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Several recent papers purport to ‘“test” the Gamow-Teller sum rule. They compare the
differences between incomplete strength function integrals for the 8~ and B™ directions with the
quantity 3(N —Z) and interpret discrepancies as degrees of failure of the sum rule. We point out
that the Gamow-Teller sum rule is an exact operator relationship, not a model to be tested. It is
useful for determining whether a measured strength function is complete.

Several recent papers purport to “test” the Gamow-
Teller sum rule.!”’ We address this Comment to the one
that is published in Physical Review C,’ but mean it to
apply to all of the papers.

Some time ago it was pointed out by Gaarde et al.®
that a certain operator identity involving spinors could be
applied to the problem of determining whether empirical-
ly measured beta-decay strength functions are complete.
The operator relationship was cast into a form that ac-
quired the same “Gamow-Teller sum rule.” In this form
the relationship reads

S(GTB )—S(GTB)=3(N—2Z), (1)

where S(GTB7) is the total B~ Gamow-Teller transition
probability originating from a given nuclear state and
summed over all final states. It is the 3~ strength func-
tion integral. S(GTB™) is the same quantity evaluated in
the B% direction. N is the number of neutrons in the
parent state and Z is the number of protons in the parent
state.

The sum rule derives from the properties of the nu-
cleon isospin raising and lowering operators, ¢ © and ¢ .
In the absence of a spin operator, as in Fermi [ decay,
the sum rule reads

S(FB™)—S(FB")=N—-Z . )

It is assumed that the isospin component of the state vec-
tor for a nucleon is represented by a Pauli spinor. The
strengths are sums over all i nucleons and over all j
daughter states, ID}- ):

S(FB™)= 3 (D;lt; Ip)*, 3)
S(FB)=3(D;lt;*Ip)*. 4)

For Gamow-Teller transitions the 8~ and 87 opera-
tors are taken to be 2st ~ and 2st  summed over all nu-
cleons. When the spin is neither prepared in the initial
state nor measured in the final state, summation over the
three directions in the spin space introduces a factor of 3.
Although the values of S~ and S individually depend
on the structure of the parent state, the sum rule tells us
that the difference in strengths depends only on the neu-
tron and proton numbers and not on how the neutrons
and protons are built into the parent state. For this
reason the sum rule is said to be model independent. For
a pedagogical derivation and discussion of the Fermi and
Gamow-Teller sum rules, see Ref. 9 and 10.

Gaarde et al.® pointed out that the GT sum rule could
be used to make strong statements about missing GT
strength from measurements of the B~ strength function
alone. Rearrange the sum rule (1) to read

S(GTB )=3(N—Z)+S(GTB) . (5)

Since S(GTB ™) and S(GTB™) are positive quantities,
Eq. (5) leads to

S(GTB )Z3(N—2) . (6)

A definite correlation between medium-energy (p,n)
cross sections, extrapolated to a momentum transfer
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g =0, and allowed B~ -decay rates has been demonstrat-
ed.'V12 Thus, (p,n) measurements provide a means to
measure beta-decay sum strengths. Because the strength
function is measured only over a limited range of excita-
tion energy and the identification of L =0 strength is im-
perfect, one must use discretion in interpreting the mea-
sured sum strength, which we shall call S(GT ), as the
equivalent of the quantity S(GTB ) in the sum rule
equation (5). However, since the sum rule specifies a
minimum strength, if the measured value of S(GT ™) is
less than 3(N —Z), one can conclude with certainty that
the measured strength function is incomplete; some
strength must lie outside the energy domain of the mea-
surement or some strength inside the domain was not
identified as such.

Typically, S(GTB™) is much smaller than S(GTS™)
due to Pauli blocking, and the inequality (6) can be treat-
ed as an approximate equality. For some nuclei , notably
in the iron region, S(GTB") may be large and the mea-
sured value of S(GT ) can exceed 3(N —Z). In these
rare cases a measurement of S(GT ) alone does not es-
tablish the magnitude of the missing strength, and both
S(GT™) and S(GT") should be measured to discern
whether strength is missing. In these regions the sum
rule may be of little help in drawing any conclusions
about missing strength. Nevertheless, several recent pa-
pers purport to ‘‘test” the sum rule by taking the
difference between empirical 3~ and B strength func-
tions.! ™’

We wish to point out that the difference between two
empirically determined and demonstrably incomplete
strength functions not only does not test the sum rule,
but also has no simply interpretable meaning. The miss-
ing strength problem was established with nuclei for
which the B+ strength was expected to be small. In these
cases B~ strength functions were measured over the exci-
tation energy range where the shell model places all the
strength. In many cases less strength than 3(N —Z) was
found. The sum rule can properly be used here to argue
that additional strength must exist, undetected either be-
cause it lies outside the measured energy domain or be-
cause it is “hidden” in background.

Now consider a nucleus for which the 8% strength may
be large, as in the iron region. Assume that empirical
values for S(GT ™) and S(GT™) are available. It is likely
that whatever mechanism quenched the measured B~
strength functions in the cases used to establish the miss-
ing strength problem operates here also. Thus, both the
B~ and the B strength functions are expected to be in-
complete. In essence we already know that some B~
strength evades detection, so there is reason to believe
that B strength will evade detection also. Since the sum
rule prescribes only the difference between complete
strength functions, it provides no model for the difference
between two incompletely measured strength functions.

A model has been considered by Delorme et al.'’ in
which a relationship in the form of (1) can be applied
over a limited region of excitation energy. In this model

the axial vector coupling constant is locally renormalized
and the sum rule becomes model dependent. Both the B~
and B7 strengths are reduced by the same fraction. It
follows that the difference would also be reduced by the
same fraction. Accurate measurements of B~ and 8"
strength over the shell-model energy region would be use-
ful in determining whether such a model can yield a satis-
factory description of GT quenching. A relevant and
outstanding question then is whether the quenching fac-
tor is the same for 87 and B~

Some models based on random-phase-approximation
calculations place the missing strength in a broadly
dispersed continuum that, it is claimed, is mistaken for
background in measurements.'*'® In a particular calcu-
lation, Osterfeld et al.'” claim that for *°Zr, GT strength
amounting to the difference between the measured value
and 3(N —Z) is hidden in a broad continuum. They
claim they have accounted for all the strength provided
that S(GTB™") is negligibly small. Yen et al.? measure
S(GT™") with the (n,p) reaction and find no observable
strength. They claim this is a confirmation of the Oster-
feld et al.'®> model. See also Brady et al.!® for additional
discussion on this point.

The measurement of Yen et al.? in fact, says very little
about the Osterfeld model but is interesting in its own
right. The ground-state correlations that are invoked to
disperse the B~ strength imply the existence of B*
strength. On the other hand, the Osterfeld model re-
quires negligible 3% strength to be self-consistent. The
Osterfeld model may be consistent with the Yen measure-
ment if that measurement somehow implies only a small
amount of dispersed B strength. Ground-state correla-
tions necessary to account for nucleon transfer data im-
ply the existence of 8 strength. A calculation of Bloom
et al.'7 place this strength in narrow peaks that should
be detectable, although the total calculated B strength is
small compared to the total B~ strength. In any case, the
nonobservance of this strength most likely signifies that it
is dispersed rather than that it is nonexistent.

Various models designed to disperse GT strength can
be roughly classified into two groups—those that intro-
duce complex configurations of normal nucleons, and
those that include excitations of the nucleons to the delta
state. Of course, there are models that combine both
features. However, neither the (p,n) nor the (n,p) mea-
surements appear to distinguish between these different
approaches.

In summary, we assert that the sum rule relates only
the complete B~ strength function with the complete B
strength function, it cannot give information about par-
tial strengths in a restricted energy region. Thus, inser-
tion of empirically determined B~ and 87 strength values
for a limited excitation range into the sum rule equation
cannot yield meaningful results.
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