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We suggest an analytic model for the triton asymptotic D to S normalization ratio g' and the
closely related D-state parameter D,'. This model explains correlations among D2/g" and E, and

among g'/g and E, in three-nucleon calculations, where g is the deuteron asymptotic D to S nor-
malization ratio and E, is the triton binding energy. The model yields numerical values of g'/g"
and D2/g" in close agreement with results of dynamical three-nucleon calculations. We conclude
that g, E„and other low energy on-shell nucleon-nucleon observables determine the triton asymp-
totic D-state parameters within an estimated error of 15%.

I. INTRODUCTION

Recently, we have emphasized' the role of the deuteron
asymptotic D to S normalization ratio g in making a
theoretical estimate for the triton asymptotic D to S nor-
malization ratio g'. There has been considerable interest
for theoretical and experimental determination of the
asymptotic D to S ratio of small nuclei ever since Amado
and co-workers have suggested that g should be given
the "experimental" status of a single quantity to measure
the D state of small nuclei. In our recent study' we sug-
gested a strong correlation between rt'/rt and the triton
binding energy E, in theoretical trinucleon calculations
and emphasized its importance in making a theoretical
estimate of rt'/rt . Lacking a precise experimental value
of g", the above correlation only yields the ratio
rt'/g" (=1.68+0.04). Londergan et al estima. ted the
error in rt to be of the order of 10% which is much
larger than the estimate of error in Ref. 4:
g"=0.0271+0.004. In view of the above uncertainty in
the experimental value of g", any attempt to estimate g'
from dynamical three-nucleon calculations as in Ref. 5
will involve an error at least equal to that of ri (10%). In
Ref. 1 we also justified the strong correlation between
rt'/ri and E, in a simple model which, in addition, ex-
plained the trend of the dependence of q'/rt on E, .

Motivated by the success of the model of Ref. 1 in pre-
dicting the qualitative properties of ri'/rt in three-
nucleon calculations, we present in this paper an im-
proved analytic model for triton asymptotic D-state prop-
erties. Under several simplifying assumptions the present
model reduces to and has all the qualitative features of
the model of Ref. 1. The present model uses Yamaguchi
form factors for the deuteron wave function and for the
triton S state to be compared to zero range (minimal)
wave functions used in Ref. 1. Inclusion of these form
factors in the present model makes it theoretically more
acceptable than that of Ref. 1 and numerical calculation
based on the present model yields triton asymptotic D-
state observables in agreement within 10—20% of those
obtained in realistic three-nucleon calculations.

Apart from the asymptotic D to S ratio g there is
another closely related model independent parameter for
measuring the D state of light nuclei. This is the distort-
ed wave D-state parameter or, simply, the D-state param-
eter D2 which, like the asymptotic D to S ratio g, can be
extracted from experiments and can also be estimated
theoretically in a model-independent way. This is why
there has been a great deal of recent activity in estimating
the triton D-state parameter D2 both theoretically and
experimentally. ' ' In addition to calculate g' in our
model we also undertake the task of the theoretical evalu-
ation of D2.

The tnain objective of our work is, however, not to
present precise results for triton D-state asymptotic pa-
rameters, rigorous dynamical calculations for which are
now available, but to identify the minimum ingredients
needed for obtaining precise results for these asymptotic
parameters. This will allow us to extend our analytical
model to the study of the D-state asymptotic parameters
of other nuclei for which exact dynamical calculation is
not an easy task. From the work of Ref. 1 and this
present investigation we verify that in order to reproduce
the correct triton asymptotic normalization parameters
g' and D2, the minimum ingredients required of a model
are the correct low energy deuteron properties including
ri", and the triton binding energy E, The study .of our
analytic model for the triton and a comparison of our re-
sults with that obtained in exact dynamical calculations
will give us an idea about the reliability of our approach,
which will prove to be very useful in problems where ex-
act results are not easily obtainable.

The p1an of the paper is as follows. In Sec. II we
present our definitions and notations. In Sec. III we
present our analytic model. Section IV contains a numer-
ical investigation using our model and comparison with
exact calculation. Finally, in Sec. V we present a discus-
sion of our results.

II. DEFINITIONS AND NOTATIONS

At this stage it is convenient to present our notations
and definitions' which we shall use in the following. Let
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us consider a two-body bound state qtt (without the iso-
spin formalism) of a neutron 1 and a deuteron (23) form-
ing a triton; V= V2+ V3 is the neutron-deuteron interac-
tion with V; the interaction between nucleon j and k,i' WkWi The vertex function f](q] ) of the t~dn ver-
tex is defined (neglecting a three-nucleon potential) as

1= —2m„~ ($d ', q]llVq+ V3l]pt), (2. 1)
q&+p

e, (r)=&,y„;rtle, )

p"
m„&2n.— hm I,pd, qil V, + V, l+t )I'II,"(r)

7 quip

where m]t is the reduced inass of the system, q, (1) is the
relative momentum (orbital angular momentum) between
the neutron and the deuteron, Pd

' is the deuteron wave
function of the nucleons 2 and 3, and
@=+4(Et Ed )/3, —Ed being deuteron binding energy.
We are using 6=m =1, where m is the nucleon mass.
For simplicity we omit the other relevant quantum num-
bers.

The asymptotic form of the wave function in
configuration space is given by

f~(k)
D,' = —lim k'f, (k)

where

(3.1)

in terms of which the parameter C is defined by '
C] —— ,'v—'4—n/3@i'lim (q, pd] ',J, =

—,', I,Sl Vi+ Vi l pt )
'p

(3.3)

The triton asymptotic D to S ratio is defined by

t Ct /Ct

where CD—=C2 and Cg=Co refer to triton asymptotic
normalization for the D and S states, respectively. In
Eqs. (3.2) and (3.3), S is obtained by coupling the total
spin of deuteron (23) and the spin of the neutron 1. We
have two possibilities: l=O, S=—,

' and l=2,S=—', .
The matrix elements appearing on the right-hand side

of Eqs. (3.2) and (3.3) can be written in terms of the Fad-
deev components %, (%t = gi ]4; ) as

f](q)= ——, (q, P~"],J, =—', I,SlV, + V3l+, ),
q +p

(3.2't

with

p1'

'0&"(r)=( i)'&3It/—2C]

(2.2)

(2.3)

lm(q] }=( q] (Id ', J, = ,', I,S I Vi+-V3 p )

= —(q„pd]"],Jt = ,', I,SlE, +H—o tp, +]p, ), (3.4)

where C& is the asymptotic normalization parameter for
the bound state. The coordinate and momentum space
wave functions are related by

'M (r]}=i'&2/tr J dq qij~(qr)f](q) (2.4)

C]=i'+'&4yn/3 lim (q ip)f](q)— (2.5)
quip

mtti']/4n/—3plim (Pd. ', qll ,Vz+ Vi tltt ) .
quip

Finally, the on-shell t matrix to(k ) has the following
behavior at the bound state pole:

(2.6)

2e' sin6 3PCo
to(k )—:

k kelp k +p
(2.7)

In Appendix A we show the connection between the
present definitions and those used in Refs. 1 and 7. With
this brief summary of our notations and definitions we
present our analytic model for the triton asymptotic D-
state parameters in Sec. III.

with j& as the usual bessel function. The asymptotic nor-
malization paraineter C] of Eq. (2.3) is explicitly defined

by

where Ho is the kinetic energy operator of the three-
nucleon system.

The matrix element (3.4) is essential for the evaluation
of D2 and g'. We shall present an approximate analytical
model for calculating this matrix element. As in Ref. 1

we neglect the spin singlet nucleon clusters (13) and (12)
in the Faddeev component 4'2 and 43, respectively, and
be content with the spin triplet nucleon-nucleon pair
states (13) and (12). Assuming that nucleon 1 and 3 are
neutrons and that only the S-wave nucleon-nucleon in-
teraction is important, only 43 can contain two nucleons
(12) in the spin triplet state. Thus, in our analytic model
we shall take only the contribution of %3 in Eq. (3.4),
which is rewritten as

m](q])= —(q], p'd ', J, = —,', I,SIE, +Hol p3~ . (3 5)

Because of the approximations Eq. (3.5) should be taken
as a model rather than a result of some approximations to
a complete dynamical theory.

For the evaluation of (3.5) we shall employ two types of
analytic functions for t)ttd. the deuteron wave function for
the tensor Yama guchi separable interaction and the
minimal (zero range) deuteron wave function used in Ref.
1. These wave functions can be written in form'

III. ANALYTIC MQDEL FQR g'/q AND D p /g

For the trinucleon system the reduced mass mz =—', .
The parameter D 2 is defined by '

pd(p) = 1

E +

1/2
4Ed

g gL, (It»}&t™](P»
L =0, 2

(3.6}
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where 5'L i is the spin angular momentum function
defined by'

P,', (p) = g c"'„r, (p)Ism, ), (3.7)

where the a's are range parameters, t is a constant, and
the normalization Xd is given by

2tip p 2( )+ 2( )d 4@ig2 o (E + 2)2[go p g2 p ] ~ (3.8)

which yields

Xd2= 1 t2 V Ed 5+Ed+a2+-
aii(aii+ +Ed ) 8 a2 (+Ed + a2)

(3.9)

The S-state asymptotic normalization parameter Cz
and the asymptotic D to S ratio q" in this case are given,
respectively, by

Cs =Nd(ao Ed )

rI = tEd(ao —Ed)(a2—Ed)— (3.10)

in terms of which the wave function (3.6) can be rewritten
as

where the Clebsh-Gordan coe%cient C is as defined in
Ref. 15.

For the Yamaguchi interaction in Eq (3..6}

go(p)=(ao+p') ' g2(p)=tp'(a2+p'} '

wave function ip3 needed for the evaluation of Eq. (3.5).
In the momentum space as in Ref. 1, the wave function is
written in a form reminiscent of the form which naturally
appears when one employs a separable interaction be-
tween the nucleons. Assuming the presence of only S-
wave nucleon-nucleon interactions one has

Co
g(q3 ) =&3/2

z
&4p/~ .

P +f3
(3.15)

The factor of &3/2 in Eq. (3.15) comes from the
difference between the present definition of Cp and that
used in Ref. 1 (see Appendix A).

Of course, one can now easily construct a more realis-
tic wave function 43. First, we allow the deuteron to ex-
ist both in S and D states and employ the more realistic
deuteron wave function (3.11) in place of the S-wave zero
range deuteron used in the construction of Eq. (3.14).
Next, we employ a realistic form for the spectator func-
tion g. In particular, we employ the following S-wave
bound state with the Yamaguchi form factor

(p3 'q3I 3)
1/2 Cd—Ed g +(3/4) Q + p+ q3 00 03 00 P3( )& (~)& ("),

(3.14)

where p3 is the relative momentum between nucleon 1

and 2, and q3 is the relative momentum between neutron
3 and deuteron (12). The function y(q3) is called the
spectator function and is essentially the bound state wave
function of a deuteron and a neutron forming the triton.
In the zero range model it is taken as

16P =
Fd +P

4E 1/2
d Co

p(q3) =&3/2
2 &4p/mg, (q3)p2+q2

(3.16)

XCs[go(p»oi (P }—n"g2(p }&2i (P)]

where for the Yamaguchi tensor interaction

gii(p ) =(ao —Ed )(ao+p')

( )= (a2 —Ed }
22 E

(3.12)

For the (minimal) zero range deuteron wave function Eq.
(3.11) is valid but now with (ao, a2~ oo )

go(p } 1 g2(p ) p /Ed (3.13)

It is worthwhile to note that the zero range wave function
given by Eqs. (3.11) and (3.13) is not normalizable as in
Eq. (3.8). We shall use the deuteron wave functions given
by Eqs. (3.11)—(3.13) for our approximate evaluation of
Eq. (3.5).

Next we shall use an approximate analytic form for the

L

Co =&2/3[a, (a, +p) ]' (a, —
iM )

g, (q)=(ai V')( +a~q—') '
(3.17)

The zero range wave function is recovered, in the limit
g, (q)=1, in Eq. (3.16). If we now allow the Faddeev
component %3 to include the wave functions (3.11}and
(3.16), then a more realistic form of iP3 of (3.14) becomes

f &q q'Ix(q ) I'=1 .

In Eq. (3.16) we use an S-wave Yamaguchi interaction
between the neutron and the deuteron with the form fac-
tor g, (q)=(a, +q ) ', where a, is a range parameter.
Now using Eqs. (3.9)—(3.12) it is easy to realize that in Eq.
(3.16)

(, I+)=—(3 E'')''
( )& ( )

=2 Co Cd
p3 'q3 3 P d p+ 2 gf q3 oo 'q3 E + 2 + (p P3

X CM, [go(p3)&oi (p3)I ™.)
m, m~

(3.18)
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where gQ, g2, and g, are defined in Eqs. (3.12) and (3.17).
In Eq. (3.18} the spin angular momentum functions are
explicitly shown.

We shall use the deuteron wave function Pd of Eq.
(3.11) and the Faddeev component of the triton wave
function ]p& of Eq. (3.18) in order to evaluate the matrix
element of Eq. (3.5). This matrix element will be utilized
via Eqs. (3.1)—(3.4) for our evaluation of D'2 and i)'. The
Faddeev component of the triton wave function given by
Eq. (3.18) is very flexible and includes several possibili-
ties. For example, gQ(pi)=1 and g2(p2)=pi/Ed togeth-
er with g, (pi }=1yield a zero range deuteron bound to a
nucleon via a zero range wave function, gQ(p&} and

g2(p3) of the Yamaguchi tensor interaction given by Eq.
(3.11) together with g, (pi)=1 yield a tensor Yamaguchi
deuteron bound to a nucleon via a zero range wave func-
tion, and finally, gQ(pi) and g2(p2) of Eq. (3.11) together

I

4m2(q])= — +3—pEd/qr(Cq) CQ dq2$3
0 g3+P

where

(3.19)

w?tll gt (p 3 ) of Eq. (3.17) yield a tensor Yamaguchi deute-
ron bound to a nucleon via a S-wave Yamaguchi interac-
tion. Taking appropriate choices of the form factors one
can have all these possibilities. Of course, when we
evaluate the matrix element (3.5) it is understood that the
same type of deuteron wave function is to be employed
both in Pz 'and ]P3.

Using pd of Eq. (3.11) and ]p& of Eq. (3.18), the matrix
element of Eq. (3.5} denoted as m](q] ) can be written for
1=2 as

g ( )
—1 ~ (P] /223/2 (y3/21/21 (P] /201/2(y] /21/21

1' 3 2 ~ mml mS mS mlm23 mOm mm3m12
1 1 1

X Jdflq d&q &&]m] l[gQ(p])&0] "(p, ) —rl'g2(p])5'2] "(p])]
1 m12 1m 2 ~

X[go(p3)&0] "(P2) ri g2(P&)&2] "(Pg))l~&]]22»2.
, (e])I'00(q3)[~d+(e]/4)+e3+q] q3)

The momenta q;, spin S;=—,', projection m;, relative
orbital angular inomentum I;, and projection m]; all refer
to the nucleon. The two wave functions in the square
brackets of Eq. (3.20) refer to two deuterons formed out
of nucleons (23) and (12), respectively. The deuteron (23)
is the deuteron which explicitly appears in Eq. (3.5) and
the deuteron (12) is contained in the Faddeev component

3 The first two Clebsh-Gordan coefficients in Eq. (3.20)
construct the total spin (=—,

' } of the triton in the final

state with l, =2 and the last two Clebsh-Gordan
coefficients construct the total spin ( =

—,
'

) of the triton in

(3.20)
I

the initial state with /2=0. The sum in Eq. (3.20) is over
all permitted spin and angular momentum projections
m's. The momentum p, (p2) is the relative momentum of
nucleon 23 (12) forming the deuteron in the angular
momentum state L,MI (L3ML ) and is given by

1 3

q, q3p=q+
2

p= —q
—

2
.

Using the definition (3.7) for the spin angular function,
Eq. (3.20) can be rewritten as

7( )
—1 ~ (y]/223/2 (y3/21/21 p]/201/2

( g mg m
1 m23 mom

1 1 1

X (yl/21/21 (y l (y]1/21/2 P 3 P]1/21/2
mm3ml2 m23mL M23 M23m3m2 m12mL M12 M12m2m1

1 3

(p])I'2 (q])&L, (pi)
d (Ll+L3)/2 Ll Il 3 L3

X( rl )
' ' J(d—Qq]dQq&/&4n)gL (p] )gI (p. 3)

Ed+(q, /4)+q]+q, qi
(3.21)

The sum in Eq. (3.21) now extends over all permitted spin and angular momentum projections and L] and L3. We
calculate the leading term of Eq. (3.21) proportional to r), where we take either L] =0, L3 =2 or L] =2, L3 =0. The
detail of this calculation is given in Appendix B and we state the result here. Equation (3.21) when substituted into Eq.
(3.19) yields

4
m2(q, )= %3PEd /~(Cs) Co—il q]h(q] ), (3.22)

where
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2 ~, =2,L, =O 1 q3 L =o,L =2
h(q1)=, ,g, (q3) JI =0 (q1 'q3) 6 Jl =0 ('ql 'q3 }+ ~1=1 (ql q3 }

p +q3 2 q)
2 2

q3 ~& =2 L3 =0 1 q3 ~, =O, L =2 1 q3 L =2L =0
I=1 ('ql q3)+ l=2 (ql 'q3 } ~1=2 ('ql q3 }4q '-

8 q2) 4 q2

and where

~l(&)gL, , [l(q1/2)+q31]gL, [Iql+(q3/2)I]
q1 q3} f dX

[Ed + (q I /4)+q 3 +q1 q3] I (q1/2)+ q3I
' I q1+ (q3/2 }I

(3.23)

(3.24)

Equations (3.22)—(3.24) constitute the set of equations
we shall use to study ri' and Dz. From Eqs. (3.3), (3.5),
and (3.22) we have

(Cs) QEdiz h(ip), , (3.25)

which is our analytic expression for q'/ri and which we
shall use in Sec. IV for numerical investigation. Note
that each side of Eq. (3.25) refers to a different part of the
triton wave function; we included in Eq. (3.25) an extra
minus sign, due to the Pauli principle.

In order to find our analytic expression for Dz/ri it is
useful to express fo(0) of Eqs. (3.1) and (3.2) in terms of
Co. The following approximate relation between fo(0)
and Co is easily derived from Eqs. (3.2), (3.3), and (3.5) if
we take the matrix element of Eq. (3.5) as a slowly vary-
ing function of momentum:

CO=3/(m/3)P i f11(0) . (3.26}

This relation has been tested by Gibson and Lehman in a
separable potential model and has been found to hold
within an estimated error of 10-15%. [They had the re-
lation Co=np fo(0), because they used a different nor-
malization for fo, Eq. (A3).] Next in Eq. (3.26) we intro-
duce the momentum dependence as given by Eq. (3.17):

Co cx Pf11(0)=3/3/m. (3.27)

From Eqs. (3.1), (3.2), (3.5), (3.22), and (3.27) we have

DE 2

(Cs) +Ed z z
lim h(q, ),16

3' a, —p q&

(3.28)

which is our analytic expression for Dz/g and will be
used in Sec. IV for numerical investigation.

Equations (3.25} and (3.28) are the principal results of
this paper. They show two important features. If the tri-
ton (and also the deuteron) binding energies are main-
tained constant, D2 and g' are linearly proportional to g"
(assuming that Cs is also held constant). Moreover, they
exhibit the correct variation of 2)'/g and Dz/2) with E,
expected of a realistic trinucleon calculation; namely, the
ratio q'/2) (Dz/g ) increases (decreases) as E, increases
in a dynamical trinucleon calculation. We shall verify
this second point in numerical calculations using Eqs.
(3.25) and (3.28} in Sec. IV.

IV. NUMERICAL RESULTS

We have studied in great detail the ri'/ri E, co—rrela-
tion in Ref. 1 using results of trinucleon calculation. In
particular we demonstrated the following. Firstly, we
verified directly that if E, is held constant and g is
varied in a dynamical calculation the resulting g' is
linearly proportional to g . This yields a g' —g" correla-
tion at a fixed E, passing through g'=g"=0, which is
consistent with Eq. (3.25). Secondly, the above correla-
tion was indirectly verified by studying the ri'/2) versus
E, correlation which has a much lesser dispersion than
the g' versus E, correlation when one allo~s a wide range
of variation of g" than that suggested by most of the
theoretical potentials. (The wider range of variation of 2)

is suggested by experimental studies. ) In this way we
predicted 2)'/2) to be consistent with the experimental
value of E,. The experimental value of g" has to be pro-
vided for one to find g' from this correlation. Ishikawa
and Sasakawa studied the g' versus E, correlation in real-
istic trinucleon calculations and predicted the value of g'
from this correlation. Their plot has a much lower
dispersion than our study of g' —E, correlation of Ref. 1,
essentially because their theoretical models had a very
narrow variation of 2) (=0.0263+0.0003), whereas we
permitted a much larger variation of g" as suggested re-
cently. The prediction of 2)' as has been done by Ishi-
kama and Sasakawa is not independent of the value of g"
of their model and will sufFer modification if the experi-
mental g falls outside the narrow range predicted by
their model.

With this summary of the numerical investigations of
the ri'/2) versus E, correlation of Ref. 1, we turn to the
study of correlations involving D2. Extensive dynamical
calculations of D2 have been performed recently ' us-

ing both separable nucleon- nucleon potential models
and realistic and field-theoretic nucleon-nucleon potential
models. ' ' Realistic nucleon-nucleon potential models
include Paris, Argonne, Urbana, and also three-nucleon
interactions. We sha11 use the results of these calcula-
tions in order to substantiate the conclusions of Sec. III ~

We have seen in Sec. III the very important role played
by g" in any calculation of D,'. Any attempt at a theoret-
ical evaluation of D2 must take into consideration the
correct value of g". The parameter D2, being an asymp-
totic observable for the D state, is very sensitive to its
two-nucleon counterpart 21 (we recall at this stage that in
the deuteron, g is closely related to its D-state parame-
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ter); a specification of E, alone (at a fixed Ed) is not
enough to determine D2 in a three-nucleon model calcu-
lation.

To see the importance of g in a model three-nucleon
calculation of D2 we plot in Fig. 1 the values of D2/qzzpt
as a function of triton binding energy E„where

(=0.0271) is the experimental g of Ericson and
Rosa-Clot. This plot is equivalent to that of Dz versus

E, as g,„„, is just a constant. In Fig. 1 we show results of
Gibson and Lehman, Ishikawa and Sasakawa, and
Schiavilla, Pandharipande, and Wiringa. We also show
the experimental results of Refs. 10 and 11. Results of
Refs. 5 and 8 involve realistic potential models with and
without three-nucleon forces, and those of Ref. 7 involve
separable potential models. As the various models have
different values of ri, the width of the band for D2 lrie„,
versus E, is large, which makes a model independent esti-
mate for D2 diScult.

Next we study in Fig. 2 the correlation between Dz lri
and E, . In Fig. 2 we show results corresponding to all

calculations of Fig. 1. We verify that the parameter
D2 lrl does not contain much information about the off-

shell behavior of nucleon-nucleon interaction except that
contained in the value of E, . All types of potential mod-
els yield essentially identical results for D2 Irl once they
produce identical E, . At the triton binding energy

E, =8.48 MeV, our study yields the expected value of
D2lri (=7.9+0.4 fm ).

Next we would like to present numerical calculations

IO—

N
E

o 8

7
7

Et (MeV)

IO

FIG. 2. D2/g —E, plot. Same as in Fig. 1. Solid line
represents the present calculation with Co =2.2 and the dashed
line with Co =3.3.

of g' and D2 based on Eqs. (3.25) and (3.28), respectively.
We present three types of calculations in Table I marked
A, 8, and C. The calculation A takes a zero range
deuteron bound to a nucleon via a zero range wave func-
tion. The calculation 8 takes a tensor Yamaguchi deute-
ron bound to a nucleon via a zero range wave function.
Finally, calculation C uses a tensor Yamaguchi deuteron
bound to a nucleon via an S-wave Yamaguchi interac-
tion.

The tensor Yamaguchi interaction we use is defined by

(,pJI-Mi &Ip'&I-'M ) = —&,gL, (p)gL (p'), (4.1)

with

Ol
E

~s

Ci

X

~ 0~ X

~ ~

~ ~

X
X

0

~oi
I

go(p»)=(~o+p') ' g2(p)=rp'(~2+p') '

a0=1.2560 fm ', a2=1.7545 fm

t= —3.0398, and A, =2.2228 fm

TABLE I. Result of our calculation of g'/q and D&/g our
analytic model Eq. (3.25) and (3.28). Model A: no form factor
at d~NN and t~dN vertices. Model B: tensor Yamaguchi
form factor at the d~NN vertex and no form factor at the
t~dN vertex. Model C: tensor Yamaguchi form factor at the
d ~NN vertex and S-wave Yamaguchi form factor at the
t ~dN vertex.

E (MeV)

FIG. 1. D~/g,"„~t—E, plot. The crosses are separable poten-
tial model calculations of Gibson and Lehman (Ref. 7), solid cir-
cles are the realistic calculations of Ishikawa and Sasakawa
(Ref. 5), open circles are the realistic calculations of Schiavilla
et al. (Ref. 8), and the points with error bars are experimental
results (Refs. 10 and 11).

Model

Expt.

0.027
0.027
0.025
0.027
0.029
0.0271

8.48
8.48
8.48
8.48
8.48
8.48

4.26
2.22
1.45
1.47
1.46

1.68+0.04

D /g (fm)

20.4
9.48
7.82
7.70
7.45

7.9+0.4
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which yields a deuteron with g"=0.027,
MeV, quadrupole moment Q =0.2859 fm,
scattering length a

&

=5.424 fm. The S-wave
interaction which binds the deuteron to a
given by

Ed =2.225
and triplet

Yamaguchi
nucleon is

2.0-

1.8-

with

(4.2)

1.6-

g, (p)=(a2+p2) ', u, =0.9806 fm

A, , =0.1522 fm

This leads to a triton of correct binding energy

p =0.4485 fm ' and correct S-wave asymptotic normali-
zation CO=3. 3. With these definitions of go(p), gz(p),
and g, (p ) it is straightforward to construct go(p ), g2(p ),
and g, (p ) which enter in Eqs. (3.25) and (3.28) using Eqs.
(3.12) and (3.17).

The result of our calculation is shown in Table I. As
expected, model A produces the poorest result as all the
vertices used there are unrealistic. Both ri'/rI and
Dz lri are larger than their "exact" values by a factor of
-2.5. Model 8 uses a more realistic deuteron vertex and
this improves the results very much. Finally, model C
uses Yamaguchi type form factors both at the deuteron
vertex and at the triton vertex and yields for E, =8.48
MeV results correct to within about 15% of the exact
values of ri'/r) and Dzlrl". It is remarkable that the
present simple analytic model is able to reproduce results
of dynamical trinucleon calculations. The difference of
our model and the exact calculations can be reduced if we
take the normalization of the effective two-body wave
function (3.16), lesser than 1, which is reasonable since
the probability to find a n —d state inside the triton is less
than 1.

For the sake of completeness we have shown in Fig. 2
the result of our calculation for Dz/g" at various E, for
g"=0.027. These calculations have been done assuming
CO=2. 2, this modification was necessary in order to
bring our model in close agreement with the exact calcu-
lations; this procedure has the effect of reducing the nor-
malization of the effective two-body wave function (3.16).
Finally, in Fig. 3 we plot rj'/g versus E, where we exhib-
it results of realistic calculations of various authors and
also the results of our analytic model C with q, =0.027.
Our analytic model again produces results which are in
good agreement with the exact calculations.

The results of Table I demonstrate that at a fixed E„
g'/g is reasonably independent of g . This proves that
at a fixed E„g' is proportional to q". In addition, our
simple analytic model is able to reproduce correctly the
E, dependence of q'/q . The same also holds for the ob-
servable D 2 /g".

The present study and that of Ref. 1 yield the following
estimates: D'/ri =7.9+0.4 fm and g'/rj =1.68+0.04.
As the precise experimental value of q is not known, it
will be premature to predict an experimental D2 and g'.
Assuming the experimental g" of Ericson and Rosa-Clot
(=0.0271+0.0004) we have D'=0. 21+0.01 fm and

14-

8
E,(Mev)

FIG. 3. g'/g" —E, correlation. The dashed lines are generat-
ed by varying both 'ro and q in the separable model calculation
of Ref. 1 for 'ao= —17 and 23.7 fm. The open circles are from
Ref. 5 and the points with error bars are experimental results
from Ref. 6. The solid line is our present calculation with
CO=2. 2 and the dashed-cotted line CO=3. 3.

g'=0. 0455+0.0015.
The study of Ref. 1 yielded ri'/g =1.68+0.04. Now

with our estimate, D2/ri"=7. 9+0.4 fm, we are prepared
to verify the approximate relation

R =D2I(rl'Ip )=1. — (4.3)

Using the above estimate of D2 and q' we have
R =0.95+0.05 in close agreement with Eq. (4.3).

V. DISCUSSION

In this paper we have suggested and studied a new
correlation between D2 Irl and E, in three-nucleon cal-
culations. This correlation is important in estimating the
D-state parameter of the triton. In view of our discussion
in this paper and in Ref. 1, one must bear in mind that a
good theoretical estimate of D2 and g' cannot be separat-
ed from a precise knowledge of g". Based on an analaytic
model for asymptotic D-state parameters of the trinu-
cleon, we predicted the essential energy dependence of
Dz /g" and g'/g as triton energy E, is varied. Using our
studies of correlations of Dz!ri (and ri'Ig ) with E, we
made a theoretical estimate of these parameters:
rI'lg =1.68+0.04 (Ref. 1) and D'/gd=7. 9+0.4 fm2.
These values are associated with a wide class of possible
off-shell variations of nucleon-nucleon interactions in tri-
ton calculations. Our study emphasizes the importance
of the asymptotic part of the trinucleon wave function in
the calculation of D2, as well as g', as we used essentially
the correct asymptotic part of this wave function in our
consideration. This, in turn, explains the sensitivity of
D2 and q' on E, . The fluctuation observed in the values

«D2/ri and g'/g in dynamical calculations at a fixed
E, reflects the changes in the off- and on-shell behaviors
of the nucleon-nucleon interaction not constrained by E,
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and sets a limit on the universality of these correlations.
In order to obtain new information about the nucleon-
nucleon interaction from a study of D 2 /g (71'/g"),
beyond those contained in the value of E„the experimen-
tal error in this observable should be lowered to less than
5% (3%), which is the scale for breakdown of the strong
model independence of these correlations. Our estimate
for D2/q is in contradiction with those of Refs. 8, 10,
and 11.

It has long been expected that the study of two- and
three-nucleon systems should yield information about the
tensor part of the nucleon-nucleon interaction. Apart
from the deuteron parameters g" and C&, the other in-
teresting observables to study are the deuteron quadru-
pole moment Q, and the parameters ri' and D2. It is in-

teresting to note that all these three observables are
correlated with the deuteron asymptotic normalizations
through the relation'

-(C ) f (5.1)

where 6 stands for Q, ri', or D2. The function f de-

pends on Ed and E, in the cases of g' and D2 and on Ed
only in the case of Q, while other low-energy on-shell
nucleon-nucleon observables are held fixed. Correlation
(5.1) has been studied by Ericson and Rosa-Clot in the
case of Q in Ref. 4 where they emphasized the linear
correlation between Q /(Cs ) and g . Equation (3.28) of
this paper and Eq. (10) of Ref. 1 suggest correlation (5.1)
in the cases of Dz and g', respectively. Special cases of
correlation (5.1) were studied in the case of ri' in Refs. 4
and 5. In Ref. 4 Ericson and Rosa-Clot studied the g
dependence of g' neglecting its dependence on E, and C&.
In Ref. 5 Ishikawa and Sasakawa studied the E, depen-
dence of g' neglecting its dependence on g and C&.
However, in Refs. 4 and 5 no explanation was given for
the existence of correlation (5.1) in the three-nucleon sys-
tem. If correlation (5.1) were exact, no information about
the nucleon-nucleon interaction could be obtained from
the study of g' and D z, which is not implicit in the values
of Ed, E„Cs, and ri". However, correlation (5.1) is ap-
proximate and some information about the nucleon-
nucleon interaction may be obtained from the study of
Q, ri, ri', and D~ from the breakdown of correlation
(5.1) as mentioned previously.

The present investigation and that of Ref. 1 generalize
a conjecture made in a different context. ' It was conjec-
tured in Ref. 16 that the low energy trinucleon central
observables —those observables which do not require a
noncentral nucleon-nucleon interaction for calculation-
do not feel the detail of the nucleon-nucleon or three-
nucleon potential models used for their study except for
the information contained in the value of E, . In the case
of three-nucleon observables sensitive to noncentral
nucleon-nucleon interaction, such as q' or Dz, the infor-
mation about the nucleon-nucleon or the three-nucleon
potential models is contained in Cz, E„and q", apart
from the other two nucleon observables. The above con-
jecture of Ref. 16 about the model independence of cen-
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APPENDIX A

In this Appendix we show how to relate our present
definitions and those used in Refs. 1 and 7. Equations (2)
and (17) of Ref. 7 are used to express Co in terms of the
deuteron-triton overlap and they read as

„(P„;q—,
'

„~&I&, ) = ', f "(q)C' ' ' &—4 Y (q) (A1)

and

C0=2vn '&/p lim (q 'ip)fo (q), —
,

where m„, mz, and m, are the spin projections, Yoo(q) is
the spherical harmonic, and fo are the momentum
overlap of Ref. 7; here we choose for simplicity to show

tral trinucleon observables was verified in Ref. 17 in rela-
tion to second order polarization-transfer parameters in
nucleon-deuteron scattering. In view of our study once
E„Cz, and g" are specified the study of the parameters
n ' or D2 will not contain much information about the de-
tail of the tensor nucleon-nucleon interaction.

Because of the drastic approximation, the present
study should be considered as a model and not an ap-
proximate theory. It works surprisingly well in explain-
ing many qualitative features of the triton D state. Using
very simple expressions for the deuteron and the triton
wave functions, the model predicts the essential behavior
of D2 and q' expected of a dynamical three-nucleon cal-
culation and also the approximate values of Dz/g and
ri'/g to within an estimated error of 15% (see Table I).
The main ingredients of the model are the correct low-
energy deuteron properties (such as binding energy,
scattering length, effective range, and the deuteron
asymptotic parameters) and the correct triton binding en-

ergy. The model predicts a linear correlation between
ri'/ri (Dz/g ) and E„which is verified' in a separable
potential model dynamical three-nucleon calculation. In
dynamical three-nucleon calculations involving realistic
nucleon-nucleon and three-nucleon potentials a correla-
tion between ri' (D2 ) and E& seems to be enough5 because
the g" of the working nucleon-nucleon potential models
do not have the large spread ( —10%) predicted by Lon-
dergan et al. If g is allowed to vary significantly in
realistic nucleon-nucleon potential models the necessity
of ri'/ri (Dz/g") versus E& correlations is expected to
become obvious. This can be verified in the future by
constructing realistic nucleon-nucleon potentials with
one- and two-pion exchange tails, which can accomodate
a largely different g" and by performing dynamical
three-nucleon calculations with these nucleon-nucleon
potentials with and without a three-nucleon potential.
We expect the essential conclusions of this paper to
remain unmodified after such realistic calculations.
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f0(q) =&3~f()
'

(q ) . (A3)

The asymptotic normalization parameter Cp can be ex-

pressed by the neutron-deuteron overlap function
through Eqs. (Al) and (A2):

c =i%'2/3&2@m lim (q i12—)(p, ;ql=ol'I, ) . (A4)

only the S state. The label A denotes an antisymmetrized
state.

The definition of antisymmetrization of Eqs. (83) and
(84) of Ref. 18 inserted in Eq. (Al) gives

(, (ted,'q —,(m„IV, ) =&3vrfo (q')C' ' ' Y(~(q), (A2}

and comparing it with Eq. (2.1), we find

Equation (A4) is the 1=Q case of Eq. (2.5), and the resi-
due of the elastic n —d amplitude at the triton pole is
given by —3@Co as in Eq. (2.7). Note that in the zero
range limit (p~O) the elastic n —d amplitude must have
the form

(A5)to(k )= 1 2p

p lk k~ip k +p
Comparing the residue of Eq. (A5) and —3@CO results

in Co ~ &2/3. This fact motivated the definition used
p~P

in Ref. 1, where the factor &2/3 has been dropped from
Eqs. (2.5) and (A4). The definition of Cl in the present
work must be multiplied by the factor &3/2 to agree
with that of Ref. 1.

APPENDIX B

Here we detail the angular decomposition of Eq. (3.21}. For this purpose the decomposition of YLM(a+b) (Ref. 19)
is useful:

1/2
(2I.)!

la+bi' (21 )![2(L—1)]!

We define the angular projection of the kernel as

(21 +1)J ' '(q( q3)= X
1=0

where

M — Ylang(a) YL (,M Ib) (81)

(82)

~l(~ }gL,[ I(q(/2) +qi l]gL [ Iq(+(q3/2) I ](' 3 (ql, q, ) = dx
L) L3Ãd+(q 3 /4)+q3+q&. qill(q&/2)+q, l 'Iq, +(q, /2) I

'

The angular integration in Eq. (3.21) is performed after the introduction of Eqs. (81) and (82):

0+g&L)
0&g (L

2
Xi L&gL&

—g L3gL3 g
~~L ~ ~Z —~ ~~Z ~ ~g —~

1 1 3 3 I

g g g 1 g L3 —g
—

m~ m~ mL —m mI m~
i

2gg g 1 g OL( —gk L3 —g 1 k

0 mL m~ 0 0 0 0 0 0 0 0 0 0 0 0

X +5(2L, + 1)(2L3+1)(2/+ 1)(2(+1)(21+1)
(2L, )!(2L3)!

(2g )!(2L(
—2g }!(2g)!(2L3—2g }!

1/2

p+g

2 3g+L —g+1
g(, L3 d (L(+L3I2)

tq& 9'3 '9 (83)

The sum in Eq. (83) is over all repeated indices. We reduce Eq. (83) to a product of invariants with the help of the
graphical summation method:
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2
g ( ) ~ (

1)((/2)+Z+g+g
00(g (I

0(g(L3

g g g i ( 0 Li —g g L3 —g 1 g g L3 L3 —g
0 0 0 0 0 0 0 0 0 0 0 g j

2
X '0

2

Z

2 1

Z
1 1

2 2

1

1 L3

1

2

Z L,

Z 3 L 1
2

'2 g
2 L) L3

(2L i )!(2L3)!
X 180M 5(2Z+ 1)(2(+1)(21+ 1)(2(+1)(2L i + 1)(2L3+1)

( 2g )!( 2L i
—2g )!(2g )!( 2L 3

—2g )!

L3 —g+L~ —g
qf q3 g,L d (L +L /2)

+i I ql~q3
2

1/2

(B4)

Approximating V'(q), q3) by the terms linear in 7), which is given by the insertion of the values of (0,2) and (2,0) for
(L„L3) and introducing Eq. (B4) in Eq. (3.19), the final results of Eqs. (3.22) and (3.23) are reached.

T. Frederico, S. K. Adhikari, and M. S. Hussein, Phys. Rev. C
37, 364 (1988).

J. T. Londergan, C. E. Price, and E. J. Stephenson, Phys. Rev.
C 35, 902 (1987); see also, N. L. Rodning and L. D. Knutson,
Phys. Rev. Lett. 57, 2248 (1986).

R. D. Amado, M. P. Locher, and M. Simonius, Phys. Rev. C
17, 403 (1978);R. D. Amado, ibid. 19, 1473 (1979).

4T. E. O. Ericson and M. Rosa-Clot, Annu. Rev. Nucl. Part.
Sci. 35, 271 (1985).

5S. Ishikawa and T. Sasakawa, Few Body Syst. 1, 143 (1986).
6W. Grubler, Nucl. Phys. A463, 193c (1987); I. Borbely, W.

Grubler, V. Konig, and P. A. Schmelbach, Phys. Lett. 109B,
(1982); Bertrand Vuaridel (unpublished).

7B. F. Gibson and D. R. Lehman, Phys. Rev. C 29, 1017 (1984).
R. Schiavilla, V. R. Pandharipande, and W. B. Wiringa, Nucl.

Phys. A449, 219 (1986).
9Y. E. Kim and Muslim, Phys. Rev. Lett. 42, 1328 (1979);J. L.

Friar, B. F. Gibson, D. R. Lehman, and G. L. Payne, Phys.
Rev. C 37, 2859 (1988); I. Borbely and P. Doleschall, Phys.
Lett. 113B,443 (1982).

S. Sen and L. D. Knutson, Phys. Rev. C 26, 257 (1982).
"L.D. Knutson, P. C. Colby, and B. P. Hichwa, Phys. Rev. C

24, 411 (1981);L. D. Knutson, P. C. Colby, and J. A. Bieszk,
Phys. Lett. 85B, 209 (1979).

' L. D. Knutson, B. P. Hichwa, A. Barrosso, A. M. Eiro, F. D.
Santos, and R. C. Johnson, Phys. Rev. Lett. 35, 1570 (1975).

' It is interesting to note that our notation end normalizations
are slightly different from those of Ref. 7.
Y. Yamaguchi and Y. Yamaguchi, Phys. Rev. 95, 1635 (1954).

'sp. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957).

L. Tomio, A. Delfino, and S. K. Adhikari, Phys. Rev. C 35,
441 (1987).
T. Frederico, I. D. Goldman, and S. K. Adhikari, Phys. Rev.
C 37, 949 (1988).

' M. P. Locher and T. Mizutani, Phys. Rep. 46, 43 (1978).
' M. Moshinsky, Nucl. Phys. 13, 104 (1959).

D. M. Brink and G. R. Satcher, Angular Momentum (Oxford
University Press, New York, 1968).


