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Dispersion relation for effective interactions
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It is argued that the real and imaginary parts of the effective potential operator for scattering
problems obey a dispersion relation also when the Hamiltonian is not Hermitian. Model calcula-
tions are used to demonstrate that the equivalent local potential approximately satisfies the disper-
sion relation when absorption is present. It is also shown that the equivalent local potential is in-
sensitive to the bare potential used in the entrance channel.

I. INTRODUCTION

1P', (E)= t)'„
E — 2+is

(2)

where A'2 is the Hamiltonian in channel 2 and the limit
e~o is to be taken. Equation (1) is often recovered by
invoking the relation

=P —im5(E H)—1 1

E —0+re (3)

in the limit @~0.
The elegance of the dispersion relation in Eq. (1) is not-

able. On the other hand, it says nothing specifi about
the physical mechanisms which cause the energy depen-
dence of the effective interaction. Also the formal opera-
tor in Eq. (2) is conceptually quite removed from the local
optical potential parametrizations which are used to ex-
tract the energy-dependent effects empirically. For a
deeper insight one requires model calculations that ex-

The recent discoveries of energy-dependent effective in-
teractions in analyses of nuclear scattering data at ener-
gies near the Coulomb barrier have generated consider-
able interest. An important unifying concept in this de-
velopment is the dispersion relation between the real and
imaginary parts of the effective interaction. ' Denoting
the formal operator for the effective potential in the en-
trance channel by P'~„, the dispersion relation is written
as

p „ Imf' „(E')
Ref' „(E)=——J dE'

E —E'

where E is the available energy, E, is the threshold ener-

gy for nonelastic processes, and P indicates that the prin-
cipal part of the integral is to be taken.

For the case where the elastic channel 1 couples via the
interaction operator 0' to an inelastic channel 2, one ob-
tains

plicitly account for couplings to nonelastic channels.
Such models for nuclear collisions are invariably based

on Hamiltonians that are not Hermitian. This is not sim-

ply because of practical difBculties in dealing with many
open reaction channels. Typically, a large part of the re-
action cross section is due to the complete fusion process
which is not modeled by coupling to an open scattering
channel, as is assumed in Eq. (2). Discussions of the
dispersion relation for the effective interaction usually do
not consider non-Hermitian Hamiltonians. For instance,
Eq. (3) does not separate the real and imaginary parts of
the propagator in this case.

For these reasons, it is interesting to reexamine the
effective interaction generated by the type of models
which are actually used in practice. In this work we 6rst
give a heuristic argument for the dispersion relation in
Eq. (1) when the Hamiltonian is not Hermitian. We then
present numerical results from model calculations which
illustrate how the equivalent local potential follows the
behavior expected from the formal potential operator.
This provides an intermediate supporting link between
the abstract operator formalism and the energy-
dependent optical potential parametrizations which are
used empirically.

II. DISPERSION RELATION

The dispersion relation for the effective interaction can
be derived by applying the following mathematical rela-
tion:

+I
P dE' , =in EE' —E

This result holds for any function f of a complex variable
E which is analytic on the real axis and in the upper-half
E plane and vanishes as E~ a&. Expressing Eq. (4) in
real and imaginary parts leads immediately to the rela-
tions
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Ref (E)=—I dE/ ™, (5)
III. EQUIVALENT LOCAL POTENTIAL

Imf (E)= —p I dE' ef (E')
E' —E

which are referred to mathematically as Hilbert trans-
forms and physically as the Kramers-Kronig relations
(see, e.g, Ref. 4).

Consider the effective interaction of Eq. (2} when the
Hamiltonian is Hermitian. We distinguish this case by
writing

In this section we investigate numerically the so-called
trivially equivalent local potential. This provides an in-
termediate link between the formal operators discussed
above and the empirical local potentials obtained from
analyzing data.

To define the equivalent local potential, it will suSce to
consider a two-channel problem where the intrinsic states
have zero spins. The radial wave functions u;(r) satisfy
the coupled equations

Introducing the complete set of eigenstates of P,

Pie„&=E„l&„&,
into Eq. (2), we can write

d + V, (r)—E, ui(r)= —Vt2(r)u2(r),
2p dr

d
2

+ V2(r) —Ez u2(r)= —Vzt(r)ut(r) .
2p dr

(14)

E —"E +'
f'„ic „&&c,if'„

(9)
The scattering boundary conditions at large distances re-
quire

under the assumption that the eigenstates of k are
scattering states. Since P is Hermitian, its eigenvalues
E„are real. Consequently, the E dependence of Eq. (9)
satisiies the requirements for Eq. (4), the poles being
below the real axis. Thus the real and imaginary parts of
f"~i satisfy Eq. (5), which is the same as Eq. (1). This ar-
gument holds when the coupling interaction f'is not Her-
mitian and also when it has an energy dependence that is
compatible with the conditions for Eq. (4}.

For the case of the non-Hermitian Hamiltonian we
write

—ik,.r +ik. r
u;(r}~5; te

' +r; ie (15)

where R k; /2p=E;. Typically one includes absorptive
imaginary potentials in V;(r) and requires regular bound-
ary conditions on the wave functions at the origin. In the
calculations presented below flux loss occurs by virtue of
in-going wave boundary conditions on the wave functions
at short distances.

Having solved the coupled equations under the ap-
propriate boundary conditions, it is a simple matter to
obtain the equivalent local potential for the elastic chan-
nel as

8,=P+il, 8, =P —il .

The polarization potential operator can then be written
as

f', (E)
0

If one restricts I to be diagonal with respect to the states
i@,), this expression reduces to

f'„ie, &&c„if'„
i(E)= E E„—iW„+ie '—

where

W„=&e„ilia, )

(12)

(13}
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is real. Clearly Eq. (12) has the same analytic structure as
Eq. (9) when W„ is negative. This case corresponds to
typical coupled-channels calculations which use negative
imaginary potentials to absorb lux out of excited states.
Thus one may expect that such models give results which
are consistent with the dispersion relation of Eq. (1).

FIG. 1. The equivalent local potential at the Coulomb bar-
rier (R,b =10.8 fm) for ' Ni+~Ni as a function of the center of
mass energy (barrier height V,b ——98 MeV). The solid curves are
the results of the coupled-channels calculations in Ref. 5. The
dashed curve parametrizes the imaginary part with Eq. (18).
The dotted curve plots the analytic expression for the real part
in Eq. (19) that is predicted by the dispersion relation.
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V~&(r) = V&z(r)u2(r)/u &(r),

so that by construction,

(16)

d
2

+ V, (r)+ V~~(r) —E u&(r)=0 .
2p dr

(17)

Thus if one were given the elastic cross section for this
problem and asked to determine the effective interaction
which produced it, the correct answer would be the sum
V, (r)+ V~&(r), where the second term is distinguished by
being energy dependent (it also depends on the total an-
gular momentum). The result of Eq. (16), however, could
never be obtained precisely because the elastic cross sec-
tion at best only determines the reflection coeScients r».

A large coupled-channels calculation was carried out
in Ref. 5 to simultaneously describe the fusion and direct
reactions in Ni+ Ni collisions at energies near the
Coulomb barrier. The model used in-going wave bound-
ary conditions to account for the fusion process and con-
tained no additional imaginary potentials. An essential
simplification was to employ the rotating frame approxi-
mation, which effectively amounts to having a set of

I

—C+
2

y +(E Ei )—2
(18)

with A =47.03, B = 1.55, C = 10.353, a =9.2043,
P =5.272, y =11.9, Eo=95 1, an.d E&=101.7. The re-
sult is shown by the dashed curve in Fig. 1. Using this
expression in the subtracted form' of Eq. (1) generates the
real part as (setting E, = —&a ),

states with zero intrinsic spins (for further details, see
Ref. 5). The equivalent local potential for the s wave in
the elastic channel was presented as a function of energy
at a radius corresponding to the barrier position. These
results are reproduced by the solid curves in Fig. 1. The
barrier height in this case is about 98 MeV.

It was remarked in Ref. 5 that the real and imaginary
parts of the equivalent local potential appear to satisfy a
dispersion relation. Here we demonstrate that this is true
to a good accuracy. We have parameterized the imagi-
nary part of the effective potential as

—A B(E——Eo )
1m V )(E)= +

a +(E E) —P +(E E)—

Re V~~ (E)=F(E)—F(E),
A E —Eo C BF(E)= +- ', +a (E —Eo)2+a )' (E E, ) +y— (E Eo) +p—

(19)
(E Eo) in—~E —Eo~+p lnp p(E Eo)—

'Il' 2

This formula with E =99.13 MeV reproduces the numer-
ical results for the real potential very well, as shown by
the dotted curve in Fig. 1.

We have made similar comparisons at other distances,
including the position inside the barrier where the in-

going wave condition was applied. Here the energy
dependence is more complicated than in Fig. 1. This
causes the parametrization of the imaginary part to be
more ambiguous and the reproduction of the real part to
be less precise than the example above. It is our con-
clusion that the dispersion relation is also reasonably well
satisfied at other distances, to within the uncertainties of
our parametrizations. Thus the feature that the disper-
sion relation of Eq. (1) is independent of any spatial prop-
erties of the operators also appears to be reflected in the
equivalent local potential.

There is another obvious property of the effective po-
tential operator in Eq. (2) that is not apparent in the
equivalent local potential of Eq. (16). Equation (2) is in-
dependent of the Hamiltonian in the entrance channel,
while Eq. (16) depends explicitly on the entrance channel
wave function. We have made additional calculations to
investigate this point. The same case was used as in Fig.
1 except, for simplicity, only a single inelastic channel
was included in the coupled equations.

The solid curves in Fig. 2 show the results for the
equivalent local potential at the barrier position for this
simpli5ed problem. They are completely analogous to
the results in Fig. 1 in that in-going wave boundary con-
ditions have been used in all channels and no absorptive
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FIG. 2. The equivalent local potential as in Fig. 1 for a
simplified case where only one excited state couples to the en-
trance channel. The solid curves result when in-going wave
boundary conditions are made in both channels and no absorp-
tive potentials are present. The dashed curves include a typical
absorptive potential in the elastic channel only.

potentials are present. It is again apparent that the
dispersion relation is satisfied. The dashed curves in Fig.
2 are obtained after including an absorptive potential of
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the Woods-Saxon type normally used for optical model
calculations (W= —20MeV, R =9.35 fm, a =0.63 fm}
in the elastic channel only. Although this obviously dis-
torts the elastic wave and changes the reaction cross sec-
tion, Fig. 2 shows that practically no change occurs in
the equivalent local potential.

The solid curves in Fig. 3 are obtained after introduc-
ing the absorptive potential in the inelastic channel only.
This changes the equivalent local potential from that
shown in Fig. 2, but clearly does not alter the dispersion
relation between its real and imaginary parts. It is easy
to demonstrate this with the fitting procedure described
above. In this way we have specifically checked that the
non-Hermitian character of the excited state Hamiltonian
does not affect the dispersion relation.

Finally, the dashed curves in Fig. 3 complete this set of
calculations by including the absorptive potential in both
channels. They illustrate once more that the equivalent
local potential does not depend strongly on the bare po-
tential used in the elastic channel when solving the cou-
pled equations.

IV. CONCLUSION

In this work we have argued that the dispersion rela-
tion for the effective potential operator holds true when
the Hamiltonian is not Hermitian, as is the case in practi-
cally all nuclear reaction calculations. We have also
verified by way of examples that the equivalent local po-
tential has the properties expected for the effective poten-
tial operator to within a good approximation. In particu-
lar, it exhibits the dispersion relation when absorption is
present. We have also verified that the equivalent local
potential is insensitive to the potential used in the elastic
channel when solving the coupled equations. The fact
that the local equivalent potential in realistic model cal-
culations closely follows the dispersion relation adds
theoretical support to the energy-dependent local poten-
tials that have been determined empirically.
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FIG. 3. Calculations similar to those in Fig. 2. The solid
curves result when the absorptive potential is added to the in-
elastic channel only. The dashed curves include absorptive po-
tentials in both channels.
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