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The theory of deuteron Compton scattering developed previously [Phys. Rev. C 38, 611 (1988)] is

reviewed and corrected in some minor points. Numerical results are presented and compared with

other theoretical approaches. In particular, I now find reasonable agreement with a previous
dispersion theoretical analysis of this process. I also get good agreement with low-energy parame-
ters calculated elsewhere. I present predictions for angular distribution cross sections at a number
of energies. These are of particular interest, since experiments at these energies are presently under

way. I also investigate the influence of the spin-orbit correction to the current operator on the
Compton amplitude.

I. INTRODUCTION

Recent)y I presented a theory of deuteron Compton
scattering below pion production threshold. ' In this cal-
culation the requirements of gauge invariance are imple-
mented in terms of a generalized Siegert's theorem. As a
consequence the low-energy theorem (LET) is satisfied
and the bulk part of meson exchange effects is taken care
of. Furthermore constraints imposed by unitarity are
correctly implemented. From the imaginary part of the
Compton amplitude the correct photoabsorption cross
section is obtained, and the different multipoles of the
imaginary part are related to the corresponding nucleon-
nucleon (NN) scattering partial wave amplitudes by
Watson's theorem.

At this stage I restrict the possible intermediate states
to NN intermediate states only, i.e., I assume that the
deuteron can only be excited to NN scattering states.
This approximation affects only the rea1 part of the
Compton amplitude below pion production threshold and
it should be a fairly good approximation for incident pho-
ton energies below about 100 MeV.

With this restriction the dynamics considered in this
paper can be characterized by the graphs in Fig. 1. Fig-
ures 1(a) and 1(b) depict the Born terms for the direct and
crossed processes, respectively. These terms correspond
to free intermediate propagation of the NN states. Fig-
ures 1(c) and 1(d) are the rescattering terms, which in-
volve the full off-shell NN scattering T matrix. The two-
photon amplitude is graphically represented by Fig. 1(e).
Consideration of this term is crucially important to
render the Compton amplitude gauge invariant. It has
been found in Ref. 1 that the two-photon amplitude to-
gether with the Born terms [Figs. 1(a) and 1(b)] are the
most important terms numerically.

Only Figs. 1(a) and 1(c) contribute to the imaginary
part. This part is related to photoabsorption via the opti-

cal theorem. My calculation of the imaginary part is,
therefore, equivalent to the complete analysis by Partovi
for the photoabsorption cross section. The real part
draws contributions from all graphs of Fig. 1. In Ref. 1 a
very large real part was obtained. This large real part
comes as a surprise, since it does not agree with expecta-
tions obtained using dispersion relations. It turns out
that this large real part is indeed erroneous and it is one
purpose of this paper to correct for this error. I find that
the results of the theory developed in Ref. 1 actually are
in quite good agreement with dispersion theoretical pre-
dictions obtained previously.

I furthermore present here results for the low-energy
parameters as (static electric polarizability), and PM
(paramagnetic susceptibility), and compare them with
values obtained by other authors. I moreover study the
influence of some operators of relativistic order, which
have been found to be of importance in studies of photo-
absorption.

In Sec. II I review the theory developed in Ref. 1 and
take the opportunity to formulate the theory somewhat
more generally and straightforwardly. The specific struc-
ture of the current, charge, and two-photon operators is
discussed in Sec. III along with a brief account of the
nucleon-nucleon T matrix to be used. In Sec. IV I ana-
lyze the numerical results in some detail. I present low-

energy parameters, and total and differential cross sec-
tions. As far as I am a~are my results are in agreement
with the (little) experimental and theoretical knowledge
obtained until now on deuteron Compton scattering.

At present an experiment to determine the angular dis-
tributions at 50 and 70 MeV incident photon energy is
under way at the University of Illinois Nuclear Physics
Laboratories. Although my results indicate that these
cross sections are more or less model independently
determined by the Born terms [Figs. 1(a) and 1(b)], I am
awaiting these results with anticipation.
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II. THE COMPTON SCATTERING AMPLITUDE

(a) (b)

In this section I review the essential elements of the
formalism from Ref. 1 correcting a number of minor er-
rors. The formulas given here are more general than
those in Ref. 1 since separability of the full off-shell NN T
matrix is not assumed.

As is explained in more detail in Ref. 1, the deuteron
Compton amplitude can be separated into a resonance
amplitude R& z [Figs. 1(a)—1(d)] and a two-photon ampli-
tude Bq& [Fig. 1(e)]:

(c)

T„»(—k', k) =R~ q(
—k', k)+8~»( —k', k) .

The resonance amplitude describes intermediate excita-
tion of the deuteron, and I restrict here to virtual NN ex-
citations only. According to the graphs in Fig. 1, I furth-
ermore split the resonance amplitude into a Born term
Az» [Figs. 1(a) and 1(b)] and a rescattering term Cz»
[Figs. 1(c) and 1(d)]

FIG. 1. The deuteron Compton scattering amplitude: Born
terms (a) and (b), rescattering terms (c) and (d), two-photon am-

plitude (e). D and y stand for deuteron and photon, respective-

ly, N for nucleon, Go denotes the free NN propagator, and T»
the full off-shell NN scattering amplitude.

R~»( —k', k)= Aqq( —k', k)+Cqq( —k', k) . (2)

The structure of these terms can be immediately read off
the graphs in Fig. 1,

k~ —k'
3

&.~( —k', k)=y f, &lmdl&," j( —k')Iq;sv&Go(E, q)&q;svl. , j(k)llmd &+ Eg-.y"'
(2m )

E~E
The rescattering term involves the full off-shell XX T-matrix T~~,

Czz( —k', k)= g f 3 f 3 & lmd~eg j( —k')~q', s'v'&q d q

(2n) (2n. )

k~ —k'

XGo(E q')&q' s'v'iTNNlq sv&Go(E q)&q svl&~'j(k)llmd &+

E~E
(4)

For the free NN propagator I take the nonrelativistic
form

Go(E, q) = 1

E —
q /2p+&p

with q the relative XN momentum and p the reduced
two-nucleon mass. The deuteron initial and final states
are denoted by

~
lmd &, and the intermediate plane wave

states ~q, sv& carry spin s and spin projection v. (Note
that I neglect the deuteron state as a possible intermedi-
ate state. )

The photon momentum and polarization is described
by the vectors k, e& and k', e& for the incoming and scat-

tered photons, respectively. They satisfy the transversali-
ty condition ez-k=0=@&"k'. The energies E and E are
found to be

k kE= +k —e, E= — —k —ed (6)

in the photon deuteron center-of-mass frame with ed the
deuteron binding energy, M the deuteron mass, and
k =lkl.

The current and charge operators j,p will be specified
later as will the two-photon operator BI I in terms of
which the two-photon amplitude reads
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(7)

I just mention here that these operators are not indepen-
dent but are related by the gauge conditions,

V j(x)=i[p(x),H],
(g)

81., (x', x) =i [p(x'),j,(x)],
Bxl

where H is the Hamiltonian describing the NX interac-
tion.

It is convenient to write the Compton amplitude in
terms of the generalized polarizabilities PJ,

1 L L'
( —)' "(2J+1)

L'M'LMJ
—md mJ md

v', v=0, 1

xg, '
A,"P (M"L', M"L, k)DM, '

q. (R')DM g(R) .

One particular polarizability Pz(M L', ML, k) describes
the response of the deuteron, if a photon with angular
momentum L scatters into a photon with angular
momentum L' while transferring an angular momentum
J to the deuteron. The parity of the photons is character-
ized by M =E =electric and M' =M =magnetic.

Since the deuteron is a spin-1 particle and I consider
only elastic scattering here, only the following polariza-
bilities contribute: scalar (J =0), vector (J =1), and ten-
sor (J=2 ) polarizabilities. The polarizabilities are
separated into resonance and two-photon pieces as was
the amplitude in Eq. (1),

PJ RJ +BJ r (10)

It is fairly straightforward to derive explicit expressions
for the resonance and two-photon polarizabilities, and I
will give only results here. More details can be found in
Ref. 1. In deriving the expressions I will make use of the
generalized Siegert's theorem proven in Ref. 2. I would
like to emphasize that employing Siegert's theorem is not
an approximation but a useful exploitation of the gauge
conditions (8).

The resonance polarizabilities (L =v'2L + 1)

RJ(M'L', M"L,k)=2nE'E( —
) g 'L

1 J '[Fl (,
" "(k)+GI,I j "(k)]+PI(M'L', M L, k)

1'ljs .

are written in terms of the Born terms F and the rescat-
tering terms G. The expression PJ(M"L', M"L, k) is ex-

actly cancelled by a counterterm arising in the expression
for the two-photon polarizabilities. An exact proof of

I

this consequence of the generalized Siegert's theorem and
the explicit expression of PJ is given in Ref. 2.

The Born term F is found to be

~As,""(k)=—&ii, f dqq'& lllfl.",+«E)IIRi(qr»(»)j&GO«q)
(2~)'

X&RI(qr);(»)j)(Q( l (k,E))]1)+(—) (L 'v')~(L v )
(12)

QI) $(k) =P(E)M )(k)+T )(k),

fl( $(k)=OI ) =f d x j(x) a( )(M;x, k),
with the Coulomb and current multipoles

M' '(k) =f d'x p(x)c(x, k ),
(k)= f d x j(x).a (E;x,k) .

(13)

(14)

(15)

(16)

Expressions for the multipole fields a (M";x,k) and

in terms of the radial function R, (qr)=i'4nji(qr) The.
multipole operators are

f

c (x, k) are given in the Appendix. [The separation of the
electric multipole into a Coulomb and current term in

Eq. (13) is not unique, and I follow here the convention
adopted by Partovi. ] The factor P(E) is determined to
be

P(E)=1+, P(E ) = —1—k — k
2M' 2M '

in the case of the deuteron.
The q integration in Eq. (12) can be performed analyti-

cally,
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dq q'j l(qr'}jl(qr)GO«, q) = v—ri j pjl(Ar()hI "(Ar) ), E )0,
—2XPil(kr()kl(lr) }, E (0,

with A, =~2pE~, r =min(r', r), r =max(r', r), and hl'"(x)=jl(x)+iyl(x) the Hankel functions of the first kind.

Furthermore, il and kl are modified spherical Bessel functions. In Eq. (18) unfortunately a crucial sign error occurred
in Ref. 1 for the case E &0.

Analogously, the rescattering terms are obtained as

Gl'i& '(k) 6 f dq q f dq q ( II~10 ' $(k E)IIRl'(q r ) (I s')j

X Go(E, q')&P~(q', q)Go(E, q)(Rl(qr);(Is)j ((Q(„) (k, E)(~1)

)L'+L +J
(L'v')~(Lv)

involving the full off-shell NN T matrix. In principle the
above double integral can be evaluated numerically once
the multipole matrix elements and the off-shell NN T ma-
trix is given on a suitable mesh of integration points. If
T~~ is constructed in a separable potential model, then

T~~ itself is separable and the above double integral
separates into a product of two single integrals. Explicit
expressions for this case are given in Ref. 1.

The two-photon polarizabilities [Fig. 1(e)] can be con-
veniently split into a center-of-mass (c.m. ) part and an in-

trinsic part

—QC. m. +g IIl
J J J (20)

with P the c.m. momentum of the two-nucleon system. I
find

corresponding to a separation of the NN Harniltonian
into a c.m. and intrinsic piece

p2
H = +H'" (21)

BJ™(M'L', M"L, k)= —
(
—) y A,

'"&'
((

1 I' L'
0

1 I L I' I J
0 A, 0 0 0

L' L JX, (
—)ll'll&'(I I }'& il~ j,,(kr Z2)ji(k.j'2)I"(~)III ) (22)

for the c.m. polarizabilities and

Bz"(M L', M'L, k)=2ir( —
)

+ ( ling f d x' f d x[af l(M";k', x')Xof )(M";k, x)]( )Bi'",(x', x)ill)J ((

Pq(M L', M"L,—k) (23)

for the intrinsic polarizabilities. As already mentioned
the expression Pz cancels against a corresponding term in
the resonance polarizabilities. This is the advantage of
using the generalized Siegert's theorem proven in Ref. 2.

I finally want to mention that the only polarizability
contributing at k =0 is the E1E1 J =0 polarizability,
which is explicitly given by

3ePo(EIEI, k =0)= =B' (E1E1, k =0) (24)

in accordance with the low-energy theorem.

III. SPECIFIC MODEL

The formulation of deuteron Compton scattering
presented in the preceding section is essentially model in-
dependent; the major restriction is the disregard of all but

NN intermediate states. Of course, in order to make nu-

merical predictions I must specify the current, charge,
and two-photon operators as well as the full off-shell NN
T matrix. These are the essential dynamical quantities,
which will be probed in a deuteron Compton scattering
experiment at energies below about 100 MeV.

While in principle it would be no problem to evaluate
the Compton amplitude with any given NN T matrix
(e.g. , from the Bonn or Paris potentials}, the numerical
work is simplified tremendously if a separable potential
model is employed. Therefore, in this work I will take a
separable NN T matrix. The details of this T matrix
have been discussed in some detail in Ref. 1. It turns out,
that the Compton amplitude is only marginally
influenced by the rescattering terms which involve the
NN T matrix. Therefore, effects explicitly depending on
the off-shell NN dynamics are hardly visible in the Comp-
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ton cross sections at the energies considered here. This
justifies taking a separable potential model at this stage.

In this work I will consider the standard single body
current density of nonrelativistic point nucleons

with e, ,p; the nucleon charge and magnetic moment
operators, respectively, rn the nucleon mass and m.; its
momentum. For the charge density I take

2

p'"(x)=e g e;5(x—r;) . (26)

Normalizations are such that e = 37.
Of course, this current and charge density do not satis-

fy current conservation

V j'"(x)=—i[H, p" (x}], (27}

if the XX Hamiltonian is nonlocal, as is the case here. To
be strictly consistent, one would need to add a nonlocal
current j' '(x) and/or a nonlocal charge density to (25)
and (26), so that charge conservation is obtained.
Siegert's hypothesis suggests that to nonrelativistic order
only the current density gets nonlocal contributions, and
in fact, these can be constructed straightforwardly. '

These nonlocal currents would inhuence the magnetic
multipoles as well as the higher-order electric multipoles
T( l(k) [Eq. (16)]. Those contributions are neglected
here. It has been shown in calculations of photodisin-
tegration that these effects are small at the energies con-
sidered here, and the bulk part of nonlocal and exchange
current effects is taken care of by using Siegert's theorem.

Analogously, the two-photon operator gets nonlocal
contributions B, I' in order that the gauge conditions (8)
are fulfilled. Such effects have been studied in the one-
pion-exchange model, and they turn out to be extremely
small. Accordingly they are neglected here. Conse-
quently, while the current, charge, and two-photon
operators used in this work do not strictly satisfy the
gauge conditions (8), the neglected terms are expected to
be very small. This is mainly due to the fact that
Siegert's theorem has been used in evaluating the electric
multipole operators.

I finally would like to discuss a relativistic correction
to the current density operator. It has been shown re-
cently by several authors that relativistic corrections to
the charge and current operators do play a significant
role in photo- and electrodisintegration of the deuteron at
relatively low energies. While a comprehensive discus-
sion of such effects is beyond the scope of the present pa-
per, it can be said that the spin-orbit correction to the
current operator produces the most significant effect nu-
merically. I, therefore, only consider this term here
leaving a more complete analysis for later work. The
spin-orbit current operator is given by

2

j"'(x)= g[e, I5(x—r, ), ~, I+p, V xo;5(x—r, )],
i =1

(25)

l
2j"(x)=,g I

[H'", (e;+2», )5(x—r; )m, X cr, ]4m',

+ (e;+2m;)b„5(x —r, )m, Xo, I .1

4m

(28)

While our results confirm the findings of other authors,
that the imaginary part of the Compton amplitude is
somewhat reduced by the above correction, the real part
is hardly inAuenced. This will be discussed further in the
following section.

IV. NUMERICAL RESULTS AND DISCUSSION

10

10

10
20

I I I

40 60 80

kebab ( MeV )
100

FIG. 2. The total photoabsorption cross section: Born terms
only (dashed) and complete calculation (solid line). Dotted lines
include spin-orbit current effects. The experimental data are
from Ref. 11 (solid triangle), Ref. 12 (open triangle), and Ref. 13
{open circle).

In this section I present numerical results of the
present "direct" calculation of the deuteron Compton
amplitude and compare them with a previous dispersion
theoretical analysis. I furthermore give results for the
low-energy parameters az and PM, i.e., the (static) elec-
tric polarizability and the magnetic susceptibility. The
good agreement between theory and experiment for these
values suggests that the present formulation of deuteron
Compton scattering is essentially correct. Predictions are
made for differential scattering cross sections at several
energies at which experiments are presently under way.

At very low energies, i.e., below deuteron breakup
threshold, the deuteron Compton amplitude is purely
real, and can be characterized for energies much below
threshold by a few low-energy parameters. In particular
it can be shown that for the deuteron

T

Po(E1El)=3 — az'+ (r ) — k
M 3M 3M

(29)

P (M1M1)= —3 y' '+y' ' — '
k

D2 '}

0 2M
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FIG. 3. Scalar polarizabilities: Po(E1E1) and PD(M1M1). Solid lines represent the dispersion theoretical results of Ref. 2.
Dashed lines represent the Born approximation results [Figs. 1(a) and 1(b)]. Dotted lines include rescattering effects.
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FIG. 5. Tensor polarizabilities: P, (E1E1)and P2(M1M1). Notation as in Fig. 3.

up to order k in the photon energy. A more comprehen-
sive discussion of the low-energy structure of the Comp-
ton amplitude is contained in Refs. 2 and 8. The struc-
ture constants entering the above expressions are the
"static" electric polarizability a'E', the paramagnetic sus-
ceptibility gz', and the diamagnetic susceptibility g'D'.
The term determined by the root-mean-square radius
( r ) and y'D' have their origin in the two-photon ampli-
tude, while az ' and yz ' are determined by the resonance
terms [Figs. 1(a)—1(d)]. Furthermore, there are recoil
corrections containing the magnetic moment p and the
electric dipole-operator D. The latter two corrections are
neglected in the present calculation, as we do not consid-
er a recoil correction to the current operators.

Numerically I find the following values: aE =0.627
fm3, y =0.055 fm; e /2M(r ) =0.001 fm = —yD. Ex-
perimentally aE has been determined to be 0.61+0.04,
in excellent agreement with the theoretical prediction.
Other calculations produced aE =0.615 fm' and 0.628
fm, while y has been determined to be 0.065 fm, if one
excludes explicit meson exchange efFects. As will be dis-
cussed below, Po(M1M1) and consequently y are more
sensitive to the details of the chosen XN interaction, and
obviously the separable potential model used here does
predict a somewhat low value for y . The static electric
polarizability and magnetic susceptibility of the nucleon
are a+y=0. 003 fm indicating that the internal nucleon
structure plays a minor role in the process under con-
sideration here. The above results and considerations

suggest that the formalism proposed here is consistent
with previous knowledge of the Cornpton amplitude at
low energies.

Above deuteron breakup threshold the Compton am-
plitude develops an imaginary part, which is related to
the total photoabsorption cross section via the optical
theorem,

o,b,(k) = — g „ Im[Po(ELEL)
k

+Po(MLML)] . (30)

Only Figs. 1(a) and 1(c) have imaginary parts and there-
fore contribute to absorption. Results for the total pho-
toabsorption cross section are presented in Fig. 2 and
compared to experimental data. As is obvious the Born
terms alone give the essential structure, while rescatter-
ing terms are minor corrections. In agreement with other
authors, I find that the spin-orbit correction to the
current operator reduces the total cross section quite sub-
stantially.

The interesting prediction of the present calculation is
the real part of the deuteron Compton amplitude. This
part has been calculated previously only by a dispersion
theoretical method. In Figs. 3—5 I present results for
the imaginary and real parts of selected polarizabilities
and compare with the dispersion theoretical results.
Overall, it can be said, that the dispersion theoretical re-
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FIG. 6. Differential cross sections for k~,b =50, 70, and 100
MeV. Born terms only (dashed) and rescattering terms included
(dotted).

suits are in quite good agreement with the present
"direct" calculation. This contrasts with the conclusion
reached in Ref. 1. This can be traced mainly to an error
in the relative sign between direct and crossed terms [see
Eq. (18)].

The Po(E1El ) and Po(M1M1) polarizabilities are
shown in Fig. 3. Obviously the Po(E1E1) polarizability
is dominant. I compare the Born approximation and the
full calculation (i.e., including rescattering effects) with
the previous dispersion theoretical result. I note that re-
scattering effects are very small for Po(E1E1). Further-
more there is reasonable agreement between the previous
dispersion calculation and the present "direct" calcula-
tion over the whole energy range considered here. It is
obvious that both the direct and crossed graphs in Fig. 1

give significant contributions and cancel each other to a
large extent. Unfortunately, the strong dominance of the
Born term indicates that it would be extremely di%cult to
obtain information on the off-shell NN interaction from

deuteron Compton scattering experiments. In the scalar
M1M1 polarizability rescattering effects play a somewhat
stronger role. But they do not show up significantly in
the cross sections due to the relative smallness of this
multipole. Also for this multipole I observe a reasonable
agreement with the previous dispersion theoretical
analysis. From this analysis one also expects that in the
Po(M1M1) multipole explicit exchange effects play a
somewhat more important role than in the scalar E1E1
polarizability. I do not consider those in this paper.

For the vector E1E1 and M1M1 polarizabilities
shown in Fig. 4, I find a relatively strong real part dom-
inated by the Born terms. This agrees with the previous
dispersion theory result and indicates a strong dynamical
optical activity of the deuteron. The electric term, how-
ever, is somewhat bigger than found previously. The ten-
sor E1E1 and M1M1 polarizabilities shown in Fig. 5 also
agree quite well with the dispersion relation results.
Again the Born terms dominate, in particular in the elec-
tric polarizability.

I have not included effects of the spin-orbit current (28)
in Figs. 3-5. It turns out that the imaginary parts are
quite significantly affected at higher energies, but unfor-
tunately the real parts are not. Since the real part is
dominating at higher energies, spin-orbit current effects
do not show up significantly in the differential deuteron
Compton cross sections.

Polarizabilities with L,L & 1 play only a minor role in
the energy range considered here. In my calculations of
the cross sections, I include all polarizabilities up to
L', L =2, but I do not discuss them in more detail here.
Numerical results for the differential cross sections at 50,
70, and 100 MeV are given in Fig. 6. Again I compare
the full calculation with the Born approximation and it
becomes obvious that it would be very dilcult to observe
effects depending on the NN interaction.

In conclusion, I note that just as the deuteron photoab-
sorption cross section is essentially model independently
predicted (at lower energies), so is the deuteron Compton
amplitude, if one employs Siegert's theorem in calculat-
ing the electric multipoles. Explicit exchange effects as
well as rescattering effects are small and dificult to detect
experimentally. It appears at this stage that inelastic
photon scattering off the deuteron offers more kinematic

flexibility and would be more sensitive to dynamical
effects in certain kinematic regions. This will be analyzed
in detail in a forthcoming publication.
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APPENDIX

Here I collect a number of well-known and useful for-
mulas for calculating the different multipole operators.
The multipole fields entering Eqs. (13)—(16) and (23) are
given by
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a(')(Z;x, k) = 1
i +'kxj L(kx) Yg(x ),&L (L +1)

a( )(M;x, k)= 1

L (L +1)
i jL(kx)[LYg(x)],

where L is the anguiar momentum operator. Further-
more,

L

c(x,k)= 1+x jL(kx)YP(x) .
VL(L+1) dx
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