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We have calculated the asymptotic normalization constants (ANC) of the triton by comparing the
asymptotic form of the triton wave function (obtained by the hyperspherical harmonics expansion
method) with an appropriate tensor product of the deuteron wave function and the asymptotically
free-neutron wave function. The convergence behavior of the binding energy (BE) and ANC have
been studied for a simple S-projected potential (S3) and two exponential potentials. It is seen that
convergence of the ANC needs many more partial waves than that of the BE, especially for poten-

tials with a long tail.

Asymptotic normalization constants (ANC) are impor-
tant properties of the trinucleon system and can be ex-
tracted from experimental results.! "> As the name im-
plies, these constants depend on the asymptotic nature of
the trinucleon wave function. The experimental value of
C3 (S-wave ANC) varies widely with the method of mea-
surement and ranges from 2.6 (Ref. 2) to 3.3 (Ref. 3) with
an average error of +0.3. The measured value of the ra-
tio C,/C, (where C, is the D-wave ANC) is
0.048+0.007.* Thus, the experimental values of C, and
C, have rather large error bars. Thus, a theoretical cal-
culation of these quantities can shed light on the asymp-
totic behavior of the wave function. Several calculations
have been reported® !! based on the Faddeev calculation
of the trinucleon bound-state wave function. These re-
sults agree reasonably with the experimental numbers,
showing that the Faddeev wave functions for the chosen
realistic interactions have the correct asymptotic behav-
ior. An alternative and fairly common method for the
treatment of the trinucleon bound states is the hyper-
spherical harmonics expansion (HHE) method,'? in
which the wave function is expanded in a complete basis
of the hyperspherical harmonics (HH) functions spanning
the hyperangular space. Binding energy (BE), charge ra-
dius, charge form factor, etc., calculated by the HHE
method!? '8 agree fairly well with those calculated by the
Faddeev method. However, no calculation of the ANC
by this method has so far been reported. The fact that
convergence in the BE is obtained fairly easily by retain-
ing a tractable number of partial waves in the optimal
subset approximation,'? does not guarantee that the ap-
propriate asymptotic behavior is reached with the same
number of partial waves. This is because the BE is deter-
mined mainly by the minimum of the effective potential
well and not by its asymptotic part. Hence, to investigate
the nature of the asymptotic behavior of the wave func-
tion obtained by the HHE method, it is interesting to cal-
culate the ANC by this method. In this work we present
such a calculation and comment on the asymptotic na-
ture of the wave function.

We obtain the asymptotic normalization constants C,
and C, (corresponding to S and D partial waves of the
triton wave function) by comparing the triton asymptotic
wave function obtained by the HHE method with the
direct product of asymptotically free-neutron and -deute-
ron wave functions, i.e., in the limit y— o (Fig. 1
displays the Jacobi coordinates x and y for the triton,
particle 1 is a proton, and the pair (12) forms the deute-
ron with the relative coordinate x).

We define a function

L) =A[®,(x)8;(3)]"|ths,(x,¥)) , (1)

where ®,(x) is the deuteron wave function including the
isospin part and 2/ (9) represents the third-particle (spec-
tator) spin-angular-isospin function (in the spectroscopic
notation) and ¥, (x,y) is the fully antisymmetric triton
wave function. The integration in Eq. (1) is over x and
over the orientations of y. The asymptotic behaviors of
f)(y) are given by’
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where
NZR__“/?B
and

B=[(4M /3# ) B;—B,)]'/* .

B and Bj are the triton and deuteron binding energies.
The quantities C, and C, are the S- and D-wave ANC’s,
respectively.

The HH expansion of the triton wave function
¥3,,(x,y) in the optimal subset approximation, defined in
Ref. 12, is given by
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TABLE I. Convergence behavior for the S3 potential.

B (fm™1)
By (extracted from the
K'S K3 (MeV) Ps Py Co wave function)

4 5.088 100.0 0.250 0.3616

6 6.074 100.0 0.368 0.3941

8 6.331 100.0 0.433 0.4020

10 6.453 100.0 0.473 0.4056

12 6.504 100.0 0.506 0.4073

12 2 8.921 97.1 2.9 0.814 0.4757

12 4 9.097 96.9 3.1 1.086 0.4801

12 6 9.175 95.1 49 1.366 0.4818
12 8 9.218 96.1 3.9 1.640 0.4826
12 10 9.233 96.1 39 1.820 0.4826

12 12 9.237 95.9 4.1 1.860 0.4826

¢3H(x,y)=r%(A)sz)(mr*SﬁU‘S’ +2 r% (M —)PY(Q)—T , (M +)PS(Q)]r 52U (r)
K 22
+3 ~\71:[‘+’D2K+2(Q)|(0%)§,—%)T-F")DZKH(Q)I(I% 11— 152U () @)
K

where I' 75(R) is a three-body isospin-spin function of the total isospin, spin, and symmetry components T, S, and R, re-
spectively,'? and |( (tHT,M 7T is the three-body isospin wave function, ¢ being the isospin of the (12) pair. The hy-
perangular functlons P{(Q) with e=+, —, or 0 and ‘D, ,,(Q) with e=+ or — having specified symmetry under
particle exchange are given in Ref. 12 and will not be quoted here for reasons of brevity. The symbol ) represents the
collection of five hyperangles constltuted by the polar angles (6,,¢,) and (6,,¢,) of x and y, respectively, and a hy-
perangle ¢ defined through ¢=tan™'(x/y). The hyperradius r is given by r=(x 24+y2)1/2_ The hyperradial partial
waves for the S, S’, and D states of the triton are Us%(r), USY)(r), and USR_,(r), respectively.
With expression (4) for 5, (x,y), it is straightforward to calculate f;(y) from Eq. (1) and it is given by

1 : )
75 US () N T ESR(r /2) — USSR ON O F 927 /2)

w | @olx)
=I5 IE

2P32(4) ]

K2 (r) TNy TFSE o (m/2)? 1P2K+2(¢)] r—*xdx (5

TABLE II. Convergence behavior for the EXP I and EXP II potentials with respect to the D-state partial wave contribution
(KD =12, K3)=12).

B (fm™!)
B (extracted from the
Potential K2 (MeV) P P P, Co wave function) 10X C,
EXP 1 4 6.648 93.9 2.1 4.0 0.637 0.4113 0.18
6 7.115 92.3 3.3 4.4 0.899 0.4250 0.36
8 7.339 91.1 4.2 4.7 1.295 0.4313 0.77
10 7.461 90.2 5.0 4.8 1.861 0.4346 0.76
12 7.524 89.7 5.4 49 2.448 0.4362 0.97
EXP II 4 7.069 94.7 2.3 3.0 0.827 0.4235 0.25
6 7.375 93.6 3.1 33 1.117 0.4323 0.44
8 7.514 92.8 3.7 35 1.500 0.4361 0.85
10 7.587 92.3 4.2 3.5 1.950 0.4380 0.78
12 7.622 92.0 4.5 3.5 2.364 0.4389 0.92
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where the hyperspherical function *'P;""*(¢), normaliza-

tion constants ‘“N,, and symmetrizing factors ‘¢'F, ,’"’ 2
are given in Ref. (12) and w,(x) is the radial deuteron S
and D partial waves for / =0 and 2, respectively.

We solve the Schriodinger equation for the triton by the
HHE method'>'® when the nucleons interact via a suit-
able two-body interaction. We have chosen the Afnan-
Tang S3 potential'® as well as the EXP I and EXP II po-
tentials of Ref. 20 for the two-body interaction. Note
that, since S3 has no tensor part, there are no D-state
components in the ground state of either the deuteron or
the triton. However, for the EXP I and EXP II poten-
tials of Ref. 20 all the components of the ground-state
wave function exist. The deuteron binding energies (Bj)
for the S3, EXP I, and EXP II potentials are 2.224,
2.2253, and 2.2079 MeV, respectively. Calculations have
been done on an HP 1000/A700 computer. The conver-
gence in the BE to better than 0.05% for the S3 potential
is obtained with K'3) =12, K3) =12, where KX} is the
maximum number of K values for a given symmetry com-
ponent R. However, the convergence in the BE is only
by about 0.9% and 0.5% with respect to the inclusion of
the last two D partial waves for the EXP I and EXP II
potentials, respectively (Tables I and II).

To calculate C, and C,, we compare the asymptotic
forms of Egs. (5) and (6) with Egs. (2) and (3), respective-
ly. This is done graphically by plotting log,[yf(»)] and
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FIG. 1. Jacobi coordinates for the triton. The shaded parti-

cle is a proton [y=(2/V3)y’].
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r=32x dx , (6)

[

against y, when a straight line is obtained for y >50 fm
(Figs. 2 and 3). The straightness of the lines in Figs. 2
and 3 convincingly demonstrate that the asymptotic na-
ture represented by Eqgs. (2) and (3) is reached by Egs. (5)
and (6) for y > 50 fm. The intercepts of the straight lines
give the values of Cy and C,. We have calculated C, and
C, by a least-squares fit of calculated f;(y) for y > 50 fm.
The convergence behavior of various calculated quanti-
ties has been shown in Table I for the S3 potential and in
Table II for the EXP I and EXP II potentials. In Table I,
the triton BE (By), S, and S’ probabilities (Pg, Ps/), cal-
culated C,, and S extracted from the tail of the triton
wave function (slope of the straight llne 1n Fig. 2) have
been presented for different values of K'3) and K3). It
is seen that C, increases by about 2.2%, while B in-
creases by less than 0.05% for the addition of the last two
S’ partial waves. The value of B extracted from the wave
function shows an excellent convergence (better than

0.01%). By contrast, the convergence behavior for the
:
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FIG. 2. Plot of Z =log,[yf,(y)] against y for the calculation
of C,.
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against y for the calculation of C,.

exponential potentials is markedly worse. In Table II, we
present the calculated B, Pg, Py, and P (respectively,
S-, S'-, and D-state probabilities), C,, 3 (extracted from
the wave function), and C, values for various values of
K'D) with K3) =K'S) =12, It is seen that the conver-
gence of By, C,, and 8 are worse than those for the S3
potential by at least an order of magnitude. While the
convergence in C, is to about 2.2% for the S3 potential,
it is only to about 31 and 21 %, respectively, for the EXP
I and EXP II potentials. More remarkable is the lack of
convergence in the 8 value which increases by about 0.36
and 0.2 % for the addition of the last two D-state partial
waves for the EXP I and EXP II potentials, respectively.
The calculated value of C, is at least an order of magni-
tude smaller than the experimental number (which, how-
ever, has a large error bar), and its convergence behavior
with respect to K'2) is not clear. This may be due to
smallness of the quantity and associated large relative nu-
merical error. The smallness of C, may be due to (1) a
weak tensor force in exponential potentials, and (2) in-
complete convergence of the asymptotic form of the wave
function (affecting both C, and C, for EXP I and EXP
II) as compared to those of the S3 potential. This can be
understood from the fact that the exponential potentials
have a long tail relative to the S3 potential. This is clear-
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FIG. 4. Plot of log,o|V(r)| vs r for the S3 potential (continu-
ous line) and exponential potentials (dotted line). Note that the
EXP I and EXP II curves are practically overlapping.

ly demonstrated in a plot of log,o| ¥ (r)| against r (Fig. 4).
Thus, the exponential potentials are felt at a much larger
two-nucleon separation than the S3 potential, invoking
higher partial waves to play an important role.

That the BE converges much faster than the asymptot-
ic form of the wave function can be understood from the
fact that the major contribution to the BE comes from
near the minimum of the effective hyperradial potential
well where the wave function also has a maximum. From
Table I, we see that the convergent value of C, for the S3
potential may be expected to be in the range 1.9-1.95,
which is close to the values obtained for the S-projected
potentials in the Faddeev calculation.®®° However, no
definite values of C, and C, can be inferred from the
present calculation for the exponential potentials, due to
the lack of convergence.

We conclude that even though the HHE method is
particularly convenient for the calculation of certain
bound-state properties (which are not very sensitive to
the asymptotic nature of the wave function), its asymp-
totic form is not as reliable as the BE for the same num-
ber of partial waves. This means that one has to be cau-
tious in using the HHE expansion in three-body scatter-
ing problems. For a reliable calculation, a larger number
of partial waves (than necessary for the BE) must be em-
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ployed. This is particularly emphasized for potentials
with a relatively long tail.

From these we have the following conclusions: (1) The
BE converges faster (at least by an order of magnitude)
than the asymptotic form of the wave function for the
same number of partial waves. (2) Convergence of all cal-

culated quantities is much worse for the exponential po-
tentials.
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