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Relativistic potential model of proton-proton scattering spin observables
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A model has been constructed of the interaction between two protons and applied to the calcula-
tion of spin-dependent elastic-scattering parameters over a range of beam momenta from 3 to 24
GeV/c. The interaction is one-boson exchange, augmented by a zero-range core and an imaginary
potential to model absorption into inelastic channels. The model provides excellent agreement with

experimental measurements of the unpolarized differential cross section, and reproduces the qualita-
tive features of the transverse asymmetry and spin correlation. The absorptive potential is found to
dominate the real potential, greatly attenuating the low partial waves. This suggests that perturba-
tive quantum chromodynamics does not apply to elastic scattering at the energy scale examined

here, since absorptive effects prevent the quarks from approaching to appropriately small separa-
tions.

I. INTRODUCTION

The elastic scattering of protons has shown unexpected
complexity in its spin structure at relativistic energies.
The transverse asymmetry and spin correlation at several
energies have been measured by the group led by
Krisch, ' who have obtained particularly intriguing re-
sults at 11.75 GeV/c for the spin correlation and at 24
GeV/c for the asymmetry. In each case, the observables
take on unexpectedly large values at large momentum
transfer. At their extremes, the asymmetry shows five
protons scattering left for each three scattering right and
the spin correlation shows four spin-parallel pairs scatter-
ing for each antiparallel pair.

Since the relative momentum of the two protons in the
center-of-momentum frame is greater than the rest mass
of the proton, and the unpolarized differential cross sec-
tion obeys a scaling law derived from perturbative quan-
tum chromodynamics, it might be expected that the
scattering is perturbative in nature. This turns out not to
be the case.

Perturbation theory assumes that massless, effectively
free quarks interact with single gluons, conserving the
helicities of the interacting quarks. Therefore, the calcu-
lated asymmetry vanishes identically at all angles, and
the spin correlation takes a roughly constant value of
one-third. Since the data do not do so, at least one part
of the hypothesis must not hold at this length scale.

This work wi11 approach the problem from the oppo-
site direction, using the techniques of potential scattering
in a relativistic framework, with the quark structure of
the proton manifested by a form factor which modifies
the proton-proton interaction. This ansatz explicitly in-
corporates the fact that the quarks are baryonic constitu-
ents, which constantly exchange information with their
partners. In addition, the potential formalism allows the
inclusion of the effects of the multitude of inelastic chan-
nels available to the system by means of an absorbing po-
tential. The absorption, being a Lorentz scalar, neces-
sarily discriminates between states of channel spin 0 and

those of channel spin 1. Since the absorbing potential is
found to dominate the scattering, large spin correlations
are an immediate consequence of the potential model.
Only the fine structure of the correlations depends upon
the real potential and the form factors of the proton.

Relativistic dynamics are mandatory for this problem;
they are incorporated here by means of a continuum form
of the instantaneous Bethe-Salpeter equation. ' This is a
three-dimensional reduction of the full equation, but still
retains part of the contribution due to the possibility of
intermediate states of negative energy. Section II de-
scribes this equation and the Foldy-Wouthuysen transfor-
mation which renders it convenient for computation.

The potential is a simple form of the one-boson-
exchange model with imaginary terms describing the in-

elastic processes resulting from meson production and
quark rearrangement in the protons. It is presented in
Sec. III.

The quark structure of the proton is derived from the
chirally symmetric Aux-tube model, assuming that
quarks couple directly to mesons which are approximated
by elementary fields. The resulting form factors are de-
rived in Sec. IV.

II. THE RELATIVISTIC SCATTERING EQUATION

In the center-of-mass frame, the initial protons move
along the z axis and have relative momentum
k =

—,'(p, —pb). The final state has the protons in the x-z

plane, each of which has scattered through an angle e
(or, indistinguishably, m. —8). The initial protons are po-
larized perpendicularly to the scattering plane and the
final-state spins are not detected.

For the purposes of this work, the transition matrix ( T
matrix) will be defined as the solution of the operator
equation

T= V+ VGT,

where V is the interaction potential in the ladder approxi-
mation and G describes the propagation of two free parti-
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cles. Using the basis of the Appendix, the T matrix is re-

lated to the scattering matrix and scattering amplitude by

Sf, =1+2vri5 (P, P—
b )Tf, ,

f, ="2m—mT,

(2)

The T matrix, and hence the scattering amplitude, for
a system of two protons is a 4X4 matrix with rows and
columns labeled by the helicities of the two protons. Due
to the symmetry of the system, there are five independent
elements in the scattering amplitude. Using the notation
of Bystricky, they are

M, =&++Ifl++ &,

M, = &++Ifl

——&,

M, =(+—lfl+ —&,

M, =&+—lfl —+ &,

M, =&++Ifl+ —
& .

U(q) (Aq+BqA y P )(Aq+B AbytPt, )

A~ = [E(q)+m]/2E(q),

Bq =[E(q) —m]/2E (q) .

(12)

With respect to this new basis, the projection operators
become

E(q)=(q +m )'i

m is the proton mass, a and P are Dirac matrices, and a
and b are particle labels. In a helicity basis, the projec-
tion operators are simplified by the fact that

a, q=X.qy.',
(Xb q= Abg Pb

5

using Bjorken and Drell's representation of the Dirac ma-
trices. ' A further simplification arises from a change of
basis effected by the Foldy-Wouthuysen transformation.
This unitary transformation, which will also be useful in
evaluating matrix elements of the potential, is given by

In terms of these observables, the unpolarized cross sec-
tion, asymmetry, and transverse spin correlation are UA+U = ,'(1+f3,—)—,'(I+pb) . (13)

(da/«), =-,'(IM) I'+ 1M~I'+ IM3I'+ IM4I'+41M5I'),

5(q —q')[G+ (q)A+(q)
E(q)

m

+ G (q)A (q)], (8)

where

G+ (q) =[E 2E (q)+i e]—
G (q)=[ E —2E(q)]—

(9a)

(9b)

a, .q+, m
A+(q) =—1+ —1+

2 E(q) 2

—ab.q+Pbm
E(q)

(10)

E is the total energy of the system in the center-of-mass
frame,

(da /dt)OA = —Im[M; (M&+Mz+M3 —M4)],

(do/dt)oA„„=2IM5I +Re(M, Mz —M3M4 ),
respectively.

The explicit meanings of the operators in Eq. (1) can be
stated once the scattering equation is specified. When
Salpeter's equation is used in momentum space, the free
propagator has two terms —one for states of two
positive-energy particles and one for negative-energy par-
ticles. Expressed with the aid of operators A which pro-
ject states of definite energy sign, the propagator is

(qlGlq &= q, &(q q )G(q)
E(q)

With the operator product in the canonical T-matrix
equation (1) expanded in plane waves, a matrix integral
equation for the 16-equation system results

&plTlk &=&plI'I& &+ f d'q&plI'lq &G(q)&qlTlk &, (14)

where, for elastic scattering, Ipl
= Ikl.

In the transformed basis, the matrix G(q) is mostly
zeros. The eight rows and eight columns describing
states in which the two particles have different energy
signs are superfluous. They may be dropped from the
matrices, so the symbols in Eq. (14) above will henceforth
refer to 8X8 matrices.

The three-dimensional integral can be reduced to a ra-
dial integral by resolving the potential and the T matrix
into partial-wave form. This is done according to the
prescription of Jacob and Wick" so the states forming
the basis of the matrices are characterized by the magni-
tude of the relative momentum, the total angular momen-
tum J, the energy sign of the particles e, and the two heli-
cities. An element of the potential is expanded by

(pA, ,A&el VlqA, ,Abc'& = g [(2J+ I )/4n]D&„(R)
J

x(pj's, x,~l vlqjx. x,~'& .

Here, R is the rotation which turns the direction of q
into the direction of p, D is the matrix associated with
that rotation in an angular-momentum state labeled by J,
A, =A,, —

A, b, and p=k, —
A,d. Using the orthogonality

properties of the rotation matrices, " the T matrix can
be block diagonalized in J, and the integral equation for
any given J becomes

&p~, ~d~lTJli ~.~b+ &=&p~, ~d~lTJlk~. ~b+ &+ f dqq' g &p~, ~d~lI'Iq~&~&g&G(q, g)&q~&~&nlTlk~. ~b+ &,
0

l 2
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or, in a matrix notation,

TJ(p, k)= VJ(p, k)+ f dq q VJ(p, q)G(q)TJ(q, k) . (17)

Summing the series in J is necessary at the last step to
get the T matrix. In this case, the momentum in the ket
is parallel to the z axis so R can be written in terms of the
scattering angle 8 and the polar angle P. "

The integral equations (17) are singular at the point
where the intermediate momentum q equals the initial
momentum k. To remove the pole and allow numerical
quadrature of the integral, the half-shell T matrix is fac-
tored by a method due to Kowalski and Feldman'
into its on-shell value and an off-shell factor F(p):

TJ(p, k)=F(p)TJ(k, k) . (18)

The off-shell factor is an 8X8 matrix which is equal to
the identity matrix when p =k. The integral equation for
the off-shell factor is (the subscript J is suppressed)

F(p) = V(p, k) V '(k, k)

—f dq q [ V(p, k) V '(k, k) V(k, q)

and omega mesons to provide short-range repulsion. The
0. meson used here is the same as that of the Bonn poten-
tial, ' with a mass of 500 MeV.

Additional rnesons may be added to this minimum set
to cause the energy dependence of the various parts of
the potential to resemble the true interaction more close-
ly. In particular, some of the scalar parts of the interac-
tion may be due to the ao(980).

One more term must be added to this set to account for
the very short-range behavior of the proton-proton sys-
tem. At angles near 90' and center-of-mass momenta
larger than 2 GeV/c, the difFerential cross section is
larger than a pure meson-exchange model can account
for. The extra term will be assumed to have zero range
and transform as a Lorentz vector since its purpose is to
augment the repulsive core.

A matrix element of the potential derived from the
one-boson-exchange model factors neatly into separate
parts, one describing the interaction of the boson with
each proton, and the other describing the propagation of
the boson through space. A typical matrix element is

—V(p, q)]G(q)F(q) .

Once F is known, the on-shell T matrix is

T(k, k)= 1 —f dq q V(k, q)G(q)F(q) V(k, k)
0

(19) =(g M /E E )y(p, q, 2, )

X[u(pA, , )t u(qA, , )]

X [u(phd )I u (qAb )], (22)

1 —f dq q [V(k,q)G(q)F(q)
0

where

u(q) =k E (k)/q E (q),
k +E~ —1

I, =
—,'kE~ ln

k —E~+1

and

k+Ej, —1
I2 =

—,'kE& ln
kk —E~+1

—u(q) V(k, k)G(q)]

I, 0—V(k, k) 0 ~
' V(k, k), (20)

(21a)

(21b)

(21c)

where y (p, q, A, ) is a Yukawa potential between two eigen-
states of helicity, and the I s signify the Lorentz-Dirac
properties of the meson field. For the zero-range core,
the function y is set equal to 1. When the I are factored
into spin and energy-sign operators, the spin factors com-
mute with the spinors. Hence, the bracketed terms are
functions only of the magnitudes of the momenta and the
helicities. All spin and angle dependence is in the spin
factors and the Yukawa function.

An easy and compact way to calculate the bracketed
terms is to use the Foldy-Wouthuysen transformation.
As an example, consider the particle "a" term. Inserting
U, U, on each side of the Dirac matrices yields

u(pA, , )I u (qA, , ) =u (pA, , ) U,"U,PI U, U, u (qk, , )

=(E E /m )'~ [1,0]U,PI U,

The function a(q) has been introduced so that the pole in
the propagator can be subtracted from the integral in Eq.
(21) and integrated analytically, giving the supermatrix
with elements I

&
and I2.

III. THE ONE-BOSON-EXCHANGE POTENTIAL

The T-matrix equation requires knowledge of the in-
teraction potential when both the initial and final states
may be off shell. A way to specify the potential complete-
ly is to relate it to an underlying physical process —in this
case, the exchange of virtual mesons. To simulate the po-
tential between protons below the inelastic threshold re-
quires three mesons: a pseudoscalar pion, a scalar meson
called "o." to provide the attraction at medium ranges,
and a vector meson which is a combination of the rho

(23)

The bracketed term is therefore the upper-left element
of the transformed PI operator. If negative-energy spi-
nors had been used in the example, of course, different
elements would have been selected.

For a pseudoscalar meson, the transformation goes like
this for particle "a:"

U(p)PI, Ut(q)=( A +B A,,Py5)Py~(A +B A,,y~P)

=( A A +B B A, A,,)Py5.
+(A B A,, —A B A,, ). (24)

The part of the operator proportional to y5 connects kets
of a given energy sign to bras of the opposite sign. We
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Meson
type

Dirac
operators

TABLE I. Transition current elements for meson exchange.

Even Odd

PS
SC
VE

fourth component
VE space

Oy's

1

'Ys

( ApBqA. , —AqBpA. , ){ApBqkb AqBpkd )

( Ap Bq A & + AqBpk& ){ApBqkb + AqBpkd )

{AAq+BpBqAX)(ApAq+BpBqkbAd}

( Ap Aq BpBq A'& kt" )( Ap Aq BpBq A b Ad )

call it "odd in energy sign. " The part which is not, con-
nects only bras and kets of the same energy sign. We call
it "even. " The only terms in the potential which contrib-
ute to Salpeter's equation are those which are even for
both particles or odd for both particles. Results for the
transition current due to the various types of meson are
collected in Table I.

Now, the matrix element can be written

&p~, fidel Vlq&. &&ri) =g'Q(e, g)Xy(p, q, k), (25)

where Q comes from the table and X is the product of
spin operators from the I matrices. For pseudoscalar
and scalar mesons 2=1. For vector mesons, the product
of the fourth (time) components has 2 = 1, and the dot
product of the three-vector parts has X=o., -o.b. This
separation facilitates the resolution into partial waves.
The recoil term Q, with its helicity-dependent terms due
to the recoil of the protons, is the same in all partial

x C(LSJ,OAR, ) LSJM ) . (26)

This model interaction conserves the total spin S, and
the Yukawa potential y conserves orbital angular
momentum L, so the transformation can be used twice to
give the reduced matrix element

waves, so the expansion affects only X and y.
The resolution of the potential into states of good total

angular momentum and helicity is given in Eq. (15), but
its analytic form is not obvious in this basis. The Yu-
kawa function has a simple form when resolved into
eigenstates of orbital angular momentum, and the spin
operators are simple in a total-spin basis, so the potential
matrix element is most perspicuous when considered in
the traditional LSJ basis. The transformation between
the two representations is given by Jacob and Wick:"

JMA. , A,2) = g v'(2L + 1)/(2J +1)C(—,
'

—,'S, A, , A, qX)
LS

&p&, &dJllyXllqk, kb J ) = g [(2L +1)/(2J +1)]C(LSJOAA)C(LSJOpp)
LS

xc( —,
'

—,'s, x, s„s)c(—,
'

—,'s, s.s v)&pLllyllqL)&sll&lls) . (27)

The spin matrix element is well known; if X= 1 it is trivial and if X=cr, cr& it is (4S-3). The orbital matrix is ob-

tained from

2L +1
y(p, q)= g PL(cose)yL(q, p),4n

(28)

where
1

yL(p, q) =2~I d (cose)PL(cose)[(p —q) +IM ] (29)

Numerical quadrature of the integral is the most eScient way to evaluate the partial-wave projection. Though the
function y (p, q) is a simple Yukawa function in this case, when form factors are included, the integral will no longer be
analytic.

The potentials described above are purely real valued, so the only scattering they can produce is elastic, but when the
energy of the system is above the threshold energy for pion production, inelastic processes contribute to the scattering
According to the optical model of elastic scattering, suppose there exists an operator 8'which can induce transitions to
an inelastic state. Such states might contain extra mesons, or one or both of the protons might be rearranged into other
hadrons. If the conservation of four-momentum permits it, the system may produce particles which satisfy the mass-
energy condition for free propagation, and so escape to infinity, carrying momentum, charge, baryon number, and so
forth. This possibility gives rise to the imaginary part of the potential, since it implies a decrease in the total density of
elastically scattered protons.

This potential is energy dependent, since the energy available for the production of new particles determines the
probability that the system will produce them. For total center-of-momentum energy E, it is

&p'lb V+iV'lp ) =PVI dF. ' & &p'l )Vlinel) &inell W'lp )(E E') —im JdE' 5(E—' F) & &p'l )Vlinel) &—inell lVlp ) .

(30)
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The sum is over all inelastic states of energy E' accessi-
ble by means of the operator W. The real term (b, V) is a
correction to the real potential. Since it is of higher order
than the one-boson-exchange potential, it will be ignored
in the ladder approximation. V is the leading imaginary
term, so it will be retained. This imaginary potential is
negative definite in sign, which preserve the unitarity of
the scattering matrix.

The model of the imaginary potential will have two
terms corresponding to the two distinct slopes of the ex-
perimental differential cross section at high energies. '

Both terms describe contact interactions. The first term
is just a delta function (folded between quark densities)
describing the rearrangement of quarks within a proton
to form another baryon. The second term describes the
production of a real meson with a Yukawa form factor at
the point of contact between the protons. The radius of
the meson will be determined by fitting the slope of the
differential cross section at small angles.

The Lorentz-Dirac properties of the imaginary poten-
tial are unknown a priori, but some features can be noted,
assuming that the process by which the system went into
the inelastic channel is the same process by which it
comes back. Since each such part of the coupling opera-
tor 8' has definite transformation properties, the imagi-
nary potential is composed of the possible results of act-
ing with 8' twice. For scalar and pseudoscalar mesons,
the only possible result is a scalar. For vector mesons,
the only possibility which is negative definite in all partial
waves is a scalar. Therefore, the imaginary potential will
be a pure scalar.

The strength of the absorbing potential is determined
by the total scattering cross section. For momenta well
above the inelastic threshold, the total cross section is
roughly constant, about 40 mb. Requiring that the total
cross section, as determined from the optical theorem,
match its experimental value determines the strength of
the absorbing potential.

IV. THE FLUX-TUBE MODEL

When the relative momentum of two protons is compa-
rable to the proton mass, the quark degrees of freedom
are relevant to the interaction between them. In this
work, the interaction between protons is assumed to be
the result of meson exchanges between quarks, double
folded with the quark densities.

Quarks themselves are massless point particles
confined to a neighborhood of some origin by a potential
which increases linearly with the displacernent of the
quark from the origin. The potential is a scalar under
Lorentz transformations, and so breaks chiral symmetry.
The quarks are coupled to a pion field, which restores
chiral symmetry to the system. This is the so-called
"flux-tube model, " since the linear potential is an ap-
proximation to the result from lattice gauge theory that
gluons form themselves into narrow tubes between
quarks when the quarks are relatively far apart. '

The Lagrangian for the flux-tube model is highly non-
linear and therefore unsolvable, so it is assumed that the
number of virtual pions in the cloud around the proton is

of order 1 (this is true in the cloudy bag model'"), and the
Lagrangian may be linearized to give

(31)

Here, g is the quark field, P is the pion field, f is the
pion-decay constant measured to be 93 Me V, and
S(r)=re is the confining potential. Here, r and P are
vectors in isospin space.

When the protons approach one another closely, the
hypothesis of a small number of pions need not be true
and nonlinear terms which do not appear in (31) may be
significant. The effect of such terms will be dealt with by
means of heavy-meson exchanges. All the mesons used in
this work can decay into states containing only pions, so
they may be considered to be quasistable nonlinear exci-
tations of the pion field, and thereby consistent with the
flux-tube model.

Turning to the problem of the unperturbed quarks, the
linear confinement problem for massless quarks has an
approximate solution which is very simple and compact.
Abe and Fujita' have shown that the solutions of the
quark Lagrangian are well approximated by combina-
tions of the eigenfunctions of the simple harmonic oscilla-
tor. In particular, the ground-state wave function is

(32)

where y is a Pauli spinor, n is a unit vector in the direc-
tion of r, 3=0.932, B=0.363, and the radial functions
(r~nL ) are spherical harmonic-oscillator eigenfunctions
with scale parameter &g.

The negative-energy states needed for Salpeter's equa-
tion will be constructed this way: the negative-energy
proton is a system of three negative-energy quarks, cou-
pled identically to the coupling in the positive-energy
proton. The interaction of a meson with a quark can
kick the quark into a negative-energy state, at which
point, one of two things happens. A system of two
positive-energy quarks and one negative-energy quark is
not a proton, so either the chromodynamic interactions
among the quarks in a baryon drag the spectators into
negative-energy states as well, forming a negative-energy
proton, or the whole system is lost to an inelastic chan-
nel and the transition contributes to the absorptive poten-
tial.

Negative-energy quark states are constructed in the
Abe-Fujita approximation by finding a unitary operator
which anticommutes with the Hamiltonian. Such an
operator is yoys. A scalar potential has a spectrum
which is symmetrical about E=O, so yoy5$ is the
negative-energy partner to any positive-energy state g.

This model contains one parameter —the potential
strength g. This parameter is set by requiring that the
energy spectrum match the observed masses of the vari-
ous baryons. The best value 71=(420 MeV) leads to
agreement with the proton electric form factor as well, so
it will be considered fixed.

The form factor for a given quark-meson interaction is
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TABLE II. Densities and form factors for the mesons.

Transition
type

PS even

PS odd

SC even
SC odd
VE even
(fourth)
VE odd
(fourth)
VE even

(space)
VE odd
(space)
ZR even
(fourth)

ZR odd
(fourth)

ZR even

(space)
ZR odd
(space)

Space
density

—2i ABR0R 1 a n

(A +2/3B pr )Ro
( A 2/3B pr )R
0
(A +2/3B pr )Ro

2i ABR0R1cr n

2 ABR0R10' X

0~

+BR

1�(~n)gy(0n)
(A +2/3B pr )Ro

2i ABR0R1o"n

—2ABR0R, o Xn

0@

+BR

1�(Qn)~(~n)

Approximation
form factor

—
q /3. 14 p p123

—0. 197(q —2. 7)

e q /314 00832e 025(q 21)

/3. 14 p p4p
—0.40(q —3.6)

0
—PS odd

—PS even

i PS even

—SC even

e q (1—Bq /6)

—
q /4

-q /4

e q (A —B+Bq /6)

K(k)= fdxq(x)y5q(x)S(r)e'"" . (33)

We define the form factor at zero momentum to be unity,
so the constants may be ignored. Using the Abe and
Fujita wave functions, S(r)=gr, Ro=(r~00), and
R, = &r~oi ),

E(k) =f dx( ARO, —
EBR,o".n)y5, BR 'rlre' '"

I.BR &o. -n

dx 2iABROR )
o'.nore'" "

4 —z= —32vr ~ AB f dz z e ' j&(qz)cr q .

(34)

(35)

(36)

Here, z =&gr and q=k/&g. This integral can be ex-
pressed in terms of tabulated functions, but doing so does

derived from the appropriate term of the Lagrangian by
expanding the quark fields in terms of the eigenstates of
the potential and the meson fields in plane waves. The
matrix element of the Lagrangian between a state with a
quark only and a state with a quark and a meson of a
given momentum will then have factors which appear in
the interaction between a point proton and the meson
and factors which do not. These latter are the form fac-
tors.

Thomas has given an excellent pedagogical derivation
of pion-nucleon form factors in the context of the cloudy
bag mode, ' so only a cursory review will be given here.
As an example, the pion-interaction term of the Lagrang-
ian is used to obtain an operator in momentum space
which is proportional to o"k, which is the vertex factor
for a point nucleon emitting a pion with momentum k.
We call it "I(::"

not provide any particular illumination. What is impor-
tant about it is that the form of the point-proton vertex
has been recovered, with a momentum-dependent multi-
plier, independent of length scale,

(3/q) f dz z e ' j, (qz) .

For purposes of computation, this form factor can be ap-
proximated by the sum of two Gaussians.

The form factors for the other rnesons are calculated in
the same manner, with different densities in the integral.
All have been given the same approximation treatment.
For the three types of mesons, each with transitions to
positive- and negative-energy states, three form factors
are needed (plus one which is identically zero). The vari-
ous densities and approximate form factors are collected
in Table II as functions of the momentum transfer scaled
by the potential parameter. One further approximation
should be noted: The negative-energy three-vector form
factor is not used in its entirety. The speed of the numer-
ical computation is vastly increased by the substitute in
the table, which never deviates mor- than 50% from the
correct factor.

The form factors for the zero-range (ZR) terms are ob-
tained similarly, but the term S(r) in Eq. (33) does not
appear, so the integrals corresponding to (37) are analyt-
ic. These form factors are appended to Table II, labeled
ccZR

The "static" form factors thus derived are nonrelativis-
tic (NR) in concept, since they take no account of the dis-
tortion of moving objects due to the Lorentz-Fitzgerald
contraction. To simulate the effects of special relativity,
Licht and Pagnamenta ' derived a formula for scaling the
momentum dependence of the form factor of a general
cluster of particles.
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TABLE III. Real potential parameters from phase-shift fit. 60 I I
)

I I I I
t

I I I I

se Shifts

Meson

Pion

Sigma
Rho
Core

Mass
(GeV/c')

0.138
0.500
0.783

Coupling

13.0
5.9
5.0

12.1

40-

20-

-20—
3 p

1

I
' «~ '

I
4

Brodsky and Farrar have made an analysis of the ac-
tual high-momentum scaling laws that govern the form
factors of hadrons. By counting the minimum number of
gluon exchanges which are consistent with preservation
of the color-singlet nature of a proton when it interacts
with another, they conclude that the actual scaling law
which is obeyed by a three-quark system is

CD

25

20-

15-

10-

I I I 4 I I

3 p

J=2 Phase Shifts

I i I I I I I I I I I

lim K(q ) ~(q )
q ~oc2

(3g)

K(q )=(1+q /4M ) ENR[q /(1+q /4M )] (39)

to give the correct limiting behavior. Hence, form (39)
will be used here for the relativistic transition form fac-
tors corresponding to the form factors ENR in Table II.

This asymptotic form can be incorporated into form
factors in the region of interest here. Stanley and Rob-
son obtained good fits to the experimentally determined
electromagnetic form factors of the proton, neutron, and
pion using

'0 100

3
F~

~ I I I I I I i I

200 300
EL,~ (MeV)

FIG. 1. The fit of parameter set I to the six lowest proton-
proton phase shifts plotted versus the laboratory kinetic energy
in MeV.

V. RESULTS AND CONCLUSION

The approximation to the proton-proton potential was
made in two steps. First, the real part of the potential
was determined from data below the inelastic threshold,
then the imaginary potential strengths were varied at
each beam momentum to fit the higher-energy data. The
real potential parameters were adjusted to fit the scatter-
ing phase shifts below 300 MeV as determined by Amdt
et al. , which produced parameter set I, or to fit the
transverse asymmetries at 210 and 310 MeV (Ref. 24)
simultaneously, giving set II. The optimum values for
the coupling strengths from a chi-squared fit are shown in
Tables III and IV, and the fits are shown in Figs. 1 and 2.
The fits are good for parameters set II. For set I, the P,
and Pz channels sumpter from the inclusion of the zero-
range core; were it not required, the fit could be made

I I f I
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I I I I
)

I I I I
l

I I I I05~ %sgf
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TABLE IV. Real potential parameters from asymmetry fit.

Meson
Mass
(GeV) Coupling 0.1 0.2

~
t

~
(GeV)

0.3

Pion
Sigma
Rho
ao
Core

0.138
0.500
0.783
0.960

13.0
7.9

15.5
6.9
9.9

FIG. 2. The fit of parameter set II to the experimental asym-
metries at 210 and 310 MeV plotted versus squared momentum
transfer.
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TABLE V. Imaginary potential parameters —phase-shift fit.

~lab

3

6
9

11.75
18~ 5

24

Rho+ omega

9.86
34.5
49.4

123
123

1730

Core

7.11
88.9

118
296
834

2960

comparable to that of the 1972 Bonn potential. '

The imaginary potentials work best when the Yukawa
form factor describing production of a real meson has a
mass parameter of 780 MeV. This is close to the pion
cutoff mass used by the Bonn group, ' implying that the
mesons produced are primarily pions. Within the con-
straint of keeping the total cross section constant, the two
coupling strengths were varied to fit the differential
cross-section asymmetry and spin correlation by hand,
due to the long running time of the computer program at
higher-beam momenta. Since this model tends to overes-
timate the spin observables, the optimization was a pro-
cess of balancing the couplings to obtain the maximum
destructive interference between the two potentials. The
values of the imaginary strengths are shown in Tables V
and VI. They increase roughly as an exponential of the
barycentric momentum.

Results of the calculation are shown in Figs. 3—9 for
beam momenta of 3, 11.75, 18.5, and 24 GeV/c, together
with data. The differential cross sections are well repro-
duced, though the breakdown of the assumption of a
zero-range core can be seen in Fig. 8. The asymmetry
and spin correlation are less well fitted. The 3-GeV data
are sensitive to the exact form of the real potential or
low-momentum transfer, but as the absorptive terms
come to dominate at angles near 90', the fit improves. At
higher energies, the gross structures of the data are all
that can be said to be reproduced. The model results
show more oscillation than do the data at large angles, in-
dicating that the smoothing influence of many interfering
terms is absent from the model. Nevertheless, the spin
observables show structure which is absent from previous
treatments, due to the nature of the quarks as constitu-
ents of protons and the absorptive effects of inelastic
channels in the proton-proton system.

Two predictions can be made from these calculations
which may be relevant to experimental work in the near

10

10'
10

10

1 0-6

1 07- I I I I I I I

0 1 2 3 4
) t [ (GeV/c)

'

FIG. 3. The unpolarized differential cross section at beam
momenta of 3 and 6 GeV/c plotted vs t. Dotted lines are pa-
rameter set I, solid lines are parameter set II. The data are from
Ref. 24.

j I 1 I
I

I I I I
I

I I I I
I

I I I I05~ %st

3 GeV/c
0.4—

A

0.2—

future. From Fig. 7, the value of A„„at 90 for a beam of
18.5 GeV/c momentum can be estimated to be about
0.35, a decrease from the value at 11.75 GeV/c. From
Fig. 9, at 24 GeV/c one can anticipate a rapid drop to
zero in the asymmetry at a squared momentum transfer
of 9 (GeV/c), which corresponds to a squared transverse
momentum of 7.5 (GeV/c) .

Since the imaginary potential dominates the real by as
much as 2 orders of magnitude, the J dependence of the
absorption dictates the form of the high-energy spin ob-
servables. The spin observables depend on angular
momentum in two ways. First, the waves with lower J
will suffer more attenuation, since they imply more over-

lap of the protons. The envelope of the J dependence in

impact parameter space will mimic the scalar form factor
of the proton. Second, and more important, there will be
fine structure due to the Lorentz-scalar nature of the
imaginary potential through the helicity operators in

Table I. This is a general feature of a relativistic scalar
imaginary potential, independent of the details of the

TABLE VI. Imaginary potential parameters —asymmetry fit.

0.1

I I I I I I I I I I I ~ I I I I I I I0
0 0.5 1.0 1.5 2.0

J
t

J
(GeV/c)'

3
6
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11.75
18.5
24

Rho+ omega

8.3
20.7

111
193
304

2760

Core

5.92
78.9
88.8

138
1090
1970

FIG. 4. The asymmetry at 3 GeV/c beam momentum plotted
vs t. The data are from Ref. 25.



42 RELATIVISTIC POTENTIAL MODEL OF PROTON-PROTON. . . 1233

05

04— 3 GeV/c

1 I I I
J

I 1 I I
t

I I I iQ~ %/

18.5 GeV/c

Ann

0.3—

0.2-..
II

0.1 — ~~

0.6
Ann

0.4

0.2

0 s i I I i a s

0 0.5 1.0 1.5
(GeV/c) ' 2.0 00 5 10

I
t

I (GeV/c) 2
15

FIG. 5. The spin-correlation parameter at 3-GeV/c beam
momentum plotted vs t. The data are from Ref. 25.

FIG. 7. The spin-correlation parameter at 18.5 GeV/c plot-
ted vs t. The data are from Ref. 2.

quark-quark interaction. Figure 10 shows the effect of
the absorptive potential as a function of angular momen-
tum. When J is odd, the Pauli principle requires that the
total spin of the system be 1. These states are less ab-
sorbed, so they are more likely to scatter elastically, giv-
ing rise to a large positive spin correlation. The low par-
tial waves are almost completely absorbed, so elastic
scattering is primarily due to grazing collisions between
the protons.

This gives a clue to why the perturbative calculations
fail for elastic events when they succeed so well with in-
clusive reactions. For perturbation theory to apply to
elastic scattering, all six valence quarks must be at short
distances from one another, which means the protons
must be in a state of low angular momentum. Such states
are highly suppressed by the absorption. Inclusive reac-
tions, by contrast, make no such demand. A single pair
of quarks can be very close together whenever the two
protons overlap significantly, and can exchange a single
gluon, giving rise to a state of unspecified hadrons. This
is precisely the hypothesis upon which the imaginary po-
tential of this work is based. Since the only momentum
dependence of the imaginary potential is due to form fac-

tors which were forced to obey perturbative scaling laws
at high-momentum transfer, it seems clear that the prop-
er role of perturbative chromodynamics in modeling ex-
clusive events is to determine the manner in which unob-
served channels affect the reaction of interest.

The importance of negative-energy intermediate states
does not increase monotonically with energy. They are
most important in the range of beam momenta from 1 to
6 GeV/c, where they have the effect of softening the
repulsive core. When the beam momentum is higher, the
imaginary potentials dominate the real, and since the
form factor for odd scalar transitions vanishes, the
negative-energy states no longer have a visible effect.

In conclusion, the essential features of the elastic
scattering of two protons, when their relative momentum
is on the order of l GeV/c, are the chirally symmetric
confinement of quarks and the absorption of flux into in-
elastic channels. Perturbation theory is essential to
describing the interaction form factors at large momen-
tum transfer, but is incapable of describing the processes
which allow quarks to communicate their identities as
hadronic constituents. This identity shows no sign of di-
minishing in importance at these momenta.
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FIG. 6. The spin-correlation parameter at 11.75 GEV/c plot-
ted vs t. The data are from Ref. 1.

FIG. 8. The unpolarized differential cross section at 24
GeV/c. The data are from Ref. 24.
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FIG. 9. The asymmetry at 24 GeV/c. The data are from
Refs. 3 and 26. The doubled points are 28 GeV/c data.

APPENDIX

FIG. 10. The determinant of the absolute square of the
scattering matrix for a given angular momentum as a function
of angular momentum. The S matrix is that which produced
the solid curve in Fig. 6. A value of 0 means total absorption, a
value of 1 means elastic scattering.

The eigenspinors of the Dirac equation are 1 when the two momenta k and k' are equal, so

N =(E+M)/2m . (A2)

u (k,s) =lY y„V(k,s) =X y, (Al)

for a state with momentum k and spin given by the Pauli
spinor y, .

The normalization constant N is determined by the re-
quirement that the scalar density u (k, s)you(k', s) equal

o k(k, X&=kayak, X&

and takes on values +1.
(A3)

The only use of o in the Dirac equation is in terms of
the form o"k, so the obvious spin quantization to use is
the helicity basis. The helicity eigenvalue A. is defined by

'D. G. Crabb et al. , Phys. Rev. Lett. 41, 1257 (1978); J. R.
O'Fallon et al. , ibid. 39, 733 (1977); H. E. Miettinen et al. ,
Phys. Rev. D 16, 549 (1977); K. Abe, R. C. Fernow, T. A.
Mulera, K. M. Terwilliger, W. deBoer, A. D. Krisch, H. E.
Miettinen, J. R. O'Fallon, and L. G. Ratner, Phys. Lett. 638,
239 (1976).

~D. G. Crabb et al. , Phys. Rev. Lett. 60, 2351 (1988).
P. R. Cameron et al. , Phys. Rev. D 32, 3070 (1985).

4S. J. Brodsky and G. Farrar, Phys. Rev. Lett. 31, 1153 (1973).
J. Brodsky, C. Carlson, and H. Lipkin, Phys. Rev. D 20, 2278

(1979).
E. E. Salpter, Phys. Rev. 87, 328 (1952).
Chris Long, Phys. Rev. D 30, 1970 (1984).

sD. Robson, in Topical Conference on Nuclear Chromodynamics,
edited by J. Qiu and D. Sivers (World Scientific, Singapore,
1988), p. 174.

9J. Bystricky, F. Lehar, and P. Winternitz, J. Phys. {Paris) 39, 1

(1978).
'oJ. D. Bjorken and S. D. Drell, Relatiuistic Quantum Meehan

ics (McGraw-Hill, New York, 1964).
M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959).
K. L. Kowalski and D. Feldman, J. Math. Phys. 2, 499 (1961).
M. J. Levine, J. Wright, and J. A. Tjon, Phys. Rev. 154, 1433
(1967).

'4M. Fortes and A. D. Jackson, Nucl. Phys. A175, 449 (1971).
' K. Holinde, K. Erkelenz, and R. Alzetta, Nucl. Phys. A194,

161 (1972); K. Erkelenz, Phys. Rep. C 13, 191 (1974).
~6J. V. Allaby, A. N. Diddens, A. Klovning, E. Lillethun, E. J.

Sacharidis, K. Schlvepmann, and A. M. Wetherell, Phys.
Lett. 278, 49 (1968);J. V. Allaby et al. , ibid. 28B, 67 (1968).
J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975)~

ISA. W. Thomas, Adv. Nucl. Phys. 13, 1 (1984).
' S. Abe and T. Fujita, Nucl. Phys. A475, 657 (1987).

The form factor for this transition should be different in char-
acter from the even transitions since the spectator quarks are
obliged to change their states as well, but this will be neglect-
ed. Including such a process would introduce more unknown
parameters with little improvement in the results.
A. L. Licht and A. Pagnamenta, Phys. Rev. D 2, 1150 (1970);
2, 1156 (1970).
D. P. Stanley and D. Robson, Phys. Rev. D 26, 223 (1982).
R. A. Amdt, L. D. Roper, R. A. Bryan, R. B. Clark, B. J.
VerWest, and P. Signell, Phys. Rev. D 28, 97 (1983).

~4P. J. Carlson et al. , in Landolt-Bornstein, Rem Series, edited
by H. Schopper (Springer, Berlin, 1973), Group I, Vols. 7,9.

~~D. Miller, C. Wilson, R. Giese, D. Hill, K. Nield, P. Rynes, B.
Sandier, and A. Yokosawa, Phys. Rev. D 16, 2016 (1977).
J. Antille, L. Dick, M. Werlen, A. Gonidec, K. Kuroda, A.
Michalowicz, D. Perret-Gallix, D. G. Crabb, P. Kyberd, and
G. L. Salmon, Nucl. Phys. B185, 1 (1981).

~7D. M. Brink and G. R. Satchler, Angular Momentum (Claren-
don Press, Oxford, 1968).


