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Nucleon spectral function in complex nuclei and nuclear matter
and inclusive quasielastic electron scattering
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Inclusive quasielastic electron scattering by few-body systems, complex nuclei, and nuclear

matter is analyzed in terms of y scaling using a nucleon spectral function which incorporates the

momentum and removal energy distributions generated by two-nucleon correlations. It is demon-

strated that binding effects play a relevant role in y scaling and that a qualitative interpretation of
the available experimental data ~ould require the simultaneous consideration of ground-state

correlations and 6nal-state interaction effects.

Since the work by West, ' there was an increase of in-
terest in inclusive quasielastic (QE) electron scattering in
the kinematics pertaining to y scaling. It has been shown,
in particular, that, using nonrelativistic kinematics and
assuming the validity of the plane-wave impulse approxi-
mation (PWIA), the nuclear structure function (scaling
function) coincides in the limit q ~ (q being the three
momentum transfer) with the longitudinal momentum
distribution. Such a direct link between these two quanti-
ties is, however, destroyed by the use of relativistic kine-
matics. Moreover, it should be reiterated that at finite
values of the momentum transfer the nuclear structure
function in inclusive QE scattering is never linked, even
within the PWIA, to the longitudinal momentum distribu-
tion, unless all nucleons in the target are considered to be
bound with the same value of the energy. The calculation
of inclusive QE cross section both at finite and infinite
momentum transfer does require the knowledge of the nu-
cleon spectral function P(k,E), i.e., the momentum (k)
and removal energy (E) distributions of nucleons imbed-
ded in the nuclear medium. A thorough analysis of y scal-
ing in terms of a realistic spectral function exists to date
only for the three nucleon system. With the recent advent
of experimental data on QE cross section for complex nu-
clei, 5 the necessity of their analysis in terms of the spec-
tral function is a prerequisite for any progress in this field.
In Ref. 6 the experimental data for 6Fe have been com-
pared with a theoretical calculation based upon the dilute
hard-sphere Fermi gas. In this Rapid Communication the
experimental data for He, ' C, Fe, and nuclear matter
are instead analyzed in terms of the spectral function pro-
posed in Ref. 7, which incorporates the momentum and
removal energy distributions arising from nucleon-nucleon
(NN) correlations. Such a spectral function, whose basic
ingredients will be briefly illustrated here below, results
from an extension of the few-nucleon-correlation (FNC)
model of Ref. 8.

When NN correlations are considered, the spectral
function can be represented as follows:

P(k, E) Pp(k. E)+Pi(k,E),
where Pp includes the ground and one-hole states of the
residual (A —1) system and Pi more complex config-
urations (mainly one-particle-two-hole states) which
arise from two-particle-two-hole states generated in the
ground state of the nucleus A by NN correlations. In
what follows the following forms will be adopted:9

Pp(k, E) I/(4trA) QA, n, (k)b(E (e, ~
) — (2)

and

2

Pi(k, E) (2tr) g dr e'"'Gfp(r) $(E—Efi), (3)
f&a

where Ei —=Eg —i+Emin~ Emin M+Mg —
i MA, Eg i isf= f'

the (positive) excitation energy of the residual (A —1)
system, n, is the momentum distribution of the shell mod-
el single-particle (SP) state a [with SP energy e, and
number of nucleons A, (P,A, A)], and finally Gfp(r) is
the overlap integral between the wave function of the
ground state of the nucleus A and the wave function of the
state f&a of the nucleus (A —1). In Eq. (2) the sum over
a runs only over hole states and in Eq. (3) the sum over f
also includes the integration over continuum states.
Within the Hartree-Fock (HF) approximation Pi(k, E)

0, and the HF spectral function, i.e., Eq. (2) with
n, (k) n," (k) is recovered. The occupation number of
the state i is c; =fn;(k)k'd—k &1 and c;" =fn;""(k—)
x k dk 1, for hole states, and c; & 0 and c;"" 0, for
particle states. The spectral function and the momentuin
distribution n(k) are related by the momentum sum
rule ' which leads, in the specific case of the spectral func-
tion (1), to

n(k) 4tr p(kE)dE 4tt Pp(k E)dE+4tt e Pi(k E)dE np(k)+ni(k) . (4)

For an extended system like nuclear matter, the hole part of the spectral function can be cast in the following form:"

pNM(k E) 3/(4ttkF3)z(k)Q(kF —k)J(E+e(k)), (5)
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where Z(k) is the hole strength, e(k) the hole-single-

particle spectrum, and kF the Fermi momentum [in ab-
sence of NN correlations e(k) k 2/2M, Z(k) 1, and the
usual Fermi gas spectral function is recovered]. Calcula-
tions in the three-nucleon system'o and nuclear matter"
show that the behavior of the spectral function at high
values of k and E is almost entirely governed by P~, the
approach of Ref. 7 aims at providing a realistic model for
this quantity starting from the observation that the per
turbative expansion for the NN interaction and the nu-

cleon momentum distribution, s as well as the direct calcu-
lation of Eq. (3) for different values of the upper limit of
integration (see Fig. 3 of Ref. 10), clearly show that at
high values of nucleon momentum and removal energies,
the spectral function is governed mainly by the process

(two n-ucleon correlations, according to Ref. 8) in which
the momentum k~—=k of a high-momentum nucleon (the
hard nucleon) is balanced only by the momentum k2~ —k of another nucleon, with the remaining (A —2) nu-
cleons (the soft nucleons) acting as spectators with total
momentum k~ 2~0. Such a picture leads to a spectral
function P~ in the form of a b function b(E —E~(k)),
with E ~ (k) determined from the following equation:

(M 0 2 +k 2) I/2 ~ (M 2 y k 2) i/2+ M (6)
where M~-~ M~ -M+E~(k). By allowing the specta-
tor (A -2) system to share momentum with the hard nu-
cleon, the spectral function will acquire a removal energy
and momentum dependence for EWE(k), which, in Ref.
7, has been assumed to be of the following form:

P~(k,E) (4n) 'n~(k)Nexp[ —(2o ) '[JM(E —Eth, ) —QM(E~(k) —Eth )] ] (7)

where N is a proper normalization constant [such that
4&f dEP&(k E) ni(k)] Ethr I E~ I

—
I EA —21 is

two-body breakup threshold and the full width at half
maximum I (k) is given by

I (k) 4crJ(21n2)E ~ (k)/M (E)~+E ~ (k), (8)

where &E&~ fEdEP~(k, E). The above spectral func-
tion, whose theoretical validation is discussed elsewhere,
satisfies the momentum [Eq. (4)] and energy'~ sum rules;
is free from any adjustable parameters; is expressed
through many-body quantities, e.g., n~(k) and (E)~,
which have been calculated for few-body systems, com-
plex nuclei, and nuclear matters in terms of realistic NN
interactions. For 3He and nuclear matter, Eq. (7) is in

excellent agreement with the many-body results of Refs.
10 and 11. The full spectral function (1) for He, ' C,
5sFe, and nuclear matter has been obtained using Po in

the forms (2) and (5), and P~ in the form (7); the
momentum distributions no(k) and n~(k), and the value
of (E)~ have been taken from Ref. 11 (nuclear matter),
Ref. 13 ( He), and Ref. 14 (' C), which yield on the aver-

age no(k)k dk 0.8 and fn~(k)k dk 0.2 for He
and C, and fno(k)k2dk 0.75, fn~(k)k dk 0.25 for
nuclear matter; for 5sFe we have chosen no(k)

0.8n""(k) and n~(k) n(k) no(k), with—n(k) from
Ref. 6. The values of hole energies were taken from
(e,e'p) experiments. ' In order to illustrate the relevant
role played by the removal energy dependence of P(k, E),
the saturation properties of the momentum sum rule for
3He, '2C, and nuclear matter are reported in Fig. 1, which
clearly shows that the trend previously observed in He
(Ref. 10) and nuclear matter, " namely that the high-
momentum components are strictly linked with high
values of the removal energy, holds in finite nuclei as well;
it can also be seen that the predictions of our spectral
function very satisfactorily agree with the ones by many-
body calculations. The nuclear structure function (scaling
function), which appears in the definition of the inclusive

cross section in PWIA, is given by 's

+M ~ [M 2 + (k +q )2] I /2 + (M~4 2 +k 2 ) I /2

where ro(q) is the energy (three momentum) transfer.
The scaling variable y~f(q, m) is ~y ~ km;, (q~o)qEmjg)q

i.e., the solution of

+M [M2+(q+y)]1/2+(M2+y2) I/2(11)

In the asymptotic limit q ~, one has

F(y) 2ng n, (k)k dk

with'

+2n E dE„( ) P)(k,E)kdk, (i2)

M — —M-
2[y+(y +My —i)'

As reiterated in Ref. 16, the asymptotic scaling function
scales in y but differs from the longitudinal momentum
distribution

f(y) 2n dE P(k E)kdk 2n n(k)kdk,~E~ u lyl ~ lyl

(i4)

the difference depending upon the role played by nucleon
binding in QE scattering. We have compared the theoret-

~k~(y, q, e,)
F(y,q) 2ng k &, &

n„(k)kdk

E (y,q) +k, (y, q, E)
+2n dE, &, , &

P~(k, E)kdk, (9)

where the limits of integration are fixed by the energy
conservation
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FIG. 1. The saturation of the momentum sum rule (4}. The
dotted line represents no(k) calculated in Ref. 10 (IHe), Ref. 11
(nuclear matter), and Ref. 14 ("C), respectively. The dashed,
dash4otted, and double-dotted lines represent Eq. (4) calculat-
ed with the spectral function defined by Eqs. (1), (2), (5), and
(7), fixing the upper limit of integration equal to E .. 50, 100,
and 300 MeV, respectively; the circles, filled circles, and stars
represent the same quantity obtained in Ref. 10 ('He) and Ref.
11 (nuclear matter) using many-body spectral functions. The
solid line is the total momentum distribution (4). The results
presented in this figure for He and nuclear matter are taken
from Ref. 7.

the phase space factor of Ref. 16, viz. , K(y, q) q/
[M + (q +y) ] '~ . The comparison between Eqs. (9) and
(15) is a significant one, for, if the PWIA is the dominant
underlying mechanism of QE scattering, F'" (y, q) should
coincide with F(y, q). It should be pointed out that in
Ref. 6, a different prescription has been used to obtain the
scaling function and the scaling variable, namely the ener-

gy conservation has been approximated by the one in
which k in the second term of the right-hand side of Eq.
(10) has been disregarded with respect to M~ ~, such a
procedure is strictly valid for nuclear matter only, in
which case the equations for E,„, k;„,k,„, and y used
in Ref. 6 coincide with ours; for finite nuclei the scaling
functions obtained with the exact energy conservation
(10) appreciably differ, particularly at large values of
~y ~, from the ones of Ref. 6. The comparison between

the theoretical and experimental scaling functions, which
is presented in Fig. 2, clearly shows the same trend previ-
ously observed in 3He, namely, whereas at y 0 [i.e.,

(q 2+ M2) '~2 —M +E;„=ro~,z], nucleon binding
plays a minor role and the data qualitatively agree with
theoretical calculations, at high negative values of y the
following A-independent features can be observed as in
the case of He (i) the scaling function is almost en-
tirely given by the correlation contribution due to P~, so
that the HF result is lower than the experimental data by
several orders of magnitude; (ii) the longitudinal momen-
tum distribution strongly overestimates the experimental
data and appreciably differs from the asymptotic scaling
function; (iii) even when correlations are considered, an
appreciable discrepancy between experimental data and
theoretical calculations occurs, which decreases with mo-
mentum transfer. Such a discrepancy is a clear manifes-
tation of the effects from final-state interaction (FSI); as a
matter of fact, according to PWIA the theoretical scaling
function should increase with momentuin transfer,
whereas the experimental data decrease with q; (iv) for
fixed values of y, the q dependence of the experimental
data is weaker than the one of the theoretical calculation,
which suggests that the increase of the scaling function,
due to the decrease of k;„with q, is almost balanced by
its decrease due to FSI. In a recent paper, ' a nuclear
matter spectral function based on the Brueckner-Bethe-
Goldstone theory and modified in order to be used for
finite nuclei, has been employed in the calculation of Fe
scaling function, with results exhibiting the same qualita-
tive trend as the one shown in Fig. 2, in particular the
nonsaturating behavior of the calculated scaling function
at large values of y.

The q behavior of the scaling function for Fe for fixed
values of y, is presented in Fig. 3. It can be seen that, at
high values of (y (, the experimental data do not scale
and that the theoretical asymptotic scaling function is still
lower than the experimental data at the highest value of q.
The value of the asymptotic experimental scaling function
obtained in Ref. 17 is, however, in close agreement with
the corresponding theoretical value. In Ref. 20, a realistic
nuclear matter calculation of the scaling function includ-
ing FSI within the linked cluster expansion has been re-
ported. At high values of the momentum transfer, FSI
effects have been found to vanish, and the scaling func-
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FIG. 3. The experimental scaling function of 5IFe (Ref. 17)

compared with the longitudinal momentum distribution (14)
(dashed line) and the asymptotic scaling function (12) (solid
line). The stars with error bars represent the value of the exper-
imental scaling function extrapolated in Ref. 17 to q
which is believed to represent the experimental asymptotic scal-

ing function.

y (MeV/c}

FIG. 2. Comparison between the experimental scaling func-
tion [Eq. (15)] obtained in Ref. 17 with theoretical calculations
performed with the spectral function defined by Eqs. (1), (2),
(5), and (7). The dotted line represents the one-body contribu-
tion [first term of Eq. (9)], whereas the double-dotted and
dash-dotted lines include also the many-body contribution
[second term of Eq. (9)],corresponding to the kinematics shown

in the inset. The solid line is the asymptotic scaling function
(12) and the dashed line the longitudinal momentum distribu-
tion (14). The Hartree-Fock results for finite nuclei are repre-
sented by the dotted lines divided by 0.8.

tion, which turned out to approach the longitudinal
momentum distribution, has been found to be sensibly
higher than the experimental points. According to our
calculations, the latter result should be ascribed to the ab-
sence of binding effects in the approach of Ref. 20; as a
matter of fact, it can be seen from Fig. 3, that when the
spectral function is used, the asymptotic scaling function
is sensibly lower than the experimental data.

Several approximated forms for P~ have recently been
employed in the calculations of inclusive processes at high
energy and momentum transfer; *' in particular two
models have been considered: (i) the b-function model in
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which only the mean value of the energy associated with
the excited configurations is taken into account, viz. ,
P

~ (k,E) n 1 (k)b(E —E 1 ), where E 1 can readily be
found from the energy sum rule (for details see Ref. 9);
(ii) the b-function model with two-nucleon correlations,
viz. , Pl(k, E) tt t(k)8(E —El(k)), with El(k) being the
solution of Eq. (6). In Fig. 4, the asymptotic scaling func-
tion (12) predicted by these models is compared with the
one obtained by model (7). It can be seen that at high
negative values of y the 8-function models yield totally
different results with respect to the model in which the en-
ergy dependence of the spectral function for EseE|(k) is
taken into account.

In conclusion, we would like to point out once again
that: (i) The calculation of quasielastic electron scatter-
ing at high values of y has to be performed in terms of the
spectral function and not in terms of the momentum dis-
tribution only; to this end the model developed in Ref. 7
and in this paper represents a valid candidate for complex
nuclei [note that the finite widths of the hole states, disre-
garded in Eqs. (2) and (5), slightly affect the inclusive
cross section only at y=0 without any appreciable
change of our results). (ii) Even when binding effects are
taken into account, a sizable discrepancy between PWIA
predictions and the experimental points at the highest
value of the momentum transfer, remain to be explained;
such a discrepancy, which is present even in the exact
treatment for deuteron and 3He, ' should not be ascribed
to some inadequacies of the used spectral function for
complex nuclei, but to the presence of FSI which seem to
affect present experimental data even in the region of the

1028

103=

1048

1P-5 8 Fe

10-6

highest momentum transfer. Progress has already been
done to develop a realistic treatment of FSI,2o but further
efforts are necessary in order to take binding effects (NN
correlations) and FSI into account simultaneously.
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FIG. 4. The asymptotic scaling function of 5~Fe [Eq. (12)]
calculated with different model spectral functions for Pl, with
Po given by Eq. (2). Dotted line: P 1 (k,E) n 1 (k)b(E
—E~(k)}; dash4otted line: P~(k, E) tt~(k)b(E —E~); solid
line: Eq. (7). The dashed line represents the longitudinal
momentum distribution (14).
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