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New measurements of differential elastic neutron scattering for ' Bi at energies between 7.5 and

24.0 MeV are presented along with new measurements of o.T up to 60 MeV. These data, taken to-

gether with earlier measurements at lower energy, provide a very large data set for testing and ex-

tending the dispersive optical-model analysis. The dispersion correction to the optical model has

been obtained from the scattering and total cross-section data. The potential is extrapolated to neg-

ative energy for comparison with bound-state properties. A very good description of all of the data

is obtained from —20 to +60 MeV. The present analysis suggests somewhat less depletion of the

Fermi sea in this mass region than has been obtained from electron-scattering data and from other
recent treatments of the dispersion correction to the optical model.

I. INTRODUCTION

The nucleon-nucleus optical-model (OMP) at low ener-

gy has enjoyed a considerable resurgence in interest over
the last few years. Early reports' that the geometrical
parameters of the model showed a distinct dependence on
projectile energy were taken as evidence of the disper-
sion correction to the optical potential. Much of the re-
cent attention has focused on Pb in part because of its
very special shell-model properties, but also because of
the availability of high-quality neutron scattering data. "

The doubly magic shell structure of Pb is a source of
diSculty at low projectile energy. Level densities in the
target nucleus are low so compound elastic cross sections
are larger and fluctuate more rapidly with incident ener-

gy than would be expected for nuclei removed from the
closed shells. Improper treatment of these fluctuations
could lead to errors in the extraction of the shape-
elastic-scattering cross sections that could strongly
influence the determination of optical-mode1 parameters.
The dispersion correction involves an extrapolation of the
energy dependence of the empirical imaginary potential
from the lowest measured energy to the Fermi energy.
Mahaux and Sartor have described the hazards of an ex-
trapolation over a wide range of energies for the p + Pb
system, and Finlay et al. have shown how an improper
determination of the optical-model parameters can lead
to unreasonable estimates of the dispersion correction.

Lawson, Guenther, and Smith (hereafter LGS) have

pointed out the advantages of Bi for such a study:
Bi is monoisotopic and has a large density of states

near the neutron binding energy. It offers the prospect of
studying shape elastic scattering down to low energies
with much less uncertainty from the fluctuations in the
compound elastic cross sections. The fact that the corn-

pound nucleus cross sections are indeed sma11er for Bi
than for Pb was shown by Armand et al. in a corn-

parative study of these nuclei in the region 4(E„&7
MeV.

LGS repeated and extended the study of n + Bi of

Armand et al. with their own new measurements of elas-
tic scattering from 4.5 to 10.0 MeV to which they added
earlier data between 1.5 and 4.0 MeV from Argonne and
from Studsvik' in order to search over a wide energy
range for a surface-peaked term in the real part of the op-
tical potential as predicted by the dispersion relation (see
Sec. III). Above 10 MeV, LGS connected their empirical
results for Bi with global optical parameters" or with
scattering measurements from Pb at higher energy. '

One purpose of the present work was to extend the data
base for n + Bi scattering to higher energy and to per-
form a similar analysis in terms of the dispersion correc-
tion to the optical potential without recourse to global
potential parameters.

A second goal of this work was to examine the nuclear
mean Geld at negative energy by invoking the dispersion
correction to extrapolate the optical-model results into
the shell-model domain. A brief discussion of the disper-
sion correction is given in a subsequent section.

II. EXPERIMENTAL METHODS

Differential elastic-scattering cross sections were mea-
sured at the Ohio University beam swinger facility for
neutron energies of 7.5, 8, 9, 10, 12, 20, and 24 MeV. Ex-
perimental procedures have been described many times
(see, for example, Refs. 1 and 5). Time-of-flight resolu-
tion was adequate to insure that the elastic-scattering
peaks were well separated from any inelastically scattered
neutron groups. Raw time-of-flight data were corrected
for multiple scattering, finite angular resolution, and at-
tenuation of the incident neutron beam using well-
established techniques. Errors due to counting statistics
were generally less than 3% for scattering angles less
than 90 and 3 —5% at larger scattering angles for all of
the data between 7.5 and 12 MeV. At 20 and 24 MeV the
errors were typically 50% larger than at lower energy
and a few points at the back-angle minima had counting
errors of over 10%. Data are available in tabular form
from the authors and will be forwarded to the National

42 1013 1990 The American Physical Society



1014 R. K. DAS AND R. W. FINLAY 42

Nuclear Data Center (Brookhaven, NY) after publica-
tion.

None of the new data required correction for com-
pound elastic scattering. Below 7 MeV, compound elas-
tic scattering is important and the detailed corrections
that were required are described by Armand et al. Some
of the new data were reported earlier as part of a confer-
ence proceeding. '

Total cross sections were measured at the Oak Ridge
Electron Linear Accelerator (ORELA) facility of the Oak
Ridge National Laboratory. Bremsstrahlung
photons are converted into neutrons in a thick beryllium
block producing a continuous or "white" neutron spec-
trum that extends up to 60 MeV. Transmission of the Bi
sample was compared to the no-sample or open beam
condition with a time-of-flight detector located 80 m
from the neutron production target. Errors due to count-
ing statistics were typically less than 0.5% and systematic
errors are estimated to be less than 2%. Details of the
ORELA group measurements of total cross section are
given by Larson et al. '

III. THE DISPERSION INTEGRAL

Mahaux and Sartor' have developed a general repre-
sentation of the dispersion correction to the phenomeno-
logical optical potential that includes both polarization
and correlation effects, i.e., that accounts for the finite
probability, that the target nucleus does not remain in its
ground state during the elastic-scattering process. In this
approach, the real part of the mean field V (r, E) is writ-
ten as the sum of a smoothly varying Hartree-Fock term
and a dispersion contribution, i.e.,

V(r, E)= VH(r, E)+b, V(r, E)

with

W E'
b, V(r, E)=—,' dE',E' —E

where P indicates a principal value and W( r, E') is the
imaginary part of the nuclear mean field.

VH (r, E) is the local equivalent of the energy-
independent nonlocal Hartree-Fock field which might be
approximated in terms of an energy-dependent depth and
an energy-independent Woods-Saxon radial shape, i.e.,

Vcr(r E)=VH(E)f(rH aH) .

Over a limited energy range, it should be possible to
represent VH(E) as

VH(E) = VH(0)e

with a =(m /2A' )/3, where P is the range of the nonlocal-
ity.

Evaluation of b, V (r, E) for nuclear scattering requires
knowledge of W(r, E') over the entire energy range from

to ~. In practice, phenomenological analysis of
neutron scattering data provides information about
W(r, E') over the very limited positive-energy range from
a few MeV to several hundred MeV. The current ap-
proach to this problem is to require that (i) the mean field
be real at the Fermi energy (EF ), i.e.,

W(r, E~)=0,

The Fermi energy is taken as the midpoint between the
first unoccupied single-particle level and the last occupied
single-particle level. For Bi, EF is approximately —6
MeV. The assumption that W(r, E) is symmetric about
EF has been questioned by Delaroche et al. , ' but in the
absence of a clear alternative we retain it in the present
work.

One further complication in the evaluation of the
dispersion integral [Eq. (2)] that must be dealt with in de-
tail is the variation of the radial shape of W(r, E ) with

energy. It is well known that at low enough energy the
absorption is confined to the nuclear surface while at high
energy the absorption spreads throughout the volume.
Two detailed and quantitative representations of this be-
havior have been applied with considerable success to the
analysis of dispersion corrections for the n + Pb mean
field.

(I) The dispersive optical-model analysis (DOMA) of
Johnson, Horen, and Mahaux' represents the energy
dependence of the imaginary potential as a sum of a
volume absorption (Woods-Saxon form) and a surface ab-

sorption (derivative Woods-Saxon),

W(r, E)= Wv(r, E)+ W&(r, E) . (4)

The form factors for each term are independent of en-

ergy (constant geometry), but the well depths have expli-
cit energy dependence that are to be deduced from the
scattering data. Their final real potential consists of three
terms: a volume Woods-Saxon term that varies slowly
with energy and is identified with the Hartree-Fock term,
a volume Woods-Saxon term derived from a dispersion
integral over Wi, (r, E), and a surface component with en-

ergy dependence also derived from the dispersion integral
over the surface imaginary potential Ws(r, E), i.e.,

V(r, E)= VH(r, E)+b Vi,(r, E)+b, V&(r, E),
where

p „Wq(r E')
bV (rE)= —f, dE' .E'—E

It is clear that the interplay of these three terms could re-
sult in an energy dependence of the geometrical parame-
ters of a phenornenologica1 potential as discussed in the
Introduction.

(2) The iterative moment approach (IMA) of Mahaux
and Sartor. ' ' In this approach, the imaginary potential
is represented in terms of the energy dependences of a
series of radial moments. The dispersion integral is cal-
culated for each of these moments, and the energy-
dependent real central potential is reconstructed from
these moments.

b, V(r, EF ) =0,
and (ii) the imaginary potential be symmetric about the
Fermi energy:

W(r, E +Er ) = W(r, EF E)—.
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The present analysis (Sec. V) is an application of the
DOMA approach of Ref. 14 with certain modifications.
The data are being reanalyzed in terms of the IMA, but
that analysis will be the subject of a separate paper.

IV. PHENOMENOLOGICAL ANALYSIS

In this section we describe three different approaches
to the determination of suitable empirical optical model
for the n+ Bi system. The three approaches are con-
veniently named as (1) individual best fit, (2) Fourier-
Bessel (FB) expansions, and (3) grid searches.

The data base for the present analysis consists of the
following measurements: Recent measurements of
differential elastic-scattering cross sections at E„=7.5, 8,
9, 10, 11, 12, 20, and 24 MeV at Ohio University together
with older measurements at E„=4,4.5, 5, 5.5, 6, 6.5, and

7 MeV comprises the Ohio University data. Cross-
section data at E„=1.47, 1.96, 2.45, 2.96, 3.36 (Ref. 10),
and 21.6 MeV (Ref. 18) and E„=1.5, 1.9, 2.5, 3.0, and
3.5 MeV (Ref. 9), as well as new measurements of total
cross sections at Oak Ridge National Laboratory from
1.0 to 60.0 MeV were also used in the analysis. While
performing the least-squares fit to these 26 different
elastic-scattering angular. distributions for the three
different approaches, total cross sections at each energy
were used with an artificially small uncertainty of +0. 1%
to give them non-negligible weight compared with the
many points in the scattering distributions.

A. Individual best fits

The empirical optical potential is defined as

d
Va f (r, ~z, az )+iWvf (r»1 aI ) '4Wsas

d f (" ~I aI)+&'&
dr m„c

2
1

1 so d f (" ~ so a so )
r dr

where R, =r, A ' and f (r, R„,a„) is the radial form fac-
tor which is assumed to be a Woods-Saxon (WS) type.

Since there are few measurements of analyzing power
data for n +2O Bi, we assume the spin-orbit (SO) potential
to be that for n +208Pb, namely

~so=5 75 MeV "so=1 50 m so= 499

Several different values of the spin-orbit parameters
were tried, and, within reasonable limits, no change in
the overall quality of the fit to the data was obtained.
The main results for the central real and imaginary po-
tentials are not very sensitive to the choice of the spin-
orbit potential.

The computer code GENQA (Ref. 19) was used to ob-
tain best fits to the data at each energy by varying the
well depths and also the geometrical parameters of the
WS form factors. The parameter 8'z was included for
neutron energies above 10 MeV below which its contribu-
tion was negligible.

Best-fit neutron optical-madel parameters are given in
Table I. Normally one expects to find some scatter in the
values obtained from individual best fits, and this is true
to some extent here. However, the minimum y is fairly
deep and unambiguous as long as the data set is
sufficiently complete and accurate. The result of this
search shows that the most rapid variations of these pa-
rameters occur in the region E„&7 MeV, while at higher
energies the variations are more or less smooth. The
volume part of the imaginary potential appears at 12.0
MeV and gradually increases with energy while the sur-
face part starts decreasing.

There are two familiar shortcomings to the individual
best-fit analysis. First, it is possible, as can be seen from
Table I, that the best fit to the data can be obtained when
one or more of the parameters takes on an unreasonable
value. Examples of these are the 1.47- and 5-MeV data.
The aI for both these data sets are very low compared to

the others. To compensate these low values of the a, 's,
the O'D's are much higher. In all the cases, except for the
1.47 and 1.5 MeV, the r&'s are lower than the rI's as ex-
pected. Second, because of the complexity of the multidi-
mensional y space, it is difficult to assign an uncertainty
to the final parameters.

B. The Fourier-Bessel expansion of the central potential

Even though the results of the previous section indi-
cate that the parameters of the Woods-Saxon potential
can be well determined from accurate data, it is still pos-
sible that this parametrization obscures some of the in-
teresting features of the nucleon-nucleus potential. It is
highly desirable to extract the features of the potential
well directly from the data without constraining the
analysis to the conventional Woods-Saxon form. The
Fourier-Bessel expansion method consists of adding a
Fourier-Bessel series to the conventional %'oods-Saxon
central potential and is given by

V(r, E)=V(E)f(r)+ g a„jo(q„r),
n=1

where q„=(n m /8 ), 8 being the cutofF radius, and

W(r, E)= Wv(E)f (r) —4Wsa& + g b„j o(q„r ) .df (r)
dr

The best-fit values of Vz, 8'~, 8'z, r~, a~, rI, and a~
are inserted into Eqs. (7) and (8) and held fixed for the FB
fit. Then a search for the parameters a„and b„ is per-
formed. The number of coef5cients needed for the real
and imaginary parts of the series is determined by the
minimization of y per degree of freedom, and the values
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TABLE I. Best-fit neutron optical-model parameters for Bi. The spin-orbit potential was fixed at

Vso=5 75 MeV ~so=1 105 fm a&d aso=0. 499 fm.

E„
(MeV)

1.475
1.50
1.90
1.962
2.451
2.50
2.961
3.00
3.358
3.53
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
9.00

10.00
11.00
12.00
20.00
21.60
24.00

(MeV)

43.154
46.122
46.061
46.749
46.453
45.278
46.548
44.321
49.756
45.235
43.810
44.953
43.242
41.935
43.607
44.042
43.767
46.960
41.228
46.150
46.050
43.515
43.968
41.446
42.645
43.607

(fm)

1.308
1.246
1.242
1.216
1.215
1.242
1.211
1.246
1.158
1.244
1.293
1.258
1.288
1.303
1.280
1.267
1.256
1.212
1.251
1.207
1.209
1.254
1.246
1.250
1.227
1.196

az
{fm)

0.568
0.605
0.507
0.752
0.793
0.726
0.818
0.764
0.832
0.722
0.622
0.733
0.760
0.762
0.701
0.675
0.671
0.646
0.727
0.728
0.725
0.657
0.672
0.669
0.683
0.628

Wv
(MeV)

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.043
1.436
1.584
3.367

WD

(MeV)

14.018
8.770
4.108
5.591
6.236
6.554
4.744
6.550
4.370
7.061
8.066
8.999

15.819
9.441

10.788
8.431
4.360
5.340
8.624
5.630
6.040
7.556
7.841
8.002
6.272
2.257

11

(frn)

1.296
1.177
1.251
1.248
1.250
1.275
1.333
1.346
1.344
1.324
1.308
1.345
1.360
1.391
1.352
1.332
1.307
1.309
1.323
1.299
1.281
1.268
1.249
1.251
1.239
1.320

ar
(fm)

0.174
0.280
0.487
0.367
0.440
0.363
0.424
0.335
0.512
0.315
0.319
0.285
0.167
0.328
0.273
0.333
0.671
0.560
0.352
0.582
0.589
0.519
0.515
0.435
0.524
0.705

0.46
0.11
0.42
0.59
0.60
0.17
7.57
0.16
0.87
0.51
1.70
4.35
3.42
3 ~ 88
7.52

13.32
46.41
30.67
71.83
14.68
21.84
14.08
8.36

15.09
25.68
35.25

of the coefficients are determined by a least-squares fit to
the data. The number of terms used in the Fourier-Bessel
expansion was found to depend weakly on energy, and
good convergence was obtained at a large cutoff radius
(12 fm, independent of energy). The final results for both
the real and imaginary potentials were not sensitive to
the choice of the initial Woods-Saxon potential, but the
calculations are faster when best-fit values are used.

By introducing a matrix inversion routine into GENQA,

the covariance matrix M of the parameters Q„may be ob-
tained from the secular equations that minimize g /X.
The diagonal elements of M are the errors in the
coefficients Q„and the off-diagonal elements contain the
correlations among them. With these quantities, one can
construct a much better statement of the uncertainties in
certain quantities of interest (i.e., real and imaginary
volume integrals, rms radii) than is possible with the indi-
vidual best fits of Sec. IV A.

The values of the real (J~/3) and imaginary (Jl/A)
volume integrals per nucleon and the rms radii, together
with their uncertainties, are given in Table II. Fits to the
differential cross-section data (not shown) obtained using
the Fourier-Bessel expansion are uniformly and frequent-
ly significantly better than those with the standard
Woods-Saxon form factor as indicated by a comparison
ofg per data point in Tables I and II.

C. Grid searches

1. Search for the geometrical parameters
of the fsxed geometry model

In order to carry out a dispersion analysis of the data
in the spirit of the DOMA, ' it is necessary to replace the
fluctuating results of Secs. IV A and B with some approx-
imate model for the geometrical parameters of the poten-
tial. This is accomplished by means of a grid search dis-
cussed briefly below. The eventual dispersion analysis is
much more convenient, however, if certain constraints
are placed on some geometrical parameters at the outset.
Following Johnson, Horen, and Mahaux, ' we require (1)
that the geometrical parameters be independent of ener-

gy, (2) that the two terms in the imaginary potential, W~
and Ws, may have differing geometries, i.e., f (r, Rv, a~)
and f (r, Rs, as), respectively, and (3) that the geometry
of the volume imaginary term be identical with that of
the real central Hartree term, i.e.,

"H =I"v

and

Determination of geometrical parameters was done
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TABLE II. Fourier-Bessel analysis with best-fit neutron optical potentials for ' Bi. Note that the
calculations minimized the g' per degree of freedom while the quantity tabulated is the p per data
point. The spin-orbit was fixed at Vso = 5.75 MeV, rso = 1.105 fm, and as' =0.499 fm.

EJ
(MeV)

1.475
1.50
1.90
1.962
2.451
2.50
2.961
3.00
3.358
3.530
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
9.00

10.00
11.00
12.00
20.00
21.60
24.00

No. of
real

coeffs.

2
2
3
2
2
3

2
3
2
2
3
5

5

4
6
7
5

5

7
5

5

7
9
2

5

7

No. of
imaginary

coeffs.

2
4
3

2
2

2

2
3
2
3
2

2
2
3

2
2
5

4
2

5

5
6
4
3

4
3

Jv/3+AJ
(MeV fm')

426.72+6.46
397.77+2.23
391.66+4.70
390.17+4.90
388.50+5.90
396.02+ 12.99
387.72+5.49
382.23+ 16.01
369.07+4.76
402.61+2.92
427.46+9.35
420.95+22.94
432.82+ 11.59
425.89+7.91
429.63+ 15.40
415.18+19.96
391.79+5.86
394.84+5.01
394.37+8.68
372.32+5. 14
373.80+5.29
390.35+8.40
389.37+9.97
367.24+ 3 ~ 81
359.49+6.75
330.06+4.71

R, , +DR
(fm)

6.37+0.14
6.16+0.04
5.99+0.09
6.25+0. 12
6.30+0. 14
6.37+0.24
6.32+0. 13
6.34+0.36
6.13+0.12
6.35+0.06
6.31+0.19
6.52+0.51
6.66+0.23
6.67+0. 16
6.49+0.32
6.40+0.44
6.30+0. 13
6.24+0. 11
6.42+0. 19
6.19+0.12
6.21+0.12
6.27+0. 18
6.26+0.23
6.23+0.09
6.24+0. 14
6.06+0. 12

JI /~+~J
(MeV fm')

34.44+4. 50
24.85+6.55
15.42+6. 62
26.82+4.27
38.36+5.26
34.90+4. 17
34.47+5.25
42.52+8.41
34.51+5.30
35.25+4.25
35.67+3.65
38.53+4.04
39.30+4.90
56.87+4.87
45.21+2.29
41.62+ 1.60
52.95+5.92
49.56+2.96
54.61+1.38
54.20+3.97
52.38+3.51
59.89+4.95
59.69+ 1.34
59.87+ 1.99
57.80+2.57
61.63+1.94

0.46
0.14
0.34
0.34
0.37
0.17
0.67
0.16
0.72
0. 1 1

1.24
2.79
2.28
2.38
4.26
7.88
6.35

11.91
7.09
7.20

14.73
2.97
1 ~ 82

10.28
4.41
3.60

with the computer code OPSTAT. Keeping the geome-
trical parameters fixed at a certain value, a search for the
real volume potential and the imaginary volume and sur-
face potential was done. First the volume radius was
fixed at a value of 1.1 fm with the other geometrical pa-
rameters kept at values of Ref. 5. The potential depths
were searched keeping a close watch on the y per point
at each energy. Then the value of rv was increased at a
step size of 0.1 fm. When the g per point of all the data
points hit a minimum value between two values of rv
(e.g. , rv had a minimum g /X between 1.2 and 1.3), a
step size of 0.01 fm was used. The process was repeated
to get an accuracy to the third decimal place. Now this
value of rv was kept fixed and a similar process was re-
peated for av s d as.

The grid search yielded the following values for the pa-
rameters of this constant geometry model:

rH "v = 1-237 f

aH=av=0. 68& fm

rs=1.261 fm, as=0. 569 fm

2. Energy dependence of the imaginary potential terms

(9a)

c~(E EF)—
W~(E)= — MeV .

(E—E ) +h

Fitting Eq. (9) to the values of Ws(E) in Fig. 1 yields
the solid curve in Fig. 1 with parameter values

c, =12.05 MeV,

g =+0.031 MeV

dependence of the well depths. With these geometries, a
search of four parameters (Wt. , Ws, b, Vz, and V~) was
done at 26 different energies. However, Vv represents
the real volume component of the mean field and in this
model it corresponds to the sum of VH and AVv. The
best-fit values of 8's and 8'v are represented by points in

Figs. 1 and 2.
In order to perform the dispersion integral in Eq. (2), it

is necessary to represent the variation of potential depths
Wv(E) and Ws(E) in suitable functional forms. Trials
with linear segment parametrization and other forms
were attempted ' and the best forms are

(E E )4 g & &Fl

Ws(E) = MeV,
(E EF) +d—

Once the geometrical parameters are found, they are
kept fixed for this model in order to study the energy

and

d =9.8 MeV .
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7.5-

5.0-

2. 5-

-2.5-

-5.0-,
0 10 15 20 25 30 35 00

EN -EF (MeV)

FIG. 1. Depth of the imaginary surface ( Wz) as obtained from individual best fits (circles). The solid line represents the absorp-

tive potential obtained from the functional representations defined in Eq. (9a) and the dashed line is the dispersive correction term

a vs

The s- and p-wave strength functions So and S&, to-
gether with the scattering length R' at 70 keV, were ex-
amined to provide a guide for Wz(E) at very low ener-

gies, but the experimental uncertainties in So and S, pro-
pagated into 50% uncertainty in W&, so this constraint
was not used in the subsequent analysis.

The volume imaginary potential Wz(E) is not as well

known as Wz(E) due to the lack of elastic-scattering data
above 24 MeV, but the new measurements of total cross
section up to 60 MeV are well described by %v=7 MeV.
Thus, we take

c~=7.0 MeV

and

7.5

5.0-

2. 5-

0.0

-2. 5-

-5.0
0 10 15 20 25 30 35 QO

E —EF (MeV)

FIG. 2. Depth of imaginary volume (8 v} as obtained from individual best fit (circles). The solid line represents the functional
representation defined in Eq. {9b) and the dashed line is the dispersive correction term 6 Vv.
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h =34.5 MeV

and show this as the solid curve in Fig. 2.

V. THE DISPERSION CORRECTION

In the present work, we performed the dispersion
correction for the volume potential analytically with the
result

c2h(E EF—)[(E EF—) +h ]
b Vq(E) = — MeV . (10)

2[(E EF)—+h ]

The dispersion integral for b, Vz(E) was performed nu-

merically. The results are shown as dashed lines for
b Vz(E) and b, V~(E) in Figs. 1 and 2, respectively. Nu-
merical values for these energy-dependent well depths are
given in Table III. Since there is no further possibility of
parameter variation, these values of 6 Vz(E) and 5 Vv(E)
are straightforward predictions of the dispersion theory.
Whether or not they provide a consistent description of
the data or an improved understanding of the phenome-
nological potential will be examined in the present sec-
tion.

The final results of the fixed geometry grid search were
values of Wv Ws Vv and b Vs at each of the 26 ener-
gies for which differential elastic-scattering data are
available. The assumed Hartree-Fock term can be ex-
tracted by subtracting the predicted volume dispersion
correction from the fitted values for Vv, i.e.,

VH(E) = Vq(E) —b, V~(E)
grid search predicted

since AVt, (r, E) was constructed to have the same
geometry as VH(r, E). Results are shown in Fig. 3 where

the small circles come from fits to the scattering data and
the large circles are based on fits to the total cross-section
data at 30, 36, 45, 50, and 60 MeV. Large plotting sym-
bols are used as a reminder that optical-model parame-
ters obtained from total cross-section data alone are not
as well determined as they are from detailed differential
scattering cross-section measurements.

The square symbols at negative energy in Fig. 3 are ob-
tained by fitting the binding energy of known single-
particle bound states by a procedure discussed at greater
length in Sec. VI.

The resulting values for VH(E) in Fig. 3 are well de-
scribed by the function specified in Eq. (3), i.e.,

VH (E)= —46.4 exp[ —0.34(E EF ) l—46.4], (12)

VH(E) = —46.4 exp[ —0.31(E EF ) l4—6.4]

for Pb. The coefficient @=0.0073 MeV ' and the cor-
responding nonlocality range 13=0.78 fm is not far from
the value P=0.85 fm taken by Percy and Buck in their
original work on nonlocal potentials. We conclude that it
is possible to find a reasonable representation for VH(r, E)
that meets the expectation of smoothness over a substan-
tial energy range.

A second test of the present application of the DOMA
is to compare the predictions for b, Vz(E) [obtained by
applying the dispersion relation to Wz(E)] to the values
of EVs(E) obtained in the grid search. The dashed curve
in Fig. 4 is the same as the dashed curve in Fig. 1 but
now extended to negative energies. The circles come
from fits to the scattering data while the squares come

which is in very good agreement with the results of
Johnson et al. '

TABLE III. Energy-dependent well depths for the correction terms 5 V& and hVz. The geometries
for these terms were given in Sec. IV C 1.

E (MeV)

—20
—18
—16
—14
—12
—10
—8
—6
—4
—2

0
2
4
6
8

10
12
14
16
18
20

av, (MeV)

—2.28
—1.90
—1.54
—1.21
—0.89
—0.58
—0.29

0
0.29
0.58
0.89
1.21
1.54
1.90
2.28
2.67
3.06
3.44
3.81
4.14
4.42

LVs (MeV)

—1.61
—2.72
—3.69
—4.04
—3.39
—2.14
—0.95

0
0.95
2.14
3.39
4.04
3.69
2.72
1.61
0.62

—0.19
—0.83
—1.34
—1.74
—2.06

E (MeV)

22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60

AVl, (MeV)

4.65
4.81
4.91
4.95
4.94
4.88
4.79
4.68
4.55
4.41
4.26
4.1 1

3.96
3.82
3.68
3.54
3.41
3.29
3.18
3.07

AVs (MeV

—2.32
—2.52
—2.67
—2.80
—2.89
—2.96
—3.02

3.05
—3.08
—3.09
—3.09
—3.08
—3.07
—3.05
—3.02
—2.99
—2.96
—2.93
—2.89
—2.85
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I
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EN
(Ne'jj' )

40 50 BQ

FIG. 3. Energy dependence of the depth of empirical Hartree-Fock potential VH{E). The open circles represent the individual
best fits from differential cross-section data, closed circles from total cross-section data, and squares from the bound states. The line
represents the form obtained from Eq. {3).

from the bound states. There appears to be good general
agreement between the predicted dispersion relation
curve and the empirical points.

A third test of the model comes from comparing pre-
dictions of the full dispersion-corrected potential with the
full set of scattering observables. This comparison is car-
ried out in Fig. 5 for the 26 sets of di6'erential cross-
section measurements. The DOMA gives a very good
overall description of the scattering data. The phase of

5. 0

2. 5-

(13)

and the root-mean-square radius
1/2

0(8) is generally very well reproduced; however, at
higher angles, the agreement with the data is not perfect.
One plausible explanation for this drawback is the reli-
ance on Woods-Saxon form factors. Indeed, the
significant improvement in y /N for the Fourier-Bessel
calculations in Sec. IVB over the individual best-fit re-
sults generally occurred at large angles.

Finally, the new measured values of the total cross sec-
tion are shown to be in good agreement with the model in
Fig. 6.

In Fig. 7 we show the energy dependence of the volume
integral per nucleon

Jv 4~ f r V(r, E)dr

0.0-

-2. 5-

r V rEdr

J r V(r E)dr
(14)

-5.0
-20 I

—10 10

E~ (MeV)

20 30 40

FIG. 4. Depth of the real surface {5Vz) as obtained from in-
dividual best fit. Open circles are from differential scattering
cross-section data and squares from bound states. Dashed line
represents the dispersive correction term obtained from W&.

for the full potential (solid line) and for the underlying
Hartree-Fock-type potential VH (dashed line). The
points at positive energy are derived from the individual
best fits to the data (Table I), but they are assigned errors
consistent with Fourier-Bessel analysis of the scattering
data (Sec. IVB). The points at negative energy are dis-
cussed in Sec. VI. It is clear from Fig. 7 that the
geometry of the final potential is energy dependent (due
to the waxing and waning of hVz) even though all of the
geometrical input parameters are constants.
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VI. EXTRAPOLATION TO NEGATIVE ENERGY

The mean field V ( r, E) is a continuous function of ener-

gy and it varies smoothly but nontrivially when E
changes sign. One of the most appealing features of this
dispersive optical-model potential is that the shell-model
potential for bound states may be obtained by extrapolat-
ing the real part of the optical potential toward negative
energies. Moreover, this extrapolation is entirely fixed
from the dispersion analysis of the scattering data. There
are no free parameters in the construction of the shell-
model potential. However, in order to test the success of
the procedure, one needs to know the properties of the
bound states in the n+ Bi system. Since there is little

information concerning the single-particle states in these
odd-odd nuclei, we take the attitude that the OMP for

Bi can be extrapolated to negative energies to describe
the bound states in n+ Pb. This seems to be quite
reasonable since the real part of the OMP for Bi has
been shown to be practically identical to that for Pb.
[In the global potential model of Rapaport, the two well
depths should differ by 132 keV since the values of
(N —Z)/A are not quite identical. ] The same approach
was taken by I.GS (Ref. 8) in their study of the optical
potential for bismuth. Experimental values for the bind-
ing energies of the single-particle states are taken from
Refs. 24 —26.

At each of the single-particle energies E„t,, the DOMA

10

104-,

10

10

10

410 -:
CO

J3
104

10 =.

10 -:

10o
0 20 QO 60 80 100

c.m. Angle (deg)
120 160 180

FIG. 5. Comparison between experimental differential scattering cross section and theoretical predictions at different energies.
Error bars are displayed whenever they are larger than the plotting symbols.
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potential can be searched to provide one number. %e
perform these calculations twice. First, we assume that

Vv(E«J ) = VH(E«, )+5 Vv(E„i~ )

is given exactly by the DOMA and the surface dispersion
term can be searched for the well depth b, Vz(E«) that
gives the correct binding energy for that state. This pro-
cedure yields the squares in Fig. 4 which are seen to be in
excellent agreement with the predicted form of b, Vz(E)
Alternatively, we can hold b, Vz(E„&, ) to the values given
by the DOMA (dashed line in Fig. 4) and search for the
optimum value of V~(E«). By subtracting the DOMA

values for b, Vv(E«) from these optimum values, we ob-
tain VH(E„I, ). These values are plotted as the squares in
Fig. 3, which, again, are in very good agreement with the
model values of VH(E)

A. Single-particle energies

The effects of the two correction terms hV~ and AVz
on the spectrum of single-particle energies in Pb are
shown in Table IV and in Fig. 8. It is clear that the ener-

gy spectrum predicted by the smooth term VH(E) is
spread out much more than the experimental spectrum,

104-,

10

ogBj (g n) 2 9Bj (b)

10

10

10

L
CO

10

10

10 -:

103-,

102-:

1Oo,
0 20 LL0 10060 80

c.m. Angle (deg )
120 140 160

FIG. 5. (Continued).
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but the inclusion of both correction terms yields a more

compressed spectrum that is in much better agreement
with the data.

The average energy of a particle (p) or hole (h) valence
shell is defined as

from 9.77 MeV in the Hartree-Fock (HF) approximation
to 7.01 MeV which is in good agreement with the experi-
mental value 5 &

=6.62 MeV.

B. Other bound-state properties

(E ) = g (2j+1)E„,,
uno

g (2j+1),
uno

(Et, ) = g (2j+1)E„&~ g (2j+1),

(15)

(16)

To complete the analysis, the empirical mean-field po-
tential is used to calculate other properties of bound
states.

OCC OCC

where "uno" and "occ" refer to the subshells of the nor-

mally unoccupied and occupied valence shells, respective-
ly. The particle-hole gap 5 i, =(Es) —(Eh) is reduced

1. Single partic-le waue functions and spectroscopic factors

Normalizing the radial wave functions U„& (r), the
spectroscopic factor is given by

1O4,

(c)

10 -:

10 ":

1O4-,

10

LI
10 -:

C to'-,
U

10 -:

ioo
a 20 40 60 80 ioo iso

c.m. Angle (deg )
160 280

FIG. 5. (Continued).
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FIG. 6. Neutron total cross-section values O. T. Model calcu-
lations for O. T are shown by the solid line.
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FIG. 8. Neutron single-particle energies E„» in 'Pb. The
first column on the left-hand side gives the calculated values ob-
tained with the Hartree-Fock potential VH. The second column
gives those calculated with the volume dispersion added to VH

while the third column gives the full model potential for the
mean field VH+AV. The column labeled EXPT contains the
experimental values of ' 'Pb.

250 -20

7.5—

7.0-

-10 10

EN (MeV)

20 30 40
TABLE IV. Neutron single-particle energies E„I, in 'Pb us-

ing real potential of n + Bi. The left-hand column gives the
total, orbital angular-momentum, and total angular-momentum
quantum numbers, respectively. The column labeled VH gives
the HF values, the column labeled VH+EVy gives values with
volume dispersion correction added to the HF field, and the
column labeled V&+5 Vgives the values with the full model po-
tential. The right-hand column gives the experimental values.
All energies are in MeV.
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—0.05
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—0.86
—0.35
—1.07
—2.62
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—0.58
—0.60
—0.97
—1.25
—1.02
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—1.66
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—2.55
—3.52
—2.32

—1.40
—1.44
—1.90
—2.37
—2.51
—3.16
—3.94
—2.63

FIG. 7. (Top) Energy dependence of the volume integral of
the real part of the full potential. Squares are for bound states.
Circles are the individual best-fit values from Table I and the er-
rors are estimates of the uncertainty in this quantity from the
Fourier-Bessel analysis of Sec. IV B. The solid line is the pre-
diction from the DOMA analysis and the dashed line is
Hartree-Fock contribution. {Bottom) Energy dependence of the
root-mean-square radius of the real part of the potential. Plot-
ting symbols have the same meanings as in the top figure.
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—11.39
—10.03
—17.58

—7.69
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S„& =I U„& (r)[mlm(r, E„~ )]dr,
0

where

(17)

m(r, E„&~) =1— EV(r, E)
All dE E=E

(

(18)

2. Occupation probabilities

The occupation probability of the single-particle state
(n, l,j) is approximately given for the hole states by

and for particle states by

F
' —

n!J

E„IJ & EF (19)

nip

E( )EF . (20)

3. The rtns raChus of ualence orbits

The rms radius of each orbit nlj is given by
00 1/2

Rrms — U2 r2drnjlnlj (21)

Table V lists the values of spectroscopic factors, occu-
pation probabilities, and rms radius for each bound state.
As discussed before, the real part of the optical potential
of n + Bi has been used to calculate these values in
208pb

The spectroscopic factors in Table V tend to be lower
than those obtained for Pb by Johnson et al. '

by an
amount ranging from about 0.02 and 0.10. They lie
somewhat closer to values recently obtained by Mahaux
and Sartor using the variational moment approach
(VMA), but that agreement is probably not meaningful

nlj

3d3/2

2g7/z

4$1/2
3d 5/2

1j l s/2
1& l 1 /2

2g9/2

S„l

0.814
0.761
0.838
0.804
0.716
0.742
0.779

N„l

0.064
0.085
0.057
0.071
0.107
0.101
0.101

(rms) (fm

7.668
6.910
8.125
7.309
6.641
6.415
6.473

TABLE V. Spectroscopic factors, occupation numbers, and
rms radii of valence neutron particle and hole states in Pb us-

ing the real potential of n + Bi.

since a new prescription for calculating S„t, was given in

Ref. 28 which reduces the calculated spectroscopic fac-
tors by 0.05—0. 1. The differences between the present
work and that of Johnson et al. are attributed to the
slightly different results for AV(r, E) in the integrand for

S„tj [see Eqs. (17) and (18)]. These differences in b V, in

turn, can be traced to the parametric forms chosen for
Ws(E) and Wv(E). Reference 14 used simple line seg-
ments whereas the present work used the somewhat more
realistic forms given by Eq. (9).

It is perhaps more interesting to compare the results
for N„l of the present work with those from Refs. 14 and
28. Here our results are uniformly higher than those of
Johnson et al. ' by typically 0.01-0.03 for the hole
states. Consequently, our occupation numbers are lo~er
than in Ref. 14 by about the same amount for the particle
states. Thus, the present model contains less depletion of
the Fermi sea than Ref. 14 which, in turn, contains less
depletion than the VMA results of Ref. 28. Since a11

three calculations appear to have somewhat less depletion
than is required to describe the quenching factors derived
from Pb(e, e') experiments, the present results seem
to be going in the wrong direction.

One further comparison can be made. Mahaux and
Ngo have suggested that little difference is expected in
the occupation of single-proton and single-neutron states
close to the Fermi energy. Hence, Johnson et al. ' cite
the close agreement between their model value of
N3p =0.86 and the experimental result N3, '

=0.82+0.09 obtained from (e, e'p) reactions on Tl
and Pb (Ref. 30) and from elastic electron scattering
from Tl and Pb (Ref. 31). Since our value of

3p
=0.90 is larger than that in Ref. 14, the compar-

ison seems again to be unfavorable to the present work.
Recently, however, Grabmayr et al. have reanalyzed
the proton shell closure of Pb by studying ratios of
spectroscopic factors in proton pickup reactions on Tl,

Pb, and Pb. They invoke a sum rule in order to min-
imize the inhuence of reaction mechanisms and obtain
N3P' =0.92+0. 19 which is even larger than our own re-

1/2

suit. Their final value for this occupation number, based
on a weighted average of particle transfer and (e,e'p) re-
sults, is 0.88+0. 15. Even though all of these results are
consistent within the substantial errors in the experimen-
tal values, the new results do suggest a smaller depletion
of the valence shells by short-range and tensor correla-
tions than has been commonly discussed in recent years.

Model ca1culations for the rms radius for each single-
particle state are given for completeness in Table V. The
result show the same general trends as those in Refs. 14
and 28, but the present radii are somewhat smaller.
Whether these differences are significant is not clear but
may provide an interesting comparison for some future
program of ( e, e 'n ) studies.

3p 1/2

&f5t2

&f7zz

169/2

0.792
0.774
0.757
0.765
0.775

0.893
0.895
0.892
0.911
0.915

6.076
5.980
6.276
5.766
5.821

VII. DISCUSSION

Lawson, Guenther, and Smith recently reported a de-
tailed analysis of neutron scattering from Bi from 1.5
to 10.0 Me V which included conventional energy-
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dependent optical-model analysis plus consideration of
the efFects of the dispersion correction [Eqs. (1) and (2)] at
low energy. Their work included new measurements of
neutron scattering ranging from 4.5 to 10.0 MeV plus
older works ' between 1.5 and 4 MeV. Their analysis
also included an evaluation of neutron total cross sections
from 0.5 to 20 MeV. The present analysis retains the 1.5-
to 4.0-MeV data of Refs. 9 and 10 and includes our previ-
ous differential cross-section data from 4.0 to 7.0 MeV,
presents unpublished independent scattering rneasure-
ments at 7.5, 8.0, 9.0, and 10.0 MeV and new scattering
data at 11.0, 12.0, 20.0, and 24.0 MeV and new total
cross-section measurements from ORELA from 0.83 to
60 MeV. The recent scattering data by Olsson et al. ' at
21.6 MeV are also included in the analysis. In the region
of overlap, the new scattering data are in excellent agree-
ment with the 4.5- to 10.0-MeV data of Ref. 8. More-
over, the corrections for compound elastic scattering in
Ref. 8 are essentially the same as those used in Ref. 5 and
the present work. The point to emphasize here is that the
energy range of the present work is considerably expand-
ed over that of Ref. 8. The narrow energy range of the
LGS analysis resulted in several difficulties that are re-
moved in the new analysis: (1) The dispersion integral in
Ref. 8 included only a Woods-Saxon derivative or surface
absorption term. While this restriction is adequate for a
phenomenological description of the scattering for
E„&10MeV, the dispersion integral extends from —~
to + ~. Thus, the dispersion correction hV in Ref. 8
contains AV& but not AV~. The present work removes
this shortcoming by developing a complete model for 8'z
and Wz at all energies. Indeed, our model for Wz would
benefit from more data at higher energies. This is why
we measured o r up to 60 MeV. (2) Much emphasis is

placed in Ref. 8 on locating the energy at which
dJV(E)ldE changes sign with the conclusion that the
only maximum in Jz(E) occurs at E (0. In the present
work (Fig. 7), the predicted maximum occurs close to + 2
MeV in fair agreement with the values obtained in Refs.
14 and 28. Nevertheless, we agree with the general obser-
vation of LGS that the Fermi surface anomaly is only
striking when bound-state data are considered together
with the scattering data. (3) LGS conclude that the slope
of J~(E) vs E changes in the vicinity of 10 MeV. This re-
sult is also obtained in the present work. See Fig. 7 again
for the model predictions for J~(E) over the entire ener-

gy range —20 to +40 MeV.
It remains to compare the results of the present work

with the Johnson, Horen, and Mahaux study of Pb
(Ref. 14). The spirit of the present analysis was largely
guided by that pioneering development of the DOMA.
The similarities are very great considering the fact that
the positive-energy inputs to the model had no data in
common. Specifically, we obtain practically the same
values for the geometrical parameters r~, aH, rz, and az
and derive a very similar expression [Eq. (12)] for the
Hartree-Pock-type potential. The principal difference be-
tween the analyses concerned the functional forms for
Ws(E) and Wv(E). Linear segments were used in Ref.
14 while the more realistic forms given in Eq. (9) were

used in the present work. Our motivation for this choice
had to do with the limited success of Ref. 14 in describing
the scattering data and o T below 10 MeV in their origi-
nal form of the DOMA. We experienced the same
difficulties when we applied the linear segment (LS) mod-
el to the Bi data. ' The difficulty is presumably due to
the discontinuous change in the slope of 8'~ in this
neighborhood. Detailed comparisons of the scattering
from Bi were made with each prescription for the func-
tional forms of Ws(E) and Wv(E). Indeed the value of

per point was at least a factor of 2 worse with the LS
model between 4.5 and 9 MeV and slightly worse at
higher energies. Conversely, the LS model was slightly
better between 2 and 3 MeV, but, at this very low energy,
compound elastic scattering makes up about —,

' of the to-
tal cross section so the sensitivity of the Anal data for
shape elastic scattering to the Hauser-Feshbach calcula-
tions for compound elastic scattering is much greater
here than at higher energies. Finally, the g per point for
the total cross-section data was 27% better with the
present model than with the LS model. We conclude that
the present model for Ws(E) and Wt,(E) is distinctly su-

perior to the LS model for neutron scattering from Bi.
The minor and straightforward improvement in the

DOMA given by Eqs. (9) and (10) would not normally be
given such emphasis. In the case of n + Pb, however,
the deficiencies of the original DOMA of Ref. 14 in the
low-energy domain have given rise to several explana-
tions' ' involving new physics ideas such as angular-
momentum-dependent absorption and energy-dependent
imaginary potential geometry. While some of these ideas
might indeed be important, it might be better to defer
those explanations until after the rough features of the
original model [i.e. , discontinuous derivatives for both
Ws(E) and W~(E)] have been replaced with more realis-
tic representations. We emphasize again that the im-
provement obtained with Eq. (9) has been demonstrated
only for Bi and only for positive energies.

VIII. CONCLUSIONS

New measurements of differential elastic neutron
scattering from Bi above 10 MeV and total cross setup
up to 60 MeV have been presented. These data, together
with earlier rneasurernents from several laboratories, pro-
vide a very extensive data base for this target nucleus and
thus provide a rich resource with which to study the finer
details of the optical-model potential. The central focus
of the present work was the application of the dispersive
optical-model analysis to Bi. The application was suc-
cessful in that the resulting Hartree-Fock-type term was
smoothly varying over a wide energy region. Moreover,
the "anomalous" features of the scattering potential (e.g. ,
energy-dependent geometry at low energies) were well de-
scribed by a dispersion correction.

The dispersion correction provides a straightforward,
parameter-free recipe to extrapolate the well-determined
optical potential at positive energy into the shell-model
domain at negative energy. In order to test the success of
this extrapolation, we made the unusual but highly plau-
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sible assumption that the single neutron states in ~pi
were the same as the single neutron states in Pb. With
this assumption we obtained single-particle energies,
spectroscopic factors, and occupation numbers for the
single-particle states. These "lead-derived-from-
bismuth" shell-model properties were very similar to the
"lead-derived-from-lead" properties obtained by Johnson,
Horen, and Mahaux' thus justifying the assumption
mentioned above and verifying the somewhat larger ener-

gy extrapolation required in Ref. 14. Small systematic
differences were noted in the occupation probabilities for
single neutron states obtained from these two approaches
to the Pb shell-model potential. It is tempting to claim
that the present values are preferred set since the present
model has some advantages in describing the scattering
data below 10 MeV. Some support for this viewpoint
comes from the recent work by Grabmayr et aI. who
find less depletion of the Fermi sea from their study of
particle transfer reactions than they had reported earlier
from (e, e'p ) measurements. However, two words of cau-
tion are required before this claim should be taken too
seriously. ( l) The uncertainties in the experimental
values for the occupation probabilities are still larger
than the differences between Ref. 14 and the present
work. (2) Some problems remain in the extraction of ab-
solute spectroscopic factors and occupation probabilities

obtained via dispersion corrections. The most serious
problem has to do with the assumption that the imagi-
nary potential W(r, E') is symmetric about E'=EF even
for larger values of ~E'~. A more realistic model for
W(r, E') at large ~E'~ would have little influence on the
description of the scattering data at moderate energy or
even on the calculated energies of the single particle
states. Mahaux and co-workers ' have cautioned, how-
ever, that the division of the full potential in VH(r, E) and
b, V(r, E), and, thus, the occupation probabilities and
spectroscopic factors, would be sensitive to the asymptot-
ic behaviors of W(r, E ). This problem is certainly
worthy of further attention.
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