Particle stability of the isotopes 26 O and 32 Ne in the reaction 44 MeV/nucleon 48 Ca + Ta

D. Guillemaud-Mueller, J. C. Jacmart, E. Kashy,* A. Latimier, A. C. Mueller, F. Pougheon, and A. Richard Institut de Physique Nucléaire, F-91406 Orsay CEDEX, France

Yu. E. Penionzhkevich, A. G. Artuhk, A. V. Belozyorov, and S. M. Lukyanov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, P.O. Box 79, Dubna, Moscow, U.S.S.R.

R. Anne, P. Bricault, C. Détraz, M. Lewitowicz, and Y. Zhang Grand Accélérateur National d'Ions Lourds, Boîte Postale 5027, F-14021 Caen CEDEX, France

> Yu. S. Lyutostansky and M. V. Zverev Moscow Physical Engineering Institute, Moscow, U.S.S.R.

> > D. Bazin

Centre d'Etudes Nucléaires de Bordeaux, Le Haut Vigneau, 33170 Gradignan, France

W. D. Schmidt-Ott

II Physikalisches Institut, Universität Göttingen, D-3400 Göttingen, Federal Republic of Germany (Received 31 October 1989)

An attempt has been made to synthesize the extremely neutron-rich isotope ²⁶O in the nuclear reaction 44 MeV/nucleon ⁴⁸Ca+Ta. Use was made of magnetic separation and identification methods including time-of-flight and $\Delta E, E$ measurements. The ²⁶O nucleus appears to be unstable against particle emission since no events attributable to the ²⁶O nucleus were observed at a level one order of magnitude lower than that predicted from the extrapolated yields. The previously unobserved isotope ³²Ne was found to be particle stable and the isotope ³¹Ne particle unstable. Neutron-separation energies calculated with different models are tabulated.

INTRODUCTION

The synthesis and investigation of the properties of the extremely neutron-rich nuclei for the light elements present considerable interest both for the localization of the neutron drip line and for the test of theories describing the exotic nuclei.¹⁻⁴ In the region of the extremely neutron-rich nuclei of the light elements new types of decay⁵⁻¹⁴ and a new region of deformation are predicted; the latter may lead to an enhanced stability in these loosely bound nuclei and to the formation of new shells.¹⁵⁻¹⁸

At this time all the neutron-rich isotopes of the light elements up to nitrogen (Z = 7), which are predicted to be particle-stable, have been synthesized.^{19,20} In most of the theoretical work²¹ nuclear stability is expected for the heavy isotope ²⁶O of the next element oxygen with the closed proton shell Z = 8, whereas the stability of the doubly magic isotope ²⁸O is only predicted in work of Möller-Nix²¹ (Table I).

Experimental^{22,23} and calculated²⁰ two-neutron separation energies S_{2n} can be compared for the heavy isotopes ^{23,24}O for which the masses are known. It shows an underestimation by theories, with the difference ΔS_{2n} $=S_{2n}(\text{expt})-S_{2n}(\text{theor})$ up to 2 MeV. If this trend would persist for the heavier isotopes, then the isotope ²⁶O and, possibly, ²⁸O may well be stable.

In this work an attempt was made to synthesize the isotope ²⁶O in order to verify experimentally its nuclear stability. For this purpose an intermediate energy ⁴⁸Ca beam that had been found to be very efficient for the production of neutron-rich nuclei with $6 \le Z \le 18$ (Ref. 23) was used.

EXPERIMENTAL PROCEDURE

A ⁴⁸Ca beam at an energy of 44 MeV/nucleon was made using the Electron Cyclotron Resonance (ECR) Minimafios source of Grand Accelerateur National d'Ions Lourds (GANIL) as described in Ref. 24. The projectile-like fragments were collected at 0° by the triple-focusing magnetic analyzer Ligne d'Ions Super Epluchés (LISE).²⁵

The search for the exotic nucleus ²⁶O, which is expected to have a very low production yield, was carried out using a four-stage semiconductor telescope consisting of two 300 μ m and one 1-mm silicon detectors, and a 5.5mm Si(Li) residual energy detector. These detectors were mounted inside a small vacuum chamber connected to the exit of LISE. The time of flight of the fragments between the initial (at the target) and final (telescope position) foci of LISE was measured.

The fragments were identified in a redundant way as

TABLE I. Two-neutron separation energy $S_{2n} = -M(A,Z) + M(A-2,Z) + 2Mn$ in MeV of the neutron-rich isotopes of oxygen predicted by different mass formulas (Ref. 21); MN, Möller-Nix; CKZ, Comay-Kelson-Zidon; SN, Satpathy-Nayak; T, Tachibana *et al*; JM, Jänecke-Masson; and comparison with experiments. An asterisk indicates an undetermined value.

Nuclide	MN	CKZ	SN	Т	JM	Experimental S_{2n}	
	S_{2n}	S_{2n}	S_{2n}	S_{2n}	S_{2n}	Ref. 23	Ref. 22
²³ O	7.15	9.22	8.0	7.45	9.19	9.59	9.67
²⁴ O	4.91	6.16	6.78	4.20	5.96	6.98	5.79
²⁶ O	0.67	0.87	5.32	1.26	0.96	*	*
²⁸ O	0.7	-2.08		-0.13	-1.61	*	*

described in Ref. 24: The two first detectors allowed two independent Z determinations, the mass was derived from the total energy and the time of flight, or from the magnetic rigidity and the time of flight. This method provides a clear identification in atomic number and mass.

RESULTS AND DISCUSSION

It was shown²⁶ that the production yield of the neutron-rich isotopes at an intermediate energy is strongly dependent on the N/Z ratio of the target. In this experiment the choice of the target was properly studied in order to optimize the production of light isotopes at the neutron drip line.

This is shown in Fig. 1, where production counting rates of carbon to fluor isotope are displayed for targets

of ⁹Be, ⁶⁴Ni, ¹⁸¹Ta whose thickness resulted in an equivalent energy-loss for the beam.

It is clearly visible that for very neutron-rich isotopes the tantalum target is the most powerful target. For more stable isotopes the beryllium one is the best. This can be understood by the greater number of atoms per cm^2 available in the beryllium target as compared to nickel or tantalum.

From this study a 173 mg/cm² Ta target corresponding to about 10% of energy loss for the ⁴⁸Ca (44 MeV/nucleon) incident beam was chosen. The spectrometer was set to the magnetic rigidity $B\rho=2.88$ Tm, which optimizes the transmission for isotopes with A/Z=3.25.

Figure 2 represents the two-dimensional plot (Z versus time of flight) obtained under these conditions after a 40h measurement with an average beam intensity of 160 enA. The heaviest known isotopes ¹⁹B, ²²C, ²⁹F, and the previously unknown isotope ³²Ne (four events) are clearly visible. The ³¹Ne is particle unstable since no counts of this isotope are observed. The ²⁵O isotope, which is

FIG. 1. Production rate for the isotopes of C,N,O,F, in arbitrary units, obtained with targets of ${}^{9}\text{Be}$, ${}^{64}\text{Ni}$, ${}^{181}\text{Ta}$ in interactions with a ${}^{48}\text{Ca}$ beam at 44 MeV/nucleon. The targets have the same equivalent thickness relative to the energy loss of the incident beam in order to keep the same set of the magnetic rigidity of the spectrometer optimized around ${}^{24}\text{O}$.

FIG. 2. Two-dimensional plot Z vs time of flight obtained in the fragmentation of the ⁴⁸Ca beam at 44 MeV/nucleon on a 173 mg/cm² tantalum target during a 40-h run at a magnetic rigidity $B\rho$ =2.88 T m of the LISE spectrometer. The ³²Ne isotope is clearly visible (four counts). A total of 220 events of ²⁴O has been recorded. No counts of ²⁶O are observed.

Nuclide	MN		CKZ		SN		Т		ЈМ	
	S_{1n}	S_{2n}	S_{1n}	S _{2n}	S_{1n}	S _{2n}	S_{1n}	S_{2n}	S_{1n}	S _{2n}
³¹ Ne	-1.48	2.80	-2.61	0.17	1.24	6.39	-1.46	2.34	-2.25	0.76
³² Ne	1.58	0.10	1.09	-1.52	5.91	7.15	2.35	0.89	1.23	-1.02
³³ Ne	0.36	1.94	-2.17	-1.08	2.95	8.86	-1.21	1.14	-2.35	-1.12
³⁴ Ne	-0.02	0.34	1.20	-0.97	6.15	9.10	2.19	0.98	1.13	-1.22

COUNTS

TABLE II. One-neutron and two-neutron separation energies in MeV of the neutron-rich isotopes of neon predicted by different mass formulas (see Table I).

known to be unstable, is clearly absent. No events corresponding to ²⁶O are seen.

Figure 3 shows the isotopic production along lines which proceed parallel to the drip line with neutron numbers N=2Z-1 (a), N=2Z (b), N=2Z+2 (c) (note that the N=2Z+1 line essentially consists of isotopes known to be particle unbound). A smooth monotonous drop is observed along these lines. From this trend one may expect a production rate of about 30 counts for ²⁶O. Since it is almost impossible to explain the absence of 30 counts by statistical fluctuations, this experiment gives strong evidence for concluding that ²⁶O is particle unstable.

Table II gives the one-neutron and two-neutron separation energies for the isotopes of neon calculated with different mass prediction (see Table I). The result of the experiment for ³¹Ne is in agreement with most predictions. For ³²Ne some of the calculations obviously underestimate the two-neutron separation energy by at least 1 MeV.

An analysis of particle stability for the neutron-rich isotopes of oxygen and neon within the framework of the quasiparticle Lagrangian method (QLM) (Refs. 27-30) has been carried out. This method proved^{27,29} to be effective in describing the properties of the isotopes lying near the line of stability both for magic and ordinary nuclei. In previous work²⁸ it was shown that the QLM also ensures sufficient reliability in the prediction of the properties of nuclei far from the line of stability. In these calculations we applied the same parametrization of the Lagrangian, as that used in Refs. 27-30. Nucleon pairing with the parameter of the renormalized amplitude C_p equal to 1.4 MeV was also taken into account. This choice of the parameters provides the best agreement between the theoretical and experimental values of the oneneutron and two-neutron separation energies of the even-mass isotopes of oxygen with A = 18-24 (Table III). The rms errors calculated by the standard method are relatively small, namely $\langle \delta S_{1n} \rangle = 0.54$ MeV and $\langle \delta S_{2n} \rangle = 1.15 \text{ MeV}.$

In our calculations the isotope ²⁶O is found stable against one-neutron emission $S_{1n}(^{26}O)=0.69$ MeV while two-neutron separation energy is approximately zero: $S_{2n}(^{26}O)=-0.01$ MeV. If by any chance S_{2n} is indeed slightly negative, the presence of the centrifugal barrier for the two outer neutrons in the $d_{5/2}$ subshell would delay considerably two-neutron emission. This could lead to the formation of the quasistationary states of the system ²⁴O+2n. The possibility of two-neutron emission from the ground state was discussed earlier³¹ and two-

FIG. 3. Isotopic production along lines with neutron numbers N = 2Z - 1 (a), N = 2Z (b), N = 2Z + 2 (c). The error bars correspond to one-sigma statistical errors. From the smooth monotonous drop along these lines and the absence of any ²⁶O event, one can conclude to the particle-unbound character of ²⁶O (see the text).

TABLE III. The QLM calculations for the one-neutron S_{1n} and two-neutron S_{2n} separation energies of the even isotopes ^{18,20,22,24}O.

Nuclide		S_{1n} (MeV)	S_{2n} (MeV) Expt.		
		Expt.			
	QLM	Refs. 22 and 23	QLM	Refs. 22 and 23	
¹⁸ O	7.92	8.04	12.67	12.19	
²⁰ O	6.87	7.61	10.61	11.56	
²² O	6.09	6.70	8.79	10.50	
²⁴ O	3.59	4.09	5.85	6.98	

TABLE IV. The QLM calculations for the one-neutron and two-neutron separation energies of the $^{31-34}$ Ne isotopes.

Nuclide	S_{1n} (MeV)	S_{2n} (MeV)
³¹ Ne	-1.04	1.84
³² Ne	1.74	0.70
³³ Ne	-1.26	0.48
³⁴ Ne	0.24	-1.02

CONCLUSION

neutron emission from excited states in ⁶He isotopes was observed.³²

The ²⁸O isotope is also predicted to be relatively stable against one-neutron emission, $S_{1n}(^{28}O)=0.51$ MeV, whereas two-neutron separation energy has a rather large negative value, $S_{2n}(^{28}O)=-0.8$ MeV in line with the calculations of Table I. Thus, the isotope ²⁸O seems to be unstable against two-neutron emission.

For neon isotopes, QLM calculations for one-neutron and two-neutron separation energies are given in Table IV. Odd neon isotopes with A > 29 are unbound; ³²Ne is found to be the last particle-stable neon isotope. The calculations are in agreement with our experimental results.

The problem of the possible existence of deformation for neutron-rich nuclei arising in Na isotopes with $N \ge 20$ was first discussed in Refs. 15–18. However, the problem of a possible occurrence of deformation in the oxygen nuclei with stable proton structure and the possible influence of the deformation effects on the particle stability of ^{26,28}O could not be solved until recently. The study of neutron separation energy for oxygen isotopes has been performed both in spherical and deformed QLM calculations. Our analysis indicates spherical equilibrium shapes for all even oxygen nuclei.

The particle stability of ${}^{26}O$ and ${}^{28}O$ was also recently investigated 33 based on deformed Hartree Fock calculations using Skyrme III force and BCS pairing. It was shown that the ${}^{26}O$ isotope was very loosely bound and the ${}^{28}O$ isotope was particle unstable. Hence, it will be very interesting to check experimentally for the existence of ${}^{28}O$. This may become possible in the near future when the intensities of the GANIL accelerator for metallic beams are upgraded by a factor 10. This experiment used a high-intensity ⁴⁸Ca beam with an energy of 44 MeV/nucleon in the nuclear reaction ${}^{48}Ca + Ta$. A total of 220 ²⁴O nuclei were detected. No events due to ²⁶O were recorded whereas, had it been particle stable, the extrapolated rate indicates more than some 30 ²⁶O nuclei should have been observed. This experimental result provides strong evidence that the neutron-rich isotope ²⁶O is particle unstable.

The calculations of the neutron-separation energy for ^{26,28}O performed within the framework of the QLM method including the potentials of both spherical and deformed nuclei have shown that the extremely neutron-rich isotope ²⁸O is unstable against two-neutron emission in its ground state and ²⁶O slightly unbound against two-neutron emission.

The particle unstability of ${}^{31}Ne$ is clearly demonstrated. A new extremely neutron-rich isotope ${}^{32}Ne$ (four events) is observed for the first time.

One may note that this work is a major step forward in mapping the neutron drip line which historically, has been a rather difficult experimental undertaking. Furthermore, the huge discrepancy between theoretical predictions and experimental result for ²⁶O underlines the importance of even basic identification experiment for putting constraints on nuclear models.

ACKNOWLEDGMENTS

The authors express their gratitude to Prof. Yu. Ts. Oganessian for advice and discussions. We would like to acknowledge F. Geoffroy and Y. Georget for their technical assistance as well as the GANIL operating crew for delivering the ⁴⁸Ca beam. One of us (E.K.) acknowledges partial support from the National Science Foundation.

- *Permanent address: National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824.
- ¹A. J. Baz et al., Light and Medium Mass Nuclei Near the Limit of Nucleon Stability, in Russian (Nauka, Moscow, 1972).
- ²J. H. Hamilton, P. G. Hansen, and E. F. Zganjar, Rep. Prog. Phys. **48**, 631 (1985).
- ³C. Détraz, Proceedings of the International Nuclear Physics Conference, Harrogate, 1986, edited by J. L. Durell, J. M. Irvine and G. C. Morrison (IOP, London, 1987), Vol. 2, p. 495

⁴D. Guerreau, J. Phys. (Paris) Colloq. **47**, C4-207 (1986).

238 (1973)].

- ⁶C. Détraz, M. Epherre, D. Guillemaud, P. G. Hansen, B. Jonson, R. Klapisch, M. Langevin, S. Mattsson, F. Naulin, G. Nyman, A. M. Poskanzer, H. L. Ravn, M. de Saint-Simon, K. Takahashi, C. Thibault, and F. Touchard, Phys. Lett. **94B**, 307 (1980).
- ⁷R. E. Azuma, T. Bjornstad, H. A. Gustafsson, P. G. Hansen, B. Jonson, S. Mattsson, G. Nyman, A. M. Poskanzer, and H. L. Ravn, Phys. Lett. **96B**, 31 (1980).
- ⁸M. Langevin, C. Détraz, D. Guillemaud, F. Naulin, M. Epherre, R. Klapisch, S. K. T. Mark, M. de Saint-Simon, C.

⁵A. B. Migdal, Yad. Fiz. 16, 427 (1972) [Sov. J. Nucl. Phys. 16,

Thibault, and F. Touchard, Nucl. Phys. A 366, 449 (1981).

- ⁹C. Détraz, M. Langevin, D. Guillemaud-Mueller, A. C. Mueller, C. Thibault, F. Touchard, G. Klotz, C. Miéhé, G. Walter, M. Epherre, and C. Richard-Serre, Nucl. Phys. A402, 301 (1983).
- ¹⁰M. Langevin, C. Détraz, D. Guillemaud-Mueller, A. C. Mueller, C. Thibault, F. Touchard, G. Klotz, C. Miéhé, G. Walter, M. Epherre, and C. Richard-Serre, Phys. Lett. **130B**, 251 (1983).
- ¹¹M. Langevin, C. Détraz, M. Epherre, D. Guillemaud-Mueller, B. Jonson, and C. Thibault, Phys. Lett. **146B**, 176 (1984).
- ¹²Yu. S. Lyutostansky, V. K. Sirotkin, and I. V. Panov, Phys. Lett. **161B**, 9 (1985).
- ¹³M. J. G. Borge, M. Epherre-Rey-Campagnolle, D. Guillemaud-Mueller, B. Jonson, M. Langevin, G. Nyman, and C. Thibault, Nucl. Phys. A460, 373 (1986).
- ¹⁴J. P. Dufour, R. Del Moral, F. Hubert, D. Jean, M. S. Pravikoff, A. Fleury, A. C. Mueller, K. H. Schmidt, K. Sümmerer, E. Hanelt, J. Frehaut, M. Beau, and G. Giraudet, Phys. Lett. B 206, 195 (1988).
- ¹⁵C. Thibault, R. Klapisch, C. Rigaud, A. M. Poskanzer, R. Prieels, L. Lessard, and W. Reisdorf, Phys. Rev. C 12, 644 (1975).
- ¹⁶X. Campi, H. Flocard, A. K. Kerman, and S. Koonin, Nucl. Phys. A **251**, 193 (1975).
- ¹⁷C. Détraz, M. Langevin, M. C. Goffri-Kouassi, D. Guillemaud, M. Epherre, G. Audi, C. Thibault, and F. Touchard, Nucl. Phys. A**394**, 378 (1983).
- ¹⁸Yu. S. Lyutostansky et al., in Nuclei Far from Stability, Proceedings of the Fifth International Conference on Nuclei Far from Stability, Rosseau-Lake, Ontario, Canada, 1987 AIP Conf. Proc. 164, edited by Ian S. Towner (AIP, New York, 1987), p. 727.
- ¹⁹M. Langevin, E. Quiniou, M. Bernas, J. Galin, J. C. Jacmart, F. Naulin, F. Pougheon, R. Anne, C. Détraz, D. Guerreau,

D. Guillemaud-Mueller, and A. C. Mueller, Phys. Lett. 150B, 71 (1985).

- ²⁰F. Pougheon, D. Guillemaud-Mueller, E. Quiniou, M. G. Saint-Laurent, R. Anne, D. Bazin, M. Bernas, D. Guerreau, J. C. Jacmart, S. D. Hoath, A. C. Mueller, and C. Détraz, Europhys. Lett. 2, 505 (1986).
- ²¹P. E. Haustein (special editor), At. Data Nucl. Data Tables **39**, 185 (1988).
- ²²A. H. Wapstra, G. Audi, and R. Hoekstra, At. Data Nucl. Data Tables **39**, 281 (1988).
- ²³J. M. Wouters, R. H. Kraus, Jr., D. J. Vieira, G. W. Butler, and K. E. G. Löbner, Z. Phys. A **331**, 229 (1988).
- ²⁴D. Guillemaud-Mueller, Yu. E. Penionzhkevich, R. Anne, A. G. Artukh, D. Bazin, V. Borrel, C. Détraz, D. Guerreau, B. A. Gvozdev, J. C. Jacmart, D. X. Jiang, A. M. Kalinin, V. V. Kamanin, V. B. Kutner, M. Lewitowicz, S. M. Lukyanov, A. C. Mueller, N. Hoai Chau, F. Pougheon, A. Richard, M. G. Saint-Laurent, and W. D. Schmidt-Ott, Z. Phys. A 332, 189 (1989).
- ²⁵R. Anne, D. Bazin, A. C. Mueller, J. C. Jacmart, and M. Langevin, Nucl. Instrum. Methods A 257, 215 (1987).
- ²⁶D. Guerreau, Nucl. Phys. A447, 37c (1985).
- ²⁷V. A. Khodel and E. E. Saperstein, Phys. Rep. 92, 182 (1982).
- ²⁸M. V. Zverev and E. E. Saperstein, Yad. Fiz. 42, 1082 (1985).
- ²⁹V. A. Khodel, E. E. Saperstein, and M. V. Zverev, Nucl. Phys. A465, 397 (1987).
- ³⁰A. B. Migdal, Theory of Finite Fermi Systems and the Properties of the Atomic Nucleus, (Nauka, Moscow, 1983).
- ³¹V. I. Goldansky, Zh. Eksp. Teor. Fiz. **39**, 497 (1960).
- ³²O. V. Bochkarev, A. A. Korsheninnikov, E. A. Kuz'min, I. G. Mukha, A. A. Oglobin, L. V. Chulkov, and G. B. Yan'kov, Pis'ma Zh. Eksp Teor. Fiz. **42**, 303 (1985).
- ³³M. Nishimura, Report Research Center for Nuclear Physics Report RCNP-TH 87-03, 1987.