearized in the phonon basis

r (v, &p)= g [X(ab, v)At(ab, gp)
a&b
c)d

—F(ab, v) A (ab, Ap)

+Z, (ab, v)N (ab, kp)
—Z2(ab, v)N(ab, Ap)),

S 0
8 A* Y 0 —S Y

(lo)

where we have used the following definitions:

where an extra term, the so-called scattering term, name-
ly, Z, (ab, v)N (ab, ku ) —Z2(ab, v)N(ab, kp), is added to
the conventional definition of the phonon operator.

In this fashion, FTRPA matrix equations can be writ-
ten as
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C.b, ,d
Eab, cd Gab, cd

expressions are

A,&,d =(E, +Et, )(1 f—, f—d )5(a, c)5(b, d )

Bab, cd Dab, cd + h 2z(abed J),
F.b,.d
Sab cd

Hab, cd

Tab, cd

X(ab, v)X=
Z, (ab, v)

Y(ab, v)
Y=

Z~(ab, v)

with

A, i, ,d=([A(ab, kp), [H, A (cd, Ap)]]),

B,~,„=—( [ A (ab, A p), [H, A (cd, kp)]] ),
C,t, ,d =([A(ab, kp), [H, N (cd, Ap)]]),

D,&,d = —( [ A (ab, Ap), [H, N(cd, Ap)]] ),
E,q,d=([N(ab, kp), [H, A (cd, Ap)]]) =Cd,„,
F,&,d = —( [N(ab, Ap), [H, A (cd, Ap)]] ) =D,d,s,
G,I, ,d = ( [N(ab, Ap), [H, N (cd, Ap) ]]),
H, &,d = —( [N(ab, Ap), [H, N(cd, Ap)]] ),
S,&,d=([A(ab, kp), A (cd, kp)]),
T,&,d=([N(ab, kp), N (cd, kp)]) .

(12)

We can write these matrix elements, in terms of quasipar-
ticle energies, quasiparticle thermal occupation factors,
and matrix elements of the residual interaction and their

B,&,d = [h 4O( abed J)+ h ~o (cdab J )],
3&(cdabJ)

D, l, ,d
= —8(cdj )h»(dcabJ ),

G,I, ,d =(E, Et, )—(fI, f, )5(—a, c)5(b, d )

+h (abcdJ),

H I, d =2hz& qp(abcdJ)

S,t, ,d =(1 f, f—d )5(a,—c)5(b, d ),
T,I, ,„=(f~ f, )5(a, c—)5(b,d),

with

(13)

f, =[1+exp(E, /T)] (14)

Qxp Qpp, k.p+ Qhh, A,p+ Qph, kp (15)

where with pp, hh, and ph we have denoted particle-
particle, hole-hole, and particle-hole transitions, respec-
tively. The terms which appear in the right-hand side of
(15) are defined by

It should be noted that the expectation values which ap-
pear in (12) have been calculated at finite temperature
taking the thermal reference state as the ground state.
The quantity T, which appears in the quasiparticle
thermal occupation factor (14), represents the nuclear
temperature expressed in units of energy.

Finally, in order to finish with the definition of the
quantities that we have calculated, let us introduce the
transition operator Qz„which can be written as~

Q~~ z„= g pz(j„jz)l(u, u2 —v&v2)[N (21,Ap)+N(21, ip)] —(u, v +2v, uz)[A (21,Ap)+A(21, Ap)]I, (16)
J] J2~JF

and similar expressions are obtained for Qhl, z„and Q z &„except for the limits on configuration indexes (j, ,jz ) which
should read as j, )jF )jz (Q h z„) and j„j2~j F (Qil, z„), respectively, with

«(j2A)=(2~+1) '"&j2IIQ~llji & .

The electric multipole moment, M(EA, ), can thus be written as

M(EA. ,p) =
K=pp, ph, hh

effe. Q

B(EA., vO)=g l(OlM(EA, ,p)lv) l

Furthermore, for the structure of B(EA,v~O) in terms o, f the phonon amplitudes, we have

e', g q;(j2j, )I(u, u~ —v, v2)(f, f2)[Z, (12,v)+Z2(12, v)]—B(EA,, v~O) =(2k+ 1)
K=pp, ph, hh

2

where e', are effective charges corresponding to each channel, a, of the operator (15). For the associated transition
probability we have

+(1 f & f 2)(u, v2+ v, u—2)[X(—12, v)+ Y(12,v )] I
K

(20)
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Once the transition probability, Eq. (20), is defined, we
can calculate the corresponding energy-weighted sum
rule, (EWSR) which is given by

EWSR= g co,g3(EA, v~, O) .
v)0

(21)

Finally, and in order to complete the definitions given
in this section, let us introduce the normalization condi-
tion associated with the RPA phonon operators, cf. Eq.
(9). With the thermal occupation numbers f, of Eq. (14)
and with the corresponding matrix elements S,&,& and

T,I, ,& of the norm matrix, Eq. (13), we can write, for the

normalization condition associated to the amplitudes X,
Y, Z&, and Z2, the following equation:

=5 g I(1 f, f—&)[X—(ab, co) —Y (ab, co)]
a)b

+(f, fI, )Zf—(ab, co) Zz(ab—, co)I .

III. RESULTS AND DISCUSSION

We have applied the above described formalism to the
case of quadrupole excitations in " Sn. We have adopt-
ed, for the single-particle basis, harmonic-oscillator levels
with energies given by Nilsson's parametrization' with
the following set of coupling constants:
~~=0.675X10 ', ~z 0.671X10 ', a~p~=0. 278
X10 ', and ir, p, =0.363X10 ', for neutrons (X) and
protons (Z); we have included shell up to the major oscil-
lator number N„,=7 and we have adjusted single-
particle energies for few states, nearby the shell closure
N =Z =50, in order to reproduce observed single-particle
energy spacings. '

The coupling constant Voz, corresponding to the neu-
tron pairing channel of the two-body interaction de-
scribed in Ref. 13, was fixed at the value Vo&=114
MeV fm . After solving state-dependent BCS equa-
tions, for neutrons, we have obtained an average gap pa-
rameter of the order of 6=1.16 MeV. This value corre-
sponds to the zero-temperature case and it reproduces
fairly well the data. ' For finite temperatures we have
solved similar equations, in the fashion which is described
in Ref. 16. With the above described single-particle basis
we have calculated J =2+ energy spectra and strength
distributions, for quadrupole transitions in " Sn. The

coupling constants for neutron (proton) two quasiparticle
(particle-hole) configurations have been fixed at the value

VJ(J =2+ ) =94 MeV fm . With this value we have ob-
tained, for the zero-temperature calculations, an energy
of the order of co(2&+) =1.329 MeV which is to be com-
pared with the observed energy co,„(2,+ ) = 1.294 MeV for
the first excited J"=2+ state in " Sn. ' The diagonaliza-
tion of the FTRPA equation (10) was performed for vari-
ous values of the temperature, namely, 0 T~2 MeV.
The T=0 value, for the EWSR (A, =2+), was found to
be of the order of 1.95 X 10 MeV fm (or 1161
MeV s.p.u. ), a value which is fairly similar to the predict-
ed, model-independent, value EWSR( A. =2+ )

—=71.123 i3 MeVfm =1.96X10 MeVfm (or 1168
MeVs. p.u. ). Values of the EWSR(A, =2 ), which have
been obtained with and without the inclusion of scatter-
ing terms in the FTRPA equations, are shown in Table I
for various values of the nuclear temperature. It is evi-
dent from the results shown in Table I that FTRPA
values obtained with the inclusion of scattering terms are
better than these corresponding to the FTRPA without
them. It should be noted that the missing strength at the
higher temperature, T=2 MeV, is of the order of 32%
for the usual FTRPA approach. This is a value which is
expected in a truncated configuration space, like the one
we are using in this calculation. However, the missing
strength for the extended FTRPA approach, with the in-
clusion of scattering terms both in the phonons and in the
transition operator, is smaller. It means that, as conclud-
ed in Ref. 9, scattering terms are of some significance in

dealing with the microscopic structure of collective exci-
tations at finite temperature. It is therefore expected that
in an extended basis, with more shells included, this effect
would be larger. There is, however, a compromise be-
tween the inclusion of scattering terms and the use of an
enlarged configuration space. We have checked on this
point and we have found that nine oscillator shells would
be enough to describe, within a 5% accuracy, quadrupole
transitions with a constant EWSR up to temperatures of
the order of T=2 MeV without the inclusion of scatter-
ing terms. When these terms were switched on the com-
puter time needed to solve FTRPA equations, at this
upper value of T, was exceedingly long. The results dis-
cussed so far seemingly indicate that the TFD version of
FTRPA equations yields better results than the conven-
tional FTRPA without scattering terms. In order to
determine the influence of the scattering terms upon the

TABLE I. Energy-weighted sum rules (EWSR) for quadrupole transitions in " Sn. For each temper-

ature T, unperturbed and FTRPA results are shown which have been obtained without (a) and with (b)

the inclusion of scattering terms.

T (MeV)

0.0
0.5
1.0
1.5
2.0

Unperturbed

1165
1116
921
852
790

(a)

E%'SR (MeV s.p.u. )

FTRPA

1161
1113
926
857
793

Unperturbed

1165
1126
993
943
889

(b)
FTRPA

1161
1126
992
943
891
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transition density we have calculated the strength distri-
bution function S(w), which is defined by

EWSR= dw w S w (22)

for quadrupole transitions in " Sn. The energy and tern-

perature dependence of S(m) is shown in Fig. l, for two
values of the temperature. These results indicate that the
inclusion of scattering terms in the FTRPA Hamiltonian
does increase contributions to the strength function at
low energies and changes in a minor but not negligible
amount the strength distribution nearby the giant reso-
nance region. In fact, scattering terms could also in-
crease the FTRPA width of the resonance, as shown in

Fig. 1.
The mechanism which emerges from these results can

be explained in a very simple way: The increase of T
would in fact produce the collapse of the particle-
hole —dominated amplitudes, since for them the thermal
occupation factors (l f, fb—) wo—uld decrease as T in-

creases. On the other hand, new states, of the particle-
particle and hole-hole type, would contribute to the tran-
sition strength since for them the thermal occupation fac-
tors (f, fb) would —be larger for TAO. The number of
particle-particle and hole-hole transitions, nearby the
Fermi energy, increase as T increases thus producing a
balance with respect to the thermal blocking induced
upon particle-hole transitions. It should be noted, how-

ever, that since all types of transitions are present in the
definition of the transition operator, as well as in the
definition of the phonon operators, each term will, in the
quasiparticle representation, give contributions to the ex-

l l I l
I

l I l l

15 — T=1M

10)
CQ

X,
cL 5

0

15

pectation values of the H2z, H4O, and H» terms of the
Hamiltonian. The final result of this competition, name-

ly, the collapse of particle-hole —dominated amplitudes
and the increase of the number of particle-particle and
hole-hole amplitudes, is a nearly preserved balance of
them. This balance turns out to be the reason for the ob-
served trend of the RPA sum rules which are, in the
present case, much closer to their unperturbed values.
This is shown in Table I, for the di6'erent values of T con-
sidered in the calculations. Therefore, the inclusion of
scattering terms in the RPA equations at finite T seems
to compensate for the missing strength which has been
reported early.

As we have already said before, a larger configuration
space would give better results, but even for this case
scattering terms in the RPA equations will significantly
contribute to the stability of the EWSR at finite T.

Finally, let us summarize briefly the main features as-
sociated with the behavior of low-lying states. Because of
the relatively large number of configurations which are
present at finite T, we would rather like to describe the
general picture which can be extracted from the results,
instead of a detailed discussion of the components of the
wave functions and transition matrix elements. As an ex-
ample, we have, in the solution of FTRPA equations
without scattering terms, at T = 1 MeV, nine states in the
energy interval 0.1 MeV F. 3.21 MeV. In the same
energy interval and at the same temperature, FTRPA
equations with the inclusion of scattering terms give 30
states, associated with dominant particle-particle and/or
hole-hole character. While the lowest FTRPA eigenval-
ue, for T = 1 MeV and without scattering terms, is of the
order of 0.973 MeV, FTRPA equations at the same tem-
perature and with the scattering terms included give a
lowest eigenvalue at 0.164 MeV. For this state, as well as
for the other low-lying states, contributions to the matrix
elements of the transition operator are larger for
particle-particle and hole-hole terms than for particle-
hole terms. It means that the character of the low-lying
transitions is changed drastically when scattering terms
are included in the FTRPA equations. However, because
of the low energy associated to these transitions, its e6'ect
upon the total EWSR is a minor one.

IV. CONCLUSIONS

10

L~ J

0 5 10
w(g~v]

FIG. 1. Intensity distribution, S(w), as a function of the exci-
tation energy, w, for quadrupole transitions in " Sn. Solid
(dashed) lines correspond to RPA results which have been ob-
tained without (with) the inclusion of scattering terms H» like
it is described in the text. Nuclear temperatures are indicated
by T.

In this paper we have shown some results concerning
the influence of scattering terms upon the FTRPA
description of quadrupole excitations in " Sn. We have
discussed, in detail, the changes which should be intro-
duced in the FTRPA equations in order to account for
the inclusion of scattering terms in the definition of pho-
non operators and in the relevant conmutators of the
theory. The simultaneous treatment of pair
creation —pair annihilation, double pair creation (annihi-
lation), and scattering terms of the residual two-body in-
teraction, in the context of the TFD, has been shown to
yield better results than the conventional FTRPA treat-
ment of the same interaction. We have determined quan-
titatively this eAect by calculating EWSR and strength
distributions for quadrupole transitions in the tempera-
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ture domain 0 T 2 MeV. This conclusion, already ad-
vanced in connection with the discussion of TFD con-
cepts for a schematic situation, seemingly encourages
the systematic application of this extended FTRPA for-
malism to the description of nuclear degrees of freedom
at finite temperature. Although numerical applications
of the theory for realistic interactions in large spaces at
finite temperatures are time consuming, the TFD method
shows some theoretical features which are very interest-

ing, particularly in dealing with the full thermal mapping
of a given Hamiltonian.
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