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Magnetic moment interaction in nucleon-nucleon phase-shift analyses
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The details of our procedure for including the magnetic moment interaction in nucleon-nucleon
phase-shift analyses are given. The magnetic moment scattering amplitude in case of pp scattering
is calculated in Coulomb distorted-wave Born approximation. Special attention is given to the con-
struction of the nuclear amplitude in the presence of the complete electromagnetic (modified

Coulomb, magnetic moment, and vacuum polarization) interaction. We compare our treatment
with approximations that have appeared in the literature and show that these approximations are
no longer found to be adequate for a proper description of recently published accurate scattering
data.

I. INTRODUCTION

The effects on nucleon-nucleon scattering arising on
account of the interaction of the magnetic moment of a
nucleon with the electromagnetic field of the partner nu-
cleon have been known for a long time. The influence of
the magnetic moment Coulomb interaction was first
brought to general attention when Mott' pointed out the
effects it has on the polarization resulting from electron
scattering by nuclei. The importance of the interaction in
neutron-nuclei scattering was discussed by Schwinger,
who calculated in Born approximation its influence on
the neutron polarization. His results indicated a pro-
nounced effect for small-angle scattering.

The effects of including the magnetic moment (MM)
interaction in the proton-proton scattering formalism
have been discussed some decades ago by Breit, and Ebel
and Hull, Breit and Ruppel, and Garren. They calcu-
lated the MM scattering amplitude in a plane-wave Born
approximation, including some adjustments for Coulomb
distortion effects. It was found that inclusion of this MM
amplitude in their phase-shift analysis of at that time,
called high-energy (T„b & 150 MeV) pp scattering data,
resulted in a noticeable improvement in the description of
the forward-angle analyzing power. This can be under-
stood in view of the fact that the MM interaction gives
rise to a long-range spin-orbit force, and so if the interac-
tion is to be of any importance, this will first show up in a
better description of the analyzing power A, which
strongly depends on the spin-orbit interaction. In the
low-energy region (T~,b 550 MeV), almost no analyzing
power data existed, and the statistical errors on the data
that were available are much larger than the effects that
are expected from including the MM interaction. So it
was argued that the MM efFects could be neglected alto-
gether in a low-energy pp phase-shift analysis.

In the mid-1970s this situation changed as new accu-
rate pp A data at T&,b=10.0 MeV became available,
which warranted a reconsideration of the importance of
the effects of the MM interaction. The forward-angle
analyzing power at this energy displays a diplike struc-

ture. Inclusion of the plane-wave Born approximated
MM scattering amplitude gives rise to an even more pro-
nounced dip structure for the small-angle analyzing
power, which is in disagreement with these 10-MeV data.
This discrepancy was investigated by Knutson and Chi-
ang. They showed that the MM scattering amplitude
should be calculated in the Coulomb distorted-wave Born
approximation (CDWBA) rather than in the plane-wave
Born approximation (BA). Inclusion of the Coulomb dis-
tortion has little effect on the magnitude of the MM am-
plitude, but it does change its phase. Because of this
change in phase, the MM amplitude and the Coulomb
amplitude are almost exactly in phase, and the increase in
the forward-angle dip structure in the analyzing power is
no longer present. This is in excellent agreement with the
experimental data, which is dramatically shown in Fig. 1

of that paper. As a result, the proper inclusion of the
MM interaction has almost no influence on the descrip-
tion of the low-energy pp analyzing power. The experi-
mental data appear to be described just as well when the
effects of the MM interaction are entirely neglected.
Therefore, it has still been customary to neglect these
effects in the phase-shift analyses of the low-energy

(Thb ~30 MeV) pp scattering data, ' whereas in the
higher-energy pp phase-shift analyses" ' these effects
are (approximately) taken into account.

Recently, a very accurate pp A experiment at 50.04
MeV has been finished. ' Because of the very high accu-
racy of this experiment, the proper inclusion of the MM
interaction in a pp phase-shift analysis has become impor-
tant. Approximations for including the effects of the
MM interaction which have appeared in the literature are
now no longer found to be acceptable. This has been
shown explicitly by us in a recent paper, ' where we ana-
lyze these 50-MeV A data.

The influence of the MM interaction in neutron-proton
scattering was investigated by Hogan and Seyler' in a
nonrelativistic framework. Inclusion of the MM ampli-
tude gives rise to a pronounced dip structure in the np
analyzing power. Contrary to the pp analyzing power,
this dip structure in the np analyzing power is not present
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in the absence of the MM amplitude. In their calcula-
tions over an energy range of 25—210 MeV, Hogan and
Seyler found that the influence of the MM interaction on
the description of the np scattering observables is indeed
significant, but only for small ( (5') center-of-mass
scattering angles. At lower energies the influence is prob-
ably extended to larger angles. However, the accuracy of
the np scattering data has always been rather poor com-
pared with the accuracy of the pp scattering data. The
effects of the MM interaction are almost always smaller
than the statistical errors on these data, which makes
these effects of negligible importance. Nevertheless, the
np MM scattering amplitude can be incorporated without
any difficulty, and it has been included in the more recent
np phase-shift analyses. "' '

About a year and a half ago, new accurate np A mea-
surements have become available at 10.03 MeV (Ref. 20)
and 16.9 MeV. ' Measurements at even lower energies
are in progress. These data include forward-angle data,
which specifically require the inclusion of the MM in-
teraction if they are to be described properly. We will
show that mainly because of these data (and the measure-
ments that are in progress) the MM interaction cannot be
neglected in a phase-shift analysis of the low-energy np

scattering data.
In the present paper, we give the details of our way of

including the MM interaction in the np and pp phase-
shift analyses. Since our calculation of the np MM
scattering amplitude is similar to treatments that have al-
ready appeared in the literature, we will only briefly re-
view its derivation in Sec. II. The electromagnetic (em)
interaction in pp scattering contains the Coulomb and
vacuum-polarization interaction, as well as the MM in-
teraction. The corresponding scattering amplitudes are
calculated in the CDWBA, properly accounting for
Coulomb distortion effects. The scattering amplitudes
for the Coulomb and vacuum-polarization interactions
are well known, and the details of the calculation of the
MM scattering amplitude in case of pp scattering are
given in Sec. III. Because of this separate treatment of
the em scattering amplitude the remaining, i.e., nuclear
part, of the amplitude has to be adjusted. This is ex-
plained in detail in Sec. IV. Some approximations for in-
cluding the MM interaction in phase-shift analyses which
have appeared in the literature are discussed in Sec. V.
The results on the analysis of the pp and np scattering
data using our treatment are presented in Sec. VI.

II. np SCATTERING AMPLITUDE

The most general expression of the nucleon-nucleon
scattering amplitude matrix M in the spin space of the
two nucleons, which is invariant under rotations,
reflections, and time reversal, can be written as

M(kf, k, ) = —,'[(a+b )+(a b}(a, n)(a2 n—)

+(c+d)(o, k)(a, .k)

+ (c —d )(a, .q }(a2.q)

+ie(a, +a2) n+if(a, —az) n]. ,

MTS M]]
M=

M]0 M]

Mo
(2)

MTS M ]] M ]0 M ] ]

with

M ] ] =M]„MO ]
= —Mo], MTg= —MST,

M ]]—M] ], M ]o
— M]o.

The coefficients of Eq. (1) are related to those of Eq. (2)
according to

a =(Mii +MOD —Mi i )/2,
b =(M„+Mss+M, , )/2,
c =(M„—Mss+M, , )/2,
d = (M io+ Moi ) /( &2 sin8)

e =(Mio Moi )/&2

f=&2Msr,

(3)

where 0 denotes the c.m. scattering angle.
Still different but equivalent parametrizations of the M

matrix have appeared in the literature. For a discussion
of the definitions and properties of these various ampli-
tude systems and a tabulation of the transformation ma-
trices among them, we refer to a recent paper by
Moravcsik, Pauschenwein, and Goldstein. In the fol-
lowing we will restrict ourselves to what these authors
refer to as the Saclay system [Eq. (1)] and the singlet-
triplet system [Eq. (2)].

The lowest-order contribution of the em interaction to
the nucleon-nucleon scattering amplitude can be obtained
from the phenomenological interaction Lagrangian

Xi,=ieFifyl'PA + 'eFqgaI' g(ci A ——i) A ),
where a""=[y",y']/2i, A is the photon field, and g is
the nucleon field. The first term is the usual interaction
between the charge e of a nucleon with the em field of the
partner nucleon, whereas the second term is the Pauli
term describing the interaction of the anomalous magnet-

where the caret denotes a unit vector. The momentum
vectors are defined in terms of initial and final momenta
k, and kf according to

q =
—,
' (kf +k, ), k =kf —k, , n =k, Xkf =q X k .

The Wolfenstein-like amplitudes a, . . . ,f are complex
functions of the energy and the center-of-mass (c.m. )

scattering angle. They are real in the case of BA calcula-
tions. For that reason we explicitly included a factor i in
the last two terms. Our amplitudes e and f are therefore

i t—imes the amplitudes e and f as defined in Refs. 23
and 24. For identical particle scattering the f amplitude
is absent.

The M matrix can also be written in the singlet-triplet
representation of the spin space. Generalizing the nota-
tion introduced by Stapp, we write

'M~s MST 0 MST
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M« = —[u(n')(Fjy" +F20""k'„)u(n )]2t s

X [u (p')(F~~ y„—Ffo„,k ")u (p )], (4)

where n,p and n', p' are the neutron and proton initial

ic moment with the field. F, and F2 are the Dirac and
Pauli form factors, respectively.

We take the incident nucleon to be the neutron. The
one-photon-exchange np scattering matrix is then given
by

and final four-momenta, respectively, and u(n ) and u(p )
are the Dirac spinors for the neutron and proton. The
four-momentum transfer is denoted by k"=n '"—n".
Here we have also introduced a =e /4m. and the Mandel-
stam invariants s, t (and u) are given by

s = (—n+p), t = (—n' n—), u = —(n' —p)
With these definitions the one-photon-exchange M matrix
M~ can be calculated in a straightforward way. Explicit
expressions for the one-photon-exchange Wolfenstein-like
amplitudes a, . . . ,f have appeared in the literature,
and we reproduce them here for completeness:

a (s, t)= — (F)Ff+tF2F(2) s —M„—M + j[s —(M„+M )~][3$—(M„—M )~]
t s 8sk'

+2[s —(M„—M )2](V's —M„—M )2I

2

+ [s —(M —M ) ](v's —M —M )2
16sk " P n p

+(F",Ft't+F2F~) )t 2v's —M„—M + (v's —M„—M )

b«(s, t)= — (F)F~~ tF2Ft'2) s M—„—M—2+ [s+(M„—M )2][s—(M„+M )2]
t s ssk'

+(F)Ft't F2Ff )t(M—„—M )

c «(s, t ) = (F ( +2M„F2 )(F&) +2M Ff ),
2 $

d«(s, t ) = c«(s, t ), —

e«(s, t ) =
—a sin9 „M„+M &s —M„—M

(F",F, + tF", , ) s —M' —M' — "
[s (M M ) ]+

+(F",F~~+FzF~ )[2k2v's +t(&s —M„—M )]

f (s, t)= I(F",Ff tF2F()(M„—M—)[s —(M +M )2]+4k2$(F,Fe F Fp)]

where

k =[s—(M„+M ) ][s—(M„—M ) ]/4$

is the c.m. three-momentum squared.
The Dirac and Pauli form factors F, and F2 can be ex-

pressed in terms of the electric and magnetic Sachs form
factors GE and G~ according to

Gg. +HGg( GQ —Gg.FP= FP=
1+K 2M (1+K)

where v = —t/4M, and similar expressions for the neu-
tron form factors F

&
and F2. For the momentum depen-

dence of the Sachs electric proton form factor Gg, we use
the result of the dipole fit by Hofstadter et al. ,

Gg(t ) =(1—t /M' ) ',
(Ge&/c) the "dipole" mass squared.

The magnetic form factors are given by the form factor
scaling law

Pn

with p and p„ the proton and neutron total magnetic
moments, respectively. For the neutron electric form fac-
tor we choose

G7l ng 1l

E M s

so F",(t)—:0, expressing the fact that the neutron has no
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charge. In this case only the magnetic moments contri
ute to the one-photon-exchange amplitude, and we w

henceforth refer to the np one-photon-exchange amp
tude as the MM amplitude. Different choices for GE ca
be made [see, e.g. , Ref. 30, where Gg = r—"G~/(1+4'
such that only F) (t =0)=0], but these only introdu
unnecessary algebraic complications. These alternati
choices have absolutely no influence in the energy ran
that will be considered here. For a discussion of vario
possibilities for the momentum dependence of the electr
and magnetic form factors, we refer to the literature o
electron scattering on protons and deuterons. ' ' Whe
we neglect the momentum dependence of the form fa
tors, we retain the point-particle approximation.

Kp K~
Fi) =1, F(=0, F$=, F2=

n

where Kp pp 1=1.792847 and K„=p„=—1.9130
I

are the anomalous proton and neutron magnetic mo-
jll ments, respectively.
li- Substituting t = —2k (1—cos8), we can make a

partial-wave decomposition of the M-matrix elements,
") from which the np MM phase shifts can be obtained.

The partial-wave M matrix is related to the partial-wave
S matrix according to I-(S—1). Here we use a sym-
bolic notation and drop all details of spin dependence.
The explicit formulas for the decomposition of the M ma-
trix in terms of the partial-wave S-matrix elements, in-
cluding all spin dependence, are well known and detailed
expressions can be found, e.g., in Table II of Ref. 32. Be-
cause of the presence of the amplitude f in the MM np
scattering amplitude, the S matrix in this case must in-
clude spin-singlet spin-triplet transitions. Next to the fa-

(9) miliar nuclear bar phase-shift decomposition of the
partial-wave spin-triplet coupled S matrix with total an-

43 gular momentum J,

S 1, 1

2(6
cos2&J

~
I(5 +6 )

l e ' ' sin 2E J

i(5 +$ )

ie ' " ""sin2e J
I+i Je ' cos2e J

(10)

we therefore now also have a coupled spin-singlet spin-triplet S matrix with I =J:
2ib( . i(s(+s(() .

e ' cos2yt ie ' " sin2yt

i(5(+5( ()ie ' " sin2y,
2i5( (e ' cos2yt

where yl is the nuclear bar spin-flip mixing angle as in-
troduced by Gersten. ' The indices 0 and 1 denote spin
singlet and spin triplet, respectively. In this way the
partial-wave decomposition of the MM scattering ampli-
tude defines the np MM phase shifts and mixing parame-
ters.

generally referred to as the Breit factor:

M( ) M(r )
—i&i 1n(1/2)(1 —cos())

—i7) )n(1/2)(1+cos())
(13}

ar(s, t )~a r(s, t )
—ar(s, u ),

br(s, t }~b "(s,t )
—cr(s, u ),

cr(s, t) c "(s,t) b( ,rs),u-
d ( )ts) d(est) +d(),su),

er(s, r)~e)'(s, r )+er(s, u ),
f~(s, t)~0 .

(12}

However, as was already pointed out by Knutson and
Chiang, one should use the Coulomb distorted-wave BA
rather than the plane-wave BA in case of pp scattering.
Breit has argued that the effect of this Coulomb distor-
tion can be approximated reasonably well by multiplying
the BA scattering amplitudes with a factor which is now

III. pp SCATTERING AMPLITUDE

The BA one-photon-exchange amplitude in case of pp
scattering can easily be obtained from Eq. (6) by replac-
ing neutron form factors and masses by proton form fac-
tors and masses, and antisymmetrizing the result. The
antisymmetrization comes down to the substitutions

71=
V lab

M a'

2k

where

2ka'=ca 1+
M

The employment of the Breit factor represents the
main part of the effect of the Coulomb distortion on the
scattering amplitude. This can be understood as follows.
The pure Coulomb part of the BA pp one-photon-
exchange potential only contributes to the diagonal M-
matrix elements. In the point-particle approximation
these are given by

The plus or minus sign in front of the cos0 term in the
Breit factors is prescribed by the t or u dependence of
the amplitude, since t = —2k (1 —cos8) and u
= —2k (1+cos8). The Coulomb parameter g is defined
according to
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Mss ( t ) =M;, ( t ) =M 00 ( t )

=M', , (t)

M a'

1

k 1 —cos0 '

a'
Vc, (r ) =

T

Vc2(r )=— 1

2M

aa'
M r

S&2
VMM(r ) =f

(6+k )—+—(b, +k )
1 1"

LS
+fLs

(16}

all other M-matrix elements being zero, and a similar ex-
pression for the u-dependent amplitudes. The superscript
C indicates that we restrict ourselves to the pure
Coulomb part. Multiplying with the Breit factors results
in

Mss(t ) =M» (t ) =Mm(t )

=M', i(t)

e
—i g 1n(1/2)(1 —cos(9)

1 —cosO

and the same expression with (1+cos8) for the u-
dependent elements. The result (14) is the exact expres-
sion for the Coulomb amplitude in the various spin states.
The employment of the Breit factors in the remaining
part of the one-photon-exchange M-matrix elements has
not been justified by explicit calculations, but it fairly well
reproduces the ri dependence as obtained from a con-
sideration of small-angle scattering in the laboratory sys-
tem. ' The Breit way of including the effect of the
Coulomb distortion in the pp one-photon-exchange
scattering amplitude is found to be a remarkable good ap-
proximation when compared with the exact calculation
which will be discussed next.

In order to be able to calculate the pp MM scattering
amplitude in the CDWBA, we need to know the MM po-
tential in coordinate space. The pp em potential in coor-
dinate space, containing the MM potential, can best be
calculated by also taking into account the planar and
crossed box two-photon-exchange diagrams. This poten-
tial then gives the proper lowest-order relativistic and
recoil corrections for the scattering amplitude, phase
shifts, and bound-state energies, when it is inserted in the
relativistic Schrodinger equation. ' One should realize
that the relativistic Schrodinger equation is nothing else
but a differential form of the relativistic Lippmann-
Schwinger equation, which in turn is totally equivalent
with three-dimensional integral equations such as the
Blankenbecler-Sugar-Logunov- Tavkhelidze equation.
The details of the derivation of this improved Coulomb
potential are given elsewhere. ' Its long-range part is
given by

V, (r ) = &V(cr ) V+c2(r )+ VMM(r )+ Vvp(r ), (15)

with V&1 the point-charge Coulomb potential, VC2 the
relativistic correction to this potential, VMM the magnet-
ic moment potential, and Vvp the vacuum-polarization
potential as derived by Uehling ' and reviewed by
Durand. Explicit expressions for these pp potentials are

I

Vvp(r)= f dx e ' 1+
3K f 1 2x

(
2 1)1i2

X

with S&2=3(cr, r)(o'2 r) —(cr& cr2) the tensor operator, 6
the Laplacian, m, the electron mass, and

fT=— p~, fLs= — (6+8~ ) . (17)

The 1/r dependence of the relativistic Coulomb poten-
tial can be understood as follows. From the solution of
the radial Schrodinger equation

(6+k )FI(g, r }=M&Vc&(r)FI(rt, r),
with FI(ri, r) the regular Coulomb function, it follows
that in the CDWBA the operator b, +k is equivalent to
M Vc~(r)=M a'Ir. So in the CDWBA the potential
VC2(r) is equivalent to —aa'/M r . The contributions
of the relativistic Coulomb and vacuum-polarization po-
tentials to the scattering amplitude have been discussed
elsewhere, ' ' and so we will here restrict ourselves to
the contribution of the MM potential.

With the pp MM potential in coordinate space,
VMM(r), we can define the partial-wave MM K matrix
according to

I

1 nrt+vrgcothmg ——2g g (n +q )

+ n=0
21(1+1)(21+1)

II I ~= —,
' [1+1+i77[ '[1+2+i77[

(20)

In analogy with Stapp we introduce a shorthand nota-
tion for the spin and angular momentum states of the K-
matrix elements. The spin-singlet state with l =J is
denoted by Kl and the spin-triplet states are denoted by
I(1J, where J=l —1,l, l+1. The off-diagonal element of
the spin-triplet coupled state with J=1+1=l'—1 is

K (1,1')= —
k f dr FI(rt, r)VMM(r)FI. (ri, r) . (18)

0

The 1 Ir dependence of the potential and the presence of
the tensor operator, which couples states with
J= l + 1 = l' —1, lead to integrals of the type

II I.=k f dr F&(rt, r)FI(rt, r)r (19)
0

where

1

21(1+1)
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denoted by K,ff J. The MM potential V~~ does not con-
tribute to the spin-singlet K-matrix elements and so

K& =0. The uncoupled I =J spin-triplet MM K-matrix
elements are given by

fr fLs)Ii, i ~ (21)

whereas the elements of the triplet coupled MM K matrix
with total angular momentum J are given by

+1™p fr+Ifr.s IMM k
—21

mM 2l +6
KI+2, 1+1 MPk

21 +3 fr (1+3)fLs Ii+2, i+2

KMM KMM
off, J off, 1+1

&(1+1)(1+2)
P 21+3 r I I+2

(22)

Next we construct the partial-wave R matrix which is
defined by R =S—1=2iK(1 iK)—'. These MM R-
matrix elements have to be adjusted according to

R (1,1')~e 'R (1,1')e (23)

with o I
=argl ( 1+1+i rl ) the Coulomb phase shifts.

This adjustment will be explained in more detail in the
next section.

The pp MM phase shifts are now readily obtained us-

ing the nuclear bar phase-shift decomposition of the S
matrix. For the spin-singlet and spin-triplet uncoupled

2i F( 2i5( (states, we have S=e ' and S=e ", respectively,
whereas for the coupled states we use Eq. (10). The spin-
flip mixing angle as introduced in Eq. (11) equals zero be-
cause we are considering identical particle scattering, i.e.,
r i(PS») =o

Finally, the pp MM scattering amplitude is obtained by
summing the partial-wave R-matrix elements with Legen-
dre polynomials. Explicit expressions for these summa-
tion formulas can be found, e.g., in Table II of Ref. 32.
The summation can be done term by term on a computer,
and in our calculations we include all partial waves up to
i=1000. However, substituting the MM R-matrix ele-
ments in the summation formulas for M&0 and Mo„ the
1/21(l+ I) part in Ii, is seen to give rise to a contribu-
tion

M 2i(o( —oo) 2l + 1

v' l(1+ 1)odd l

(24)

to M&o, and the same contribution with a plus sign to
Mo&. This expression converges much too slowly for a
summation on a computer to be practical. Fortunately, it
can be handled analytically (see also Ref. 8), resulting in

Z — P
(

i q in( 1/'2 )( 1 ——ense )
M

L,s sinBv'2

by multiplying the corresponding BA amplitude with the
Breit factors.

A remark on the effect of the form factors on the MM
scattering amplitude is in order here. The short-range
part of the MM potential is more complicated than the
expression given in Eq. (16). In the point-particle ap-
proximation of Eq. (9), there are additional contact
terms. These contact terms only contribute to the MM
K-matrix elements for J=O and 1. Taking into account
the momentum dependence of the form factors as in Eq.
(8), the contact terms are replaced by Yukawa-like poten-
tials. The contributions of these Yukawa-like potentials
to the K-matrix integral of Eq. (18) can be calculated ac-
curately in a fast and elegant way using recurrence rela-
tions. They are only of importance in the lowest partial
waves (1 &2 in the 0—30-MeV analyses and 1&4 in the
0—350-MeV analyses). We do not find any significant
differences in the results of our phase-shift analyses when
we replace the form factors of Eq. (8) by their point-
particle approximation (9). This is not surprising in view
of the short-range effect of the contact terms and the fact
that the lower partial waves in our analyses are
par ametrized.

IV. ELECTROMAGNETIC CORRECTIONS
TO THE NUCLEAR AMPLITUDE

5MM+N 5MM+ N +5MM
MM (26)

For coupled channels this addition law has to be translat-
ed into a multiplication law for S matrices:

SMM+N —(SMM ) SMM+N(SMM )1/2 MM 1/2 (27)

where the adjustment factor S'~ =(1+K )' (1 iK)—
is well defined since the first factor, the square root of a
positive definite matrix, is uniquely defined. The general-
ization to additional potentials is obvious [see Eq. (34)].

Neglecting for a moment all details of spin dependence,
the np total scattering amplitude is given by

MMM+N(B)= . g (21+1)(e +"'—1)PI(B) .MM+W

The total scattering amplitude can be separated into a
purely electromagnetic (em) part and a nuclear part. The
nuclear part of the amplitude contains nuclear phase
shifts, which are phase shifts with respect to em wave

functions.
First, we will discuss the separation of the np ampli-

tude. In that case the em potential only consists of the
MM interaction. The scattering amplitude for the long-
range MM potential and the corresponding MM phase
shifts are given in Sec. II. The partial-wave phase shift

5MM+N of the long-range MM potential plus the short-
range nuclear potential can be decomposed into a phase
shift 5MM+N of the MM plus nuclear interaction with

respect to the MM wave functions and the phase shift

5MM of the MM interaction itself, i.e.,

+e
—I q )n(1/2)(1+ense)

1 ) (25)

In our computations, this analytical result was used. It is
important to note that the result (25) cannot be obtained

(28)

Using the phase-shift decomposition of Eq. (26), we have
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+e (e + —1)e ™,(29)

(30)

MMM(8) = . g (21+1)(e ' —1)P (8)
2ik I (31)

and

i5MM
(g) — g (21+1)e M Ml( MM+N, l

1 )
2ik

and the total scattering amplitude can be written as

~MM+N ) ~MM(~)+~MM+N(~) ~

where

root S matrices of the different parts of the em interac-
tion are in order of increasing range of these parts. So
the S matrix of the exponential vacuum polarization is
closest to the center of Eq. (34), followed by the S matrix
of the 1/r MM potential and the S matrix of the 1/r
relativistic Coulomb potential. The final left-right multi-
plication is with the S matrix of the longest-range 1/r
Coulomb potential. The tensor nature of the MM in-
teraction makes it such that the MM S matrix in the trip-
let coupled channels is nondiagonal, and so the order of
multiplication is important.

The MM interaction as well as the vacuum-
polarization interaction are usually only treated in the
CDWBA (except perhaps for 1=0). This means that we
make the approximations

MM, IP (g) (32) ~C1+C2 ~C1
SC1+C2+ MM SC1+MM

C1 Cl+ C2
~em+ N ~C1+~C1+C2+ ~C1+C2+ MM

~ gC1+C2+MM ~ gem~C1+C2+ MM+ VP ~ ~em+ N (33)

and

S +N e—m(SC1) (SCI+C2 ) ( Cl+C2+MM )
1/2 C1 1/2 C1+C2 1/2

C1+C2+ MM 1/2 em
Cl+C2+MM+VP ) S +N

C1+C2+ MM 1/2 C1+C2 1/2
Cl+C2+MM+VP ( Cl+C2+MM

X (Sc1+C2 ) (Sc1 ) (34)

The left-right multiplications of S,'+N with the square

represent the MM scattering amplitude and the nuclear
amplitude of the MM plus nuclear interaction with
respect to MM wave functions, respectively. Of course,
for coupled channels the appropriate decomposition in
terlns of S matrices must be used. The reason for the
decomposition of Eq. (30) is that the slowly converging
series of Eq. (28) is split into a slowly converging series
(31) for the MM amplitude MMM, which can be summed
exactly, and a much faster converging series (32) for the
nuclear amplitude MMM+N. The correct spin-dependent
expressions for MMM are given in Sec. II. The series (32)
for the nuclear amplitude is so rapidly converging be-
cause of the short range of the nuclear interaction. This
causes the phase shifts 5MM+N, due to the short-range
nuclear potential, to approach zero rapidly for increasing
orbital angular momentum l, and therefore only a limited
number of terms is needed in the summation.

It is important to note that the partial-wave nuclear
MMamplitudes must be adjusted with factors e or, in

case of coupled channels, with factors (SMM )
'

Without this adjustment the nuclear phase shifts 5MM+N
are not properly separated from the MM phase shifts
5MM. The nuclear phase shifts 5MM+N are usually used
to parametrize the nuclear scattering amplitude in a
phase-shift analysis.

For pp scattering the construction of the total ampli-
tude is more complicated, because now the em potential
consists of the four terms given by Eqs. (15) and (16).
The decomposition analogs to Eqs. (26) and (27) are

~ Ci+ C2+MM
~C1+C2+ MM+ VP ~C1+VP

(35)

The corresponding phase shifts are

5em+ N a l +Pl +Nl + rl + 5em+ N (36)

where

5cl = cr 1 =argI (1+1+i 21),

aa'
C 1 + C2 =Pl

21 + 1

gC1+ C2 g, C1
~C1+C2+ MM ~C1+MM =Y'I

C7 I

dl
(37)

gC1+C2+MM g, C1
~C1+C2+ MM+ VP ~C1+VP =+1

and 5,'m+N is the phase shift of the em plus nuclear po-
tential with respect to em wave functions. The phase
shifts p& of the relativistic Coulomb potential are given in
Ref. 40, the MM phase shifts ltll were derived in the pre-
vious section, and expressions for the vacuum-
polarization phase shifts ~I can be found in the papers by
Durand and Gursky and Heller. Exact expressions
for these phase shifts including the effects of the relativis-
tic Coulomb and MM interaction, i.e., 5c', +cz+MM and

5c1+c2+MM+ vp are not known to us. In practice, theC1+C2+ MM

aforementioned approximations suSce for all partial
waves, except perhaps for l=0. Therefore, for l &0 we
use pl and ~1, whereas for the 'So partial wave the expli-
cit Phase shift 5cI+c2~MM+vp is used (for details, see
Ref. 10). We do not have to include the MM contribu-
tion 5c,'+cz+MM to this phase shift, because the long-
range part of the MM interaction does not contribute in
the spin-singlet partial waves.

With the approximated phase-shift decomposition of
Eq. (36), we can now also split up the pp total scattering
amplitude. For convenience we make the next approxi-
mation, which is sufBciently accurate in practical calcula-
tions:
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" (+&(' C1 1/2 ' I em ' I C1 1/2 '~l ~l+e (Sci+MM) e (S, +x —1)e (Sci+ ) e (38)

+Mc~+vp ( 8) +M +~(8) (39)

where we neglected details of antisymmetrization. The
amplitudes on the right-hand side are the Coulomb am-
plitude as given in Eq. (14), the relativistic correction to
the Coulomb amplitude, ' ' the magnetic moment ampli-
tude as derived in the previous section, the vacuum-
polarization amplitude as given by Durand, and the nu-
clear amplitude, respectively. The nuclear amplitude in
terms of S matrices is represented by

Me~++ Sc] Scp Sst~Svp (Sem+~ —1 )

VP ~MM C2 C1
1/2 1/2 1/2 1/2 (40)

where the square-root factors are the S-matrix versions of
the exponential adjustment factors appearing in Eq. (38).

V. APPROXIMATIONS FOR INCLUDING
THE MAGNETIC MOMENT INTERACTION

For pp scattering no analytical expressions for the em
scattering amplitude exist, except for the point-particle
Coulomb amplitude. The contributions of the relativistic
Coulomb, magnetic moment, and vacuum-polarization
amplitudes are obtained by summing the corresponding
partial-wave amplitudes over a large number of partial
waves. An approximation is that the MM and vacuum-
polarization amplitudes are calculated with respect to
Coulomb wave functions and that the square-root adjust-
ment factors solely contain the Coulomb phase shifts o &.

We believe that these approximations are good enough
for practical purposes and we will therefore use them in
our pp phase-shift analysis. The exact expressions are
much more difficult to obtain, and the differences with

where S,' +z contains the phase shifts with respect to
the total em interaction. From Eq. (38) it is now clear
why the MM R-matrix elements defined in the previous

le Isection have to be adjusted with factors e ' as in Eq.
l O'I 2l 'PI I CT I(23). The approximation e (e ' —1)e ' for the contri-

bution to the vacuum-polarization amplitude is made, be-
cause this is the way Durand derived his expression for
the vacuum-polarization amplitude. Without this
approximation the construction of the amplitude is
much more difficult. Similarly, the approximation

1 cTI C1 1 (7(
e (Sc,+« —1)e for the contribution of the MM am-
plitude simplifies the expressions for this amplitude also.
For example, we have not been able to find an analytical
expression for the slowly converging contribution ZLz of
Eq. (25) when we included the relativistic Coulomb phase
shifts pI next to the Coulomb phase shifts oI in the ad-
justment factors.

From Eq. (38), we find that the pp total scattering am-
plitude M, +z(8) can be written as

Mem+lV(~) Mcl(~)+MC1+C2(~)+ Cl+MM(~)

2M
(3+4~ )

T

2I+1 p
sin0 dd, 1 ( I + 1 )

(41)

where the subscript BA denotes that the amplitude is cal-
culated in the BA. This amplitude can also easily be cal-
culated in the CDWBA, using Coulomb functions and

ioi
adjusting with factors e ', yielding

the approximations just mentioned are expected to be
small.

Other, more crude approximations for including the
em interaction in a pp phase-shift analysis have appeared
in the literature. In such approximations only the most
important parts of the em interaction to the scattering
amplitude are retained, considerably simplifying the ex-
pressions for the amplitude. These approximations could
be made because until recently the scattering data have
not been accurate enough for the differences with the
more exact treatment to show up clearly and
significantly.

The contributions of the relativistic Coulomb and
vacuum-polarization potentials are of order a, and are
therefore not included in the phase-shift analysis of
Amdt, Hyslop, and Roper, ' and of Bystricky,
Lechanoine-Leluc, and Lehar. ' The importance of the
vacuum polarization can be seen explicitly in the low-

energy region up to a few MeV. So the effect of the
vacuum-polarization interaction has to be accounted for
if such low-energy data are to be described proper-

9, 10,46

Although the influence of the MM interaction on the
scattering amplitude is 1argest in the lower partial waves,
it has been argued by Breit and Ruppel that it is not
necessary to include these effects explicitly, because these
lower partial-wave phase shifts are parametrized anyway.
In this approximation only the Coulomb interaction is in-
cluded in the adjustment factors for the nuclear ampli-

LET�(

tude, i.e., Eq. (40) only contains Sc& =e ', whereas the
other square-root S matrices are left out. The MM in-
teraction is, however, included in the higher partial
waves.

This approximation is used in the Saclay phase-shift
analysis of Bystricky, Lechanoine-Leluc, and Lehar, '

where they calculate the higher partial-wave MM scatter-
ing amplitudes for I & I,„ in BA. Here 1,„=5 denotes
the highest partial wave which is parametrized. As a
second approximation, they only take account of the
spin-orbit part of the MM interaction, neglecting the ten-
sor part. In this approximation the effect of the MM in-
teraction only contributes to the e amplitude of Eq. (1)
and is given by

e,~ =(Mio —Moi)+2
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P

X
e

—i g ln( 1/2)( 1 —cos0) i
—i g 1n( 1/2) {1+cos8)+e

sin8

2i(c, cr—o) 2I + I

I (I+ I )
(42)

where the subscript CD denotes that the amplitude is cal-
culated in the CDWBA. The amplitudes e zz and e cD
correspond to the slowly converging, and therefore most
important part Zlz of the pp MM amplitude as given in
Eq. (25). We want to point out that the terms e~~~~ or
ecD suffice as a first approximation for the inclusion of
the MM interaction only. They are not sufficient for a
proper description of the new high accuracy analyzing
power measurements.

Another approximation for including the effects of the
MM interaction has already been mentioned in Sec. III.
In this treatment the MM scattering amplitude is calcu-
lated in BA and approximately corrected for Coulomb
distortion effects by employing the Breit factors as given
by Eq. (13). This approach is used in the Blacksburg
analyses of Amdt et al."' However, the nuclear ampli-
tude in these analyses is not adjusted for the fact that in
that case the MM interaction is included in all partial
waves; i.e., they do not include SMM in Eq. (40) either.
This approximated treatment of the Coulomb distortion
effect and neglect of the MM interaction in the adjust-
ment factors of the nuclear amplitude already gives a
very good description of the pp scattering data. A similar
treatment has been used by Bystricky et al when they
investigated the influence of the MM interaction on their
pp phase-shift analysis. The improvement in the descrip-
tion of the pp scattering data was found to be small and
could only be seen in a data set that contained all data in
a sufficiently large energy range. Nevertheless, the high
accuracy of recent pp analyzing power experiments
makes that the slight differences between this treatment
and our more exact treatment have become more pro-
nounced. This has been shown explicitly by us in a

separate publication. '

For np scattering the situation is somewhat different.
Here the em interaction consists of the MM interaction
only, and expressions for the MM scattering amplitude
can be calculated analytically. Therefore, there are essen-
tially only two approximations for including the MM in-
teraction in an np phase-shift analysis. Next to the in-
clusion of the MM scattering amplitude in all partial
waves, one can either include the SMM factors in the nu-
clear amplitude (as is done in our analyses) or one can
leave them out (as is done in the Blacksburg analy-
es) 11,12

VI. RESULTS

A. pp analysis

We will first discuss the effects of the MM interaction
in our phase-shift analysis of the pp scattering data below

T1,b=350 MeV. The difference with our recently pub-
lished analysis is that we have here included the new
50.04-MeV A data of Smyrski et al. ' Our pp database
now contains 1636 scattering observables or, including
the 130 normalization data, 1766 scattering data. In our
analysis we use an energy-dependent P-matrix parame-
trization to parametrize the short-range interaction (see
Refs. 10 and 48). This P matrix is the logarithmic deriva-
tive of the radial wave function at some boundary condi-
tion radius r =b. The long-range interaction is described
by a potential tail. For pp scattering the em part of the
long-range potential consists of the modified Coulomb
potential Vc, + V&2, the MM potential VMM, and the
vacuum-polarization potential Vvp. For the nuclear part
of the potential tail, we take the one-pion-exchange
(OPE) potential plus the heavy-boson-exchange (HBE)
parts of the Nijmegen soft-core NN potential. To
parametrize the short-range interaction, we use 28 pa-
rameters for the lower partial waves with total angular
momentum J 4. All higher partial waves are given by
OPE phase shifts calculated in the CDWBA.

In our recently published pp phase-shift analysis, the
intermediate partial waves ( 5 J ~ 8 } are treated
differently. There we use the phase shifts of the OPE plus
HBE contributions of the Nijmegen NX potential to
parametrize these waves. The reason that we here only
use the OPE phase shifts in the intermediate partial
waves is the following. In one of the treatments for in-
cluding the MM interaction, the MM interaction is only
included in the higher partial waves (l~5). It was ar-
gued by Breit and Ruppel that in a first approximation
the effects of the MM interaction need not be included in
the lower partial waves, since they are parametrized any-
way. The parameters can largely compensate for any
shortcomings which may arise due to the fact that the
MM interaction is not included in these lower partial
waves. However, when we use the phase shifts of the
OPE plus HBE contributions of the Nijmegen potential
for the intermediate partial waves, there are no parame-
ters which can compensate for such shortcomings in
these waves. A satisfactory fit to the pp data in that case
turned out to be impossible.

We compare five different treatments A-E for includ-
ing the MM interaction in the pp phase-shift analysis.
We also define a case F, which is the treatment as used in

our 0-350-MeV pp phase-shift analysis; i.e., for the in-
termediate partial waves with 5 &J~ 8, we use the phase
shifts of the OPE plus HBE contributions of the
Nijmegen NN potential, and the MM interaction is in-
cluded in all partial waves. This treatment gives the best
fit to the pp scattering data and is included for complete-
ness. The different treatments A —F are as follows.

(A) No MM interaction at all.
(B) Inclusion of spin-orbit part of the MM scattering

amplitude in the higher partial waves with 1&1,„=4
only, calculated in BA using Eq. (41).

(C) Same as case B, but calculated in the CDWBA us-

ing Eq. (42}.
(D) Inclusion of MM scattering amplitude in all partial

waves, calculated in the BA using Eq. (6) adapted to pp
scattering, and approximately corrected for Coulomb dis-
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tortion effects using the Breit factors as in Eq. (13).
(E) Inclusion of MM scattering amplitude in all partial

waves, calculated in the CDWBA by properly accounting
for Coulomb distortion effects. Adjustment of the nu-
clear amplitude according to Eq. (40).

(F) Same as case E, but using the phase shifts of the
OPE plus HBE contributions of the Nijmegen NX poten-
tial for the intermediate partial waves with 5 J 8.

In all these cases, the amplitudes of the relativistic
Coulomb and vacuum-polarization potentials are taken
into account also. Treatment B corresponds to the way
the MM interaction is included in the Saclay phase-shift
analysis of Bystricky, Lechanoine-Leluc, and Lehar. '

Treatment D corresponds to the way the MM interaction
is included in the Blacksburg phase-shift analyses of
Amdt et al. ,

"' whereas case E (or more properly case
F) corresponds to the Nijmegen treatment.

For N~„= 1766 we find the results as given in the first
line of Table I. The large rise in y;„ for case B is almost
totally because of an inadequate description of the
forward-angle analyzing power data of Barker et al. at
5.05 and 9.85 MeV, and of the data of Hutton et al. at
10.0 MeV. This is because the addition of the BA MM
scattering amplitude in the higher partial waves (case B)
gives rise to a more pronounced dip structure in the
analyzing power, which is in disagreement with these ex-
perimental data. This is demonstrated in Fig. 1, where
we give the results of the four different treatments A, B,
D, and E. The experimental data points are the analyz-
ing power data of Barker et al. at 5.05 and 9.85 MeV.
The more complete treatments D and E give practically
the same results as treatment A where the MM interac-
tion is left out altogether, and all three cases are in excel-
lent agreement with the data. This was already found by
Knutson and Chiang, who showed that one should use
the CDWBA rather than the BA calculation for the MM
scattering amplitude.

The Coulomb distortion can easily be incorporated in
the spin-orbit part of the higher partial-wave MM
scattering amplitudes using Eq. (42). Indeed, treatment C
gives an enormous improvement when compared to treat-
ment B. Nevertheless, treatment C is still not good
enough as a means for including the MM interaction. In-
clusion of the MM amplitude in al/ partial waves as in
treatments D and E gives an additional improvement of
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FIG. 1. Effects of the different treatments of the MM interac-
tion for the pp analyzing power data at 5.05 and 9.85 MeV of
Barker et al. {Ref. 50). Dotted line: treatment A; dashed line:
treatment B; dash-dotted line: treatment D; solid line: treat-
ment E. Details are given in the text.

TABLE I. y', „values for the different treatments A-F of the MM interaction for the 0—350- and

10—350-MeV analyses. For the latter analysis a division is made giving the sub-g on the differential

cross sections, analyzing powers, spin-correlation parameters, depolarization parameters, rotation pa-
rameters, and the remaining data.

Energy range

0—350 MeV
10—350 MeV
o(0}

~xx & Cnn ~

D
R, A, R', 3'
remainder

1766
1431
527
497

65
88

209
45

1907.3
1603.2
579.8
591.1

55.8
133.5
217.2
25.8

2377.3
1540.0
583.0
560.0

54.7
114.3
201.9

26.1

1872.1

1537.2
580.9
564.8

54.4
110.8
200.2

26.1

D

1783.9
1483.8
561.7
535.3

54.3
108.2
198.0
26.2

E

1785.0
1474.1

557.9
535.2

53.1

104.3
197.7
26.0

F

1765.0
1455.6
551.0
531.3

52.6
102.1

192.2
26.4
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almost 90 in y;„. The approximation of treatment D is
seen to be just as good as treatment E, which is somewhat
surprising in view of the fact that in treatment D the
Coulomb distortion effect is only included approximately.
Inclusion of the HBE parts of the Nijmegen potential in
the intermediate partial waves (treatment F) gives an ad-
ditional drop of 20 in ymj„.

Because of the relatively high contribution of the low-

energy data to g;„ for treatment B, we thought it more
proper to compare the different treatments in an analyses
where we do not include these low-energy data. We
therefore also give the results of the analyses where we do
not include data with T»b &10 MeV. We are then left
with 1431 scattering data, and the results of the various
treatments are given in the second line of Table I. We see
that now the difference between treatments B and C has
almost disappeared, and both treatments give a drop of
about 60 in y;„when compared with treatment A. An
additional drop of about 55 in y;„ is reached when the
MM interaction is included in all partial waves (treat-
ment D). Still, inclusion of the adjustments to the nu-

clear amplitude (treatment E) gives a further drop of 10
in y;„. And again treatment F gives an additional drop
of 20 in y~j„and gives the best fit to the data.

As was already mentioned in the Introduction, the
influence of the MM interaction on the description of the
forward-angle analyzing power is very large. Inclusion of
the MM interaction also gives a much better description
of the angular distribution of the medium-energy

(T~,b &225 MeV) depolarization and rotation parameters
(for a definition of these observables, see Ref. 51). This is
shown in Table I, where we divided the y contributions
for the 10—350-MeV analyses according to the different
types of data, i.e., differential cross sections 0(8), analyz-
ing powers A», spin-correlation parameters ( A„„, C„„,
etc.), depolarization parameters (D }, rotation parameters
(R, A, R', A'), and the remaining data (polarization
transfer parameters D, and higher-rank spin tensors).
Here the numbers in the second column include the nor-
malization data. For example, our data base in the
10—350-MeV energy range contains 506 0 (8) data divid-
ed over several groups, of which 21 have a normalization
error. So the number in the second column is given as
527.

B. np Analysis

We will next discuss the effects of the MM interaction
in our phase-shift analysis of the np scattering data. At
the moment, we do not have a satisfactory fit to the np
data in the 0—350-MeV energy range, and so we will here
restrict ourselves to the data below T&,b =30 MeV. How-
ever, the effect of the MM interaction on the description
of these low-energy data is already significant (contrary
to the effect of the MM interaction on the description of
the pp data in this energy range, which is of negligible im-
portance). Some of the results of our np analysis without
the MM interaction have already been published, ' and
a full account of our np phase-shift analysis will be pub-
lished elsewhere. Here we will only briefly give some of
the details of our parametrization.

In our np analysis, the em part of the long-range in-
teraction consists of the MM potential only. In coordi-
nate space the long-range part of this potential is given by

VNtm(r) =— S,2+ (L S+L A)
n p

(43)

b,Ls=[ —26( Po) —35( Pi )+55( P2)]/12 .

The angular dependence of o (8) in this energy range is
only very small, and so the analyzing power is almost
completely determined by the spin-orbit interaction.

where we defined A= —,'(o, —cr2), and M is the neutron-

proton reduced mass. Next to the spin-orbit (L.S) part,
this potential also contains an antisymmetric spin-orbit
(L A) part. This antisymrnetric spin-orbit part gives rise
to the spin-lip amplitude Mz, and the spin-singlet spin-
triplet mixing angle yI. For the nuclear part of the po-
tential tail, we take the OPE potential, where we explicit-
ly account for the differences between the neutral and
charged pion masses, and between proton and neutron
masses. We also allow for a difference between the neu-
tral and charged pion-nucleon coupling constants. For
the neutral pion-nucleon coupling constant, we take the
result of our 0—350-MeV pp phase-shift analysis,

f0 =74.9 X 10 (i.e., go = 13.5 },whereas for the charged
coupling constant we take the value as determined from
n.X scattering, f, =78.9X10 (i.e., g, =14.3). Here f
denotes the pseudovector coupling constant and g the
pseudoscalar coupling constant.

To parametrize the short-range interaction, we use an
energy-dependent P-matrix parametrization in the isospin
I=0 lower partial waves with J ~ 2. In order to arrive at
the correct scattering length, the 'So phase shift is also
parametrized with a P matrix. The other I=1 partial-
wave phase shifts with J~2 are taken from our 0—30-
MeV pp phase-shift analysis, ' after correcting them for
Coulomb and mass difference effects (see also Ref. 53).
All higher partial waves are taken to be pure OPE.

Some of the np data are rejected because of our cri-
terion that data should not be off more than three stan-
dard deviations. This leaves us with 445 scattering ob-
servables and 54 normalization data. The np analysis
without the MM interaction gives g;„=475.4. In this
analysis, the more recent accurate analyzing power data
give relatively high contributions to y;„. These analyz-

ing power data are the data of Sromicki et al. at 25.0
MeV, the data of Holslin et al. at 10.03 MeV, and the
data of Tornow et al. ' at 16.9 MeV (which include
corrections to some earlier measurement by the same
group ). The reason is partly due to the following. The
analyzing power A can be written in terms of phase
shifts according to (see, e.g., Ref. 57}

sin 5('So)
o (8)A»(8)=, 125~s sinO,

4k

where 0 (8) is the differential cross section and b,rs is the
spin-orbit combination of the triplet P waves given by
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However, the spin-orbit phase shift in this np phase-shift
analysis is taken from our pp phase-shift analysis, ' after
correcting it for Coulomb and mass difference effects.
This parametrization contains no free adjustable parame-
ters, and so it is possible that this way of parametrizing
the spin-orbit phase shift is not good enough for a proper
description of the aforementioned np A measurements.
We therefore also tried an effective-range parametrization
for the hi~ phase shift:

k cot( ELs ) (44)

where aL& is to be fitted to the data. We then indeed find
a drop in y,„, as is shown in the third column of Table
II. The drop is mainly due to a better description of the
A data. This is shown more explicitly in Table II, in
that we separately included the g contributions to y;„
of the total cross sections O.„„the differential cross sec-
tions o(8), the analyzing powers A, and the spin-
correlation parameters A . The numbers in the second
column again refer to the number of scattering observ-
ables plus normalization data.

When we next include the MM interaction in the
analysis, there is an additional drop of 16 in g;„, which
is almost totally because of a better description of the
forward-angle analyzing power data. This is demonstrat-
ed in Fig. 2, where we show the 10.03-MeV analyzing
power with and without the MM interaction included.
The inclusion of the MM interaction gives rise to a
forward-angle dip structure which is in agreement with
the experimental data of Holslin et al. at this energy.
The dip structure is rather large and is only partially
shown in Fig. 2. At higher energies the effect of the MM
interaction is less pronounced, as is demonstrated in Fig.
2 for the 16.9-MeV data of Tornow et al. '

If we do not include these 27 accurate analyzing power
data of Holslin et al. and of Tornow et al. ,

' the effect
of the MM interaction is much smaller. In that case the
analysis without the MM interaction results in

y,„=409.7, whereas the analysis with the MM interac-
tion results in y;„=402.6. On the other hand, we can
also include the preliminary accurate analyzing power
measurements of Tornow in our original database (i.e.,
the database including the 10.03- and 16.9-MeV A~ data).
These data are given at energies between 7.6 and 18.5
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MeV. Because of these low energies, the effects of the
MM interaction are expected to be large. The difference
in y,„due to the MM interaction is now indeed found to
be almost 3 times as large. The final data of these mea-
surements have not yet been published as far as we know,
and so our results are only qualitative.

A remark on the treatment of the total cross-section
data in the np analysis including the MM interaction is in
order here. The total cross section is given by
cr„,= fd P cos8a(8), where

~(8)=-,'( I~ I'+ Ib I'+ c I'+ Id I'+
I
e I'+ If I') .

Inspection of the MM amplitudes e and f of Eq. (6)

TABLE II. g,„values for the different np phase-shift analy-
ses with T~,b ~ 30 MeV. The last two columns refer to the anal-
yses where the Aiz phase shift is given by an effective-range pa-
rametrization. For all analyses a division is made giving the
sub-g on the total cross sections, the differential cross sections,
the analyzing powers, and the spin-correlation parameters.
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FIG. 2. Effects of the MM interaction for the np analyzing
power data at 10.03 MeV of Holslin et al. (Ref. 20) and 16.9
MeV of Tornow et al. (Ref. 21). Dotted line: no MM interac-
tion included; solid line: MM interaction included. The
forward-angle dip structure for the analysis including the MM
interaction is only partially shown.
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which means that o.„,is infinite. However, the singular
behavior of a(8) occurs at angles that are extremely
small (less than 0. 1'). Experimentalists usually do not
measure these extreme forward angles when they deter-
mine 0.„,. So the value for the total cross section as given

by the experimentalists should rather be compared with
the value calculated while neglecting the contribution of
the MM interaction in these extreme forward angles. In
that case the total cross section can be excellently ap-
proximated using the optical theorem

0„,=—Im(Mss+M»+Moo+M —i —i ) (8=0) (45)

which does not contain the forward-angle singularity
when F", =0. In our analysis, u„, is calculated using ex-
pression (45).

We finally mention that for the np analysis we can also
make the approximation as used by Amdt et al."' for
including the MM interaction. In that case, the MM
scattering amplitude is included in all partial waves, but
the partial-wave nuclear amplitudes are not adjusted for
this. We then find g;„=433.4, which is almost as good
as the more complete treatment discussed in this paper.

VII. CONCLUSION

From the results of the pp and np analyses discussed in
this paper, we can conclude that the MM interaction has
to be included in a phase-shift analysis. Most of the ap-
proximations for including the MM interaction that have
appeared in the literature are no longer adequate. Espe-
cially, accurate forward-angle analyzing power data for
both pp and np scattering require a proper treatment of
the MM interaction if they are to be described correctly.
The MM interaction has to be included in all partial

shows that the differential cross section at very small an-

gles behaves as

o (8)—sin 8/(1 —cos8)

waves, and the nuclear amplitude has to be adjusted ac-
cordingly. Without this adjustment the nuclear phase
shifts that parametrize the nuclear amplitude are not
properly separated from the electromagnetic phase shifts.
However, such a deficiency can be largely overcome in a
phase-shift analysis, since these phase shifts are
parametrized anyway. The parameters in that case can
partially simulate the effects of the adjustment of the nu-
clear phase shifts. This explains why the treatment of
Amdt et al. for including the MM interaction (treatment
D as defined in Sec. VI A) gives results which are almost
as good as the more complete treatment E. The approxi-
mation D has the advantage over our more complete
treatment E, in that it can be included very easily in a
phase-shift analysis and gives reasonably good results.
However, when more accurate pp and np scattering data
(especially analyzing power data) become available, this
approximation will no longer be suScient.

Similarly, the approximated treatment is no longer
correct when the phase shifts parametrizing the nuclear
amplitude contain no adjustable parameters. Such a situ-
ation occurs if one wants to compare some nucleon-
nucleon potential model prediction with the experimental
data. The nuclear amplitude in that case is constructed
using the phase shifts of the potential model and contains
no free parameters. So there are no parameters that can
simulate the electromagnetic adjustment of the partial-
wave nuclear amplitudes as in Eq. (40). These adjustment
factors now have to be included explicitly. The approxi-
mated treatments of the contribution of the MM interac-
tion lead to incorrect potential model predictions. This
was explicitly demonstrated by us' for the 50.04-MeV
A„data of Smyrski et al. ,

' and the effect of the incorrect
treatment of the MM interaction on the potential model
comparison with these data is dramatically shown in Fig.
2 of that paper (Ref. 17).
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