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Triton asymptotic normalization constants by the hyperspherical harmonics expansion method
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We have calculated the asymptotic normalization constants (ANC) of the triton by comparing the
asymptotic form of the triton wave function (obtained by the hyperspherical harmonics expansion
method) with an appropriate tensor product of the deuteron wave function and the asymptotically
free-neutron wave function. The convergence behavior of the binding energy (BE) and ANC have
been studied for a simple S-projected potential (S3) and two exponential potentials. It is seen that
convergence of the ANC needs many more partial waves than that of the BE, especially for poten-
tials with a long tail.

Asymptotic normalization constants (ANC) are impor-
tant properties of the trinucleon system and can be ex-
tracted from experimental results. ' As the name im-
plies, these constants depend on the asymptotic nature of
the trinucleon wave function. The experimental value of
Cp (S-wave ANC) varies widely with the method of mea-
surement and ranges from 2.6 (Ref. 2) to 3.3 (Ref. 3) with
an average error of +0.3. The measured value of the ra-
tio C2/Cp (where Cz is the D wave AN-C) is
0.048+0.007. Thus, the experimental values of Co and

Cz have rather large error bars. Thus, a theoretical cal-
culation of these quantities can shed light on the asymp-
totic behavior of the wave function. Several calculations
have been reported " based on the Faddeev calculation
of the trinucleon bound-state wave function. These re-
sults agree reasonably with the experimental numbers,
showing that the Faddeev wave functions for the chosen
realistic interactions have the correct asymptotic behav-
ior. An alternative and fairly common method for the
treatment of the trinucleon bound states is the hyper-
spherical harmonics expansion (HHE) method, ' in
which the wave function is expanded in a complete basis
of the hyperspherical harmonics (HH) functions spanning
the hyperangular space. Binding energy (BE), charge ra-
dius, charge form factor, etc. , calculated by the HHE
method' ' agree fairly well with those calculated by the
Faddeev method. However, no calculation of the ANC
by this method has so far been reported. The fact that
convergence in the BE is obtained fairly easily by retain-
ing a tractable number of partial waves in the optimal
subset approximation, ' does not guarantee that the ap-
propriate asymptotic behavior is reached with the same
number of partial waves. This is because the BE is deter-
mined mainly by the minimum of the effective potential
well and not by its asymptotic part. Hence, to investigate
the nature of the asymptotic behavior of the wave func-
tion obtained by the HHE method, it is interesting to cal-
culate the ANC by this method. In this work we present
such a calculation and comment on the asymptotic na-
ture of the wave function.

where 4d(x) is the deuteron wave function including the
isospin part and I (y ) represents the third-particle (spec-
tator) spin-angular-isospin function (in the spectroscopic
notation) and g3 (x, y) is the fully antisymmetric triton
wave function. The integration in Eq. (1) is over x and
over the orientations of y. The asymptotic behaviors of
ft(y) are given by

e @'

fp(y) = CpNZRy~ oo
(2)

—Py

f~(y) = C~NzR
y~ oo 3'

1+ +3 3

Py
(3)

where

NzR =&213

and

p=[(4M/3' )(BT BD)]'—
8T and 8D are the triton and deuteron binding energies.
The quantities Co and C2 are the S- and D-wave ANC's,
respectively.

The HH expansion of the triton wave function
(x, y) in the optimal subset approximation, defined in

Ref. 12, is given by

We obtain the asymptotic normalization constants Co
and C2 (corresponding to S and D partial waves of the
triton wave function) by comparing the triton asymptotic
wave function obtained by the HHE method with the
direct product of asymptotically free-neutron and -deute-
ron wave functions, i.e., in the limit y —mao (Fig. 1

displays the Jacobi coordinates x and y for the triton,
particle 1 is a proton, and the pair (12) forms the deute-
ron with the relative coordinate x).

We de6ne a function

ft(y) = ( [@d(x)'& (y )]'~'~g (x,y) ),

42 1249 1990 The American Physical Society



1250 APURBA KUMAR GHOSH AND TAPAN KUMAR DAS 42

TABLE I. Convergence behavior for the S3 potential.

(s)
+max

4
6
8

10
12
12
12
12
12
12
12

(s')
+max

2
4
6
8

10
12

BT
(MeV)

5.088
6.074
6.331
6.453
6.504
8.921
9.097
9.175
9.218
9.233
9.237

Ps

100.0
100.0
100.0
100.0
100.0
97.1

96.9
95.1

96.1

96.1

95.9

Ps

2.9
3.1

4.9
3.9
3.9
4.1

Co

0.250
0.368
0.433
0.473
0.506
0.814
1.086
1.366
1.640
1.820
1.860

P (fm ')
(extracted from the

wave function)

0.3616
0.3941
0.4020
0.4056
0.4073
0.4757
0.4801
0.4818
0.4826
0.4826
0.4826

(x, y) = I, , ( A) g P2+(Q)r U2s'(r)+g —[I', , (M —)Pzx (0)—I, , (M+ )P2z'(Q)]r ' U' '(r)
K 2 2 2 2

(4)

where I Tz(R ) is a three-body isospin-spin function of the total isospin, spin, and symmetry components T, S, and R, re-
spectively, ' and ~(t ,')TMT) —is the three-body isospin wave function, t being the isospin of the (12) pair. The hy-

perangular functions Pzz(A) with e=+, —,or 0 and '"D2z+z(Q) with e=+ or —having specified symmetry under
particle exchange are given in Ref. 12 and will not be quoted here for reasons of brevity. The symbol 0 represents the
collection of five hyperangles constituted by the polar angles (8„,$, ) and (8~,$ ) of x and y, respectively, and a hy-
perangle P defined through (t)=tan '(xly). The hyperradius r is given by r =(x +y )'i2. The hyperradial partial
waves for the S, S', and D states of the triton are U2x(r), U2x'(r), and Ug'+, (r), respectively.

With expression (4) for g3 (x, y), it is straightforward to calculate fi(y) from Eq. (1) and it is given by

fp(y ) I — ' g —UP+'( r)'+ 'N&z'+ 'F2' ( rrl2 )
—

Uzz ( r)' 'Nzz' 'Fzx (n l2) ' 'P2tt (P)
2 x 2

+ g U2x+~(r) +
N~z+2 +'F~x+~(m/2)' 'Pz)r.+2(P) r x dx,

K

TABLE II. Convergence behavior for the EXP I and EXP II potentials with respect to the D-state partial wave contribution
(I( ' ' =12 E' ' =12)

Potential

EXP I

(D)+max

4
6
8

10
12

BT
(MeV)

6.648
7.115
7.339
7.461
7.524

Ps

93.9
92.3
91.1
90.2
89.7

Ps

2. 1

3.3
4.2
5.0
5.4

PD

4.0
44
4.7
4.8
4.9

Co

0.637
0.899
1.295
1.861
2.448

P (fm ')
(extracted from the

wave function)

0.4113
0.4250
0.4313
0.4346
0.4362

10'X C,

0.18
0.36
0.77
0.76
0.97

EXP II 4
6
8

10
12

7.069
7.375
7.514
7.587
7.622

94.7
93.6
92.8
92.3
92.0

2.3
3.1

3.7
4.2
4.5

3.0
3.3
3.5
3.5
3.5

0.827
1.117
1.500
1.950
2.364

0.4235
0.4323
0.4361
0.4380
0.4389

0.25
0.44
0.85
0.78
0.92
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f2(y) J g [U2K+2( ) +2K+2 +2K+2(~/ ) 2K+2(4)]
0 2 K

[ v 2U(s)(&)(0)~ (0)P2, 2( /2)(2)P2, 2(y)+ U($')( )(+)~ (+)F2,2( /2)(2)p2, 2(y)
c02(x )

—U2K'+2(r)'+'N2K+2 +'FzK+2(rr/2)' 'PzK+2(p)] 'r x dx, (6)

(2) ] zwhere the hyperspherical function ' 'PL' '(()) ), normaliza-
(~)tion constants '"NL, and symmetrizing factors '"FL' '

are given in Ref. (12) and co&(x) is the radial deuteron S
and D partial waves for l =0 and 2, respectively.

We solve the Schrodinger equation for the triton by the
HHE method' ' when the nucleons interact via a suit-
able two-body interaction. We have chosen the Afnan-
Tang S3 potential' as well as the EXP I and EXP II po-
tentials of Ref. 20 for the two-body interaction. Note
that, since S3 has no tensor part, there are no D-state
components in the ground state of either the deuteron or
the triton. However, for the EXP I and EXP II poten-
tials of Ref. 20 all the components of the ground-state
wave function exist. The deuteron binding energies (BD)
for the S3, EXP I, and EXP II potentials are 2.224,
2.2253, and 2.2079 MeV, respectively. Calculations have
been done on an HP 1000/A700 computer. The conver-
gence in the BE to better than 0.05% for the S3 potential
is obtained with Kmax = 12& Emax = 12, where Emax is the
maximum number of E values for a given symmetry com-
ponent R. However, the convergence in the BE is only
by about 0.9% and 0.5% with respect to the inclusion of
the last two D partial waves for the EXP I and EXP II
potentials, respectively (Tables I and II).

To calculate Co and C2, we compare the asymptotic
forms of Eqs. (5) and (6) with Eqs. (2) and (3), respective-
ly. This is done graphically by plotting log, [yf0(y)] and

log, yf2(y) 1+ +3 3

Py
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against y, when a straight line is obtained for y ) 50 fm
(Figs. 2 and 3). The straightness of the lines in Figs. 2
and 3 convincingly demonstrate that the asymptotic na-
ture represented by Eqs. (2) and (3) is reached by Eqs. (5)
and (6) for y ) 50 fm. The intercepts of the straight lines

give the values of Co and C2. We have calculated Co and

C2 by a least-squares fit of calculated f, (y ) for y ) 50 fm.
The convergence behavior of various calculated quanti-

ties has been shown in Table I for the S3 potential and in
Table II for the EXP I and EXP II potentials. In Table I,
the triton BE (Br), S, and S' probabilities (Ps, pz. ), cal-
culated C0, and p extracted from the tail of the triton
wave function (slope of the straight line in Fig. 2) have
been presented for different values of E',)„and E', ). It
is seen that Co increases by about 2.2%, while Br in-

creases by less than 0.05% for the addition of the last two
S' partial waves. The value of P extracted from the wave
function shows an excellent convergence (better than
0.01%). By contrast, the convergence behavior for the
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FIG. 1. Jacobi coordinates for the triton. The shaded parti-
cle is a proton [y=(2/&3)y'].

Pio«f Z =log, [yf0(y)] against y for the calculation
of Co.
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ployed. This is particularly emphasized for potentials
with a relatively 1ong tail.

From these we have the following conclusions: (1) The
BE converges faster (at least by an order of magnitude)
than the asymptotic form of the wave function for the
same number of partial waves. (2) Convergence of all cal-

culated quantities is much worse for the exponential po-
tentials.
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