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Transverse form factors in the Riemann rotational model
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The Riemann rotational model is an extension of the Bohr-Mottelson collective model which al-

lows for linear nuclear currents, indexed by the rigidity r, between the limits of rigid rotation,
r 1, and irrotational flow, r 0. The Riemann moment of inertia and transverse form factors
are shown to be weighted linear combinations of the corresponding rigid and irrotational values.

The resulting simple analytic formulas for the transverse factors are useful for the analysis and

interpretation of data from state of the art electron scattering experiments.

The ultimate character of nuclear rotational motion is
one of the unsolved basic science problems in nuclear
structure physics. To solve this problem, a direct deter-
mination of the nuclear current is required. Transverse
form factors probe the current and, as measured in state
of the art electron scattering experiments, provide a prac-
tical tool for our purpose. '2

The Bohr-Mottelson model is a theoretical structure for
analyzing the macroscopic geometrical properties of rotat-
ing nuclei. However, the model is limited to only two
choices for the current: rigid rotation (RR) and irrota-
tional flow (IF). A satisfactory model for analyzing
current measurements must allow for the possibility of
currents intermediate between RR and IF.

The Riemann rotational model is a simple extension of
the Bohr-Mottelson model in which the velocity field is as-
sumed to be a linear function of position. The Riemann
model, in its classical form, provides a theory for rotating
stars. ' For nuclei, a linear velocity field was proposed first
by Cusson. The general collective motion group GCM(3)
provides a unified algebraic framework for both classical
and quantum Riemann models. The classical Riemann
rotor is a Hamiltonian dynamical system on a co-adjoint
orbit of GCM(3). The quantum Riemann models are ir-
reducible unitary representations of GCM(3). 6 The
connection between the classical and quantum models is
achieved by geometric quantization.

A Riemann rotor is characterized by a parameter f,
defined as the ratio of the uniform vorticity ( to the angu-
lar velocity o).3s The uniform vorticity is the curl of the
body-fixed velocity field. The curl of the laboratory frame
velocity vector field U(r), projected onto the body-fixed
frame, is curl U(r) /+2m. It is assumed that both the
uniform vorticity and angular velocity are aligned with a
principal axis, say the x axis, whence curl U(r)

(f+2)tN. When f 0, the body is rotating rigidly;
when f —2, the flow is irrotationaL Alternatively,
define the rigidity «1+f/2 for which the limits are r 1

(RR) and «0 (IF).
The Kelvin circulation is the line integral of the velocity

6eld around the ellipse bounding the y-z principal plane,
which, by Stoke's theorem, is equivalent to a surface in-
tegral,
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The velocity vector field U(r) is also a convex combina-
tion of rigid and irrotational contributions,

U(r) -«URR+ (1 «)U)F,
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Expressed as spherical tensors, the rigid and irrotational
fields are associated with rank one and two tensors, re-
spectively,

U(r)(l) „(V(t)x„(l))())y(1 )(V(&)x (l))(l)

where U(r) g( —1)"U(r)(') „; the spherical basis is

-i JIO/3($)F/SRR)' ltco„, lt + I, and V„O, other-

wise, o)„—pa)/K2, «„' 44(r/3r Y„' .
The transverse electric multipole, in the body-fixed

frame, is given in the Born approximation by

T„(q) gf((A, ) d rj((qr)Y1'((0) J(r),
U

where

f((X)=—(i'+ '/k) (v'X+ 1 b( g —t KXb(,g+ t ), —

and the current is the product of the proton charge density
and the velocity field, J(r) p (r)U(r).

The ratio of the Kelvin circulation X to the angular
momentum L is given by

g«

1+g'(« —1)
'

where g—= (1 —1)F/SRR) ' . SRR and S)F denote the RR
and IF moments of inertia.

The moment of inertia S„ofa Riemann rotor is a con-
vex combination of the rigid and irrotational values,
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Since the electric multipoles are linear in the current, T„(q) is a convex combination of rigid and irrotational terms.
Both terms may be evaluated in a common formalism. First, note the identity involving the vector spherical harmonics,

r

Y['I(Q) (V x« ' ) ' g J3l)L 0 0 0 W(Alki;IL)g( —1)" ~ «YL IIr-(O)V,
L vN

(7)

Next, expand the charge density in spherical harmonics, p (r) =gq pL(«) YLp(II ). Only even harmonics contribute for
axially symmetric nuclei. Then, using the identity (7), we have rigid rotor (k =1) and irrotational (k =2) contributions
to the multipoles,

l 1 L k )I, L .()T„(q;k) gf I(1I) «d«jI(q«)pL(«) J3l)L 0 0 0 W().lkl;IL)( —1)" 0 V„
I,L

(8)

(loa)

(10b)

and the intrinsic quadrupole moment Qp 3(5z)
RjP, and Rp 1.12M '~ . Since both the rigid and irrota-
tional terms factor similarly, the E2 multipole simplifies
to

T„'(q)- —(Ze) 43/xgf '(q) pS„oI„,
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FIG. 1. The transition E2 form factor for ' Er, 0+ 2+.
Intermediate between the rigid rotor (RR) and irrotational flow

(IF) factors is the Riemann curve for «0.5.

Specializing to E2 multipoles, the rigid rotor sum is re-
stricted to L 2, due to angular momentum coupling and
axial symmetry. For the irrotational term, L 0 is the
leading term [of order O(P)] in an expansion in the defor-
mation P. Thus, the integrals for the rigid and irrotational
cases are given to leading order in P by

T„(q;k 1) —(ze)v 3/Irf RRBQ(q)ppI„, (9a)

T„(q;k-2) —(Ze)43/zSIFBIF (q)pro„, (9b)

where the form factors are

5@(q)- [jI(qRp) j3(qRp)],
JSO Qo

Ro RR

8& (q) - [j I(qRp)+j 3(qRp)],
i~O Qo
40 Rp IF

where the form factor for a Riemann rotor is

Br [«~RRSRR+ (1 «)~IFBIF ]/~ (12)

The E2 multipole may be transformed now into an
operator in the Hilbert space of nuclear wave functions by
replacing S„aI„by the angular momentum operator in the
body-fixed frame L„. Rotating into the lab frame and in-
serting the resulting E2 multipole operator between
Bohr-Mottelson rotational wave functions yields the tran-
sition multipole

F '(q)I; ly [If(If+1)—I;(I;+1)]
4

x (I;020 I If0)5:r (13)
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A simple analytic formula has been derived for the
transverse E2 form factor 5:, , Eq. (12), which expresses
the Riemann form factor as a weighted combination of
the rigid and irrotational form factors. In order to apply
this result, the rigidity must be determined. Assuming the
energy spectrum is entirely kinetic, the experimental mo-
ment of inertia determines the rigidity «, Eq. (2). The
form factor, multiplied by 44m/Ze, for the 0+ 2+ tran-
sition in I6sEr is plotted in Fig. 1 for the rigid rotor, irro-
tational fiow, and Riemann fiuid «0.5 cases. As expect-
ed, the Riemann form factor falls between the curves for
RR and IF.

The magnetic form factor in the Riemann model may
be derived easily using the same techniques described here
for the electric multipoles.

It is hoped that this simple extension of the Bohr-
Mottelson model will prove valuable in the analysis of
transition multipole data. By fitting the Riemann model
to the experimental multipoles, a direct determination of
the rigidity «, and hence the Kelvin circulation L, can be
achieved.

Although the macroscopic Riemann model is useful for
interpreting transverse multipole measurements, a com-
plete understanding of nuclear rotational motion must be
founded on Inicroscopic theory, e.g., PHF, cranking, or
the shell model. ' In the framework of the Riemann mod-
el, the problem is then to predict the rigidity r from micro-
scopic theory.
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