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The gauge dependence of nonrelativistic calculations of deuteron photodisintegration is investi-
gated within simple one-pion and one-pion-one-rho exchange models with consistent exchange
currents and for the realistic Paris and Bonn potentials. If no explicit exchange currents are con-
sidered but Siegert operators are used, the gauge dependence increases with energy and amounts to
about 5 percent at 140 MeV. Inclusion of the dominant 7- and p-exchange currents reduces this
dependence to less than 1 percent at 140 MeV in contrast to other claims.

The conventional calculations of deuteron photodisin-
tegration have been strongly criticized by Nagornyi
et al.! They argue that the violation of gauge invariance
(GD by the use of realistic potentials in conjunction with
meson exchange currents (MEC’s) not completely con-
sistent with the interaction introduces severe and uncon-
trollable uncertainties into the results. In fact, it seems
on first sight impossible to quantify the uncertainty intro-
duced by the violation of GI because it appears plausible
that one can always find a gauge that arbitrarily increases
the influence of the gauge violating part of a MEC model.
However, a closer look reveals that this is an artificial
construct and far from reality. Since in practice one uses
only a restricted class of gauges that allow a gauge in-
dependent evaluation of the leading order of the electric
multipoles in terms of the charge density in accordance
with the low-energy theorems. Because of Siegert’s hy-
pothesis, i.e., no MEC contribution to the charge density
in the lowest order, this leading order is also MEC-model
independent. Thus the authors of Ref. 1 seem to have
overlooked the crucial role of the Siegert operators in
conventional calculations that just allow us to incorpo-
rate the dominant part of the MEC in a MEC-model in-
dependent way.>® For the remaining part one can obtain
a reasonable estimate of the GI violation by using
different gauges and thus studying the gauge dependence
of the results. Their variation can be taken as a quantita-
tive measure of GI violation.

The criticism of Ref. 1 is based on the fact that in al-
most all calculations with realistic potentials the addi-
tional MEC jMEC does not satisfy the condition of current
conservation, i.e.,

V-MEC+i[V,p]=0. (n

On the other hand, the longest-range 7 MEC is dominant
and consistent with the long-range one-pion exchange
(OPE) tail of any realistic potential. Thus the violation of
(1) is restricted to the short-range part. Furthermore, the
use of the Siegert operator in electric transitions incorpo-
rates MEC contributions consistently for the dominant
parts. Therefore, one would be surprised to see a large
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uncertainty from the violation of GI.

In fact, a partial answer in support of these expecta-
tions has already been given in Refs. 2 and 4. In particu-
lar in Ref. 4 a consistent MEC has been constructed for
the Paris potential® that fulfills (1). Only small changes in
the results have been found if the consistent MEC had
been replaced by a simple 7- and p-exchange model.
That seems to be at variance with recent results from
Ying et al.,® where a larger gauge dependence within the
given class has been found despite the expectations that
the differences should be diminished when MEC is added.
The authors of Ref. 6 suspect that the long-wavelength
approximation used for the MEC evaluation is responsi-
ble for this persisting gauge dependence.

In order to give further support to the reliability and
consistency of present nonrelativistic calculations of
deuteron photodistintegration we have effectively studied
the gauge dependence by using different Siergert opera-
tors for the electric transitions. We will briefly review the
definition of the Siegert operators. The electric multipole
matrix element of order L between intrinsic states |a)
and |B) is given by

(BITH)la) = [ d*x (BT p(x)la)- AlF(x,k) )
where
Al (x, k)= L yx(xx V), (kx)YIE(R))

ikVL(L+1)
(3)

and J; (x) denotes the intrinsic current, i.e., relative to
the center-of-mass (c.m.) motion. It fulfills current con-

servation with the intrinsic Hamiltonian H

VT X)Fi[Hppy,pin(x)]=0 . 4)

Since the leading order in kx of the electric multipole
field is given by

i L+1 (kx)E N
Alllx k) L [L]
el (%, )kx,,,ok VL(L +1) (2L+1)!!Y (x)
+ O (kx)E ™1 (5)
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it is customary to separate a gradient term from A£1L],
i.e.,

Allx, k)=VolH(x, k) + Al (x, k ;) . (6)

In principle, the scalar function ®!“) may be chosen arbi-
trarily reflecting the full gauge freedom. However, in
view of the leading order in kx of (5) only a restricted
class of gauges will be used in order to comply with the
low-energy theorem. This restricted class is defined by

L+1

CD[“(x,k):éT/—L—(T——ﬂL—l——)qJL(kx)Y[”(i) , %)
where

@ (2)=¢) (2)+ ¢} (2) (8)
and

<p2(z)=72—Li£T)H , 9)

@ (2)=0(zE*2) . (10)

Within the given lowest order ¢} remains arbitrary and
thus defines the restricted gauge freedom still present.

Then one finds by partial integration and using current
conservation the well-known expression

(BITH ) =i [ d*x (Bl Hippspin )]l Y%, k)
+ [ dx (BT (x)la)- AYFx,k ;@)
=i(eg—€,) [ d°x piy o)) (x, k)
+ [dx (BT (x)]a)- AfHx,k; @),
(11)

where the first term defines the Siegert operator for elec-
tric transitions. It is important to note that the energy
difference in front of the Siegert operator is given by the
difference of the intrinsic energies, which differs from k
by c.m. energy contributions. This seems to have been
overlooked in Ref. 6. The transition to the Siegert opera-

|

2
)= —je B 1
J.(x) e .

tors corresponds to a gauge transformation of the electric
multipole fields, and different choices for ¢, in (8) corre-
spond to different gauges. Thus, we will study the gauge
dependence by considering the following choices:

(i) zF gauge (z1) @} (2)=0, (12)
(ii) standard gauge (st) @} (z2)=j, (z)—¢%(z), (13)
(iii) Partovi gauge’ (Pa)

4 (Z)=+
$r L+1

(iv) Foldy® or Friar-Fallieros’ gauge (FF)
oL (2)=¢ (2)[g (2)—1], (15)

where g; is defined in Ref. 9.

The last gauge has been recommended strongly by
Friar and Fallieros® as an optimal gauge on the operator
level in the sense that it leaves to A.{X! only the magneti-
zation density x XJ(x). In this context we will be able to
check whether (iv) is an optimal gauge also in the sense
that the corresponding Siegert operators give results
closest to the ones with MEC included. Incidentally, this
gauge has been used also by Hamaliinen.'®

We will start the discussion with a simple one-pion-
exchange potential (OPEP)

2
87 1
Vn=Z;m"'l‘7'2[0'1‘91’[‘72'?271(’"”;|r1_r2|)]]
—(m_<—A,) (16)
with
Jm;r==% - (17)

(For the mNN coupling constant we take g2 /47 =~15.5;
A,=587 MeV, the cutoff mass is fitted to the deuteron
binding energy.) The corresponding pion-exchange
current is given by

T (11X 7)o{08(x—1)[03py,J (m 5 |x—15])] =0 ,8(x—1,)[ 0Py, d (m ;| x—1])]

+ 10 PL 02 Py (mys I3 =1 DV T (m i [x =]} = (m oA, (18)

Since (18) follows from (16) in the usual way by minimal
coupling, gauge invariance

Vi () +i[V,,p(x)]=0 (19)

is automatically fulfilled for the point particle charge den-
sity. Therefore, the electric multipole matrix elements in
(11) will be independent of any gauge choice (10). More-
over, since the Siegert theorem is not only a helpful tool
but a mathematical identity in the case of a consistent
current, we could even leave the restricted class of gauges

[
(7)-(10), and we still would have gauge independent re-
sults. This means that in the case of a consistent current
any arbitrary function ®!*) can be inserted into (6). Of
course, if this function does not fulfill condition (9), the
contribution of A4 in (11) will not be small, of order
(kx)?, compared to the contribution of the Siegert opera-
tor. Thus, such a choice would not be useful in general.

One special gauge outside the restricted class (7)—(10)
is the transverse gauge of the radiation field, i.e.,

(v) special Coulomb gauge (Cb): ®L1=0 . (20)



41 GAUGE DEPENDENCE OF NONRELATIVISTIC CALCULATIONS . .. 843

Using this gauge means nothing other than calculating
the electric multipole matrix elements without the Siegert
theorem, i.e., with explicit transverse currents only.

For the case of the OPEP, the GI is illustrated in Fig.
1, where for the differential cross section at 100 MeV
photon laboratory energy are shown the relative devia-
tions of the calculations with different gauges of the re-
stricted class (7)-(10) from the calculation with explicit
currents, i.e., Cb gauge. The deviations are of order 15
ppm, which merely reflects the numerical accuracy. In
principle numerical accuracy could be strongly improved
by wasting computer time, but it is sufficient for our pur-
pose. This result is thus a convenient check for the quali-
ty of the calculation.

Next we consider the gauge dependence of the so-
called “normal” part (N). This N includes the contribu-
tion of the Siegert operator and the one-body part of the
current J; (x) in (11) to the electric matrix elements.
Concerning the magnetic matrix elements, only the con-
tribution of the one-body current is included. Of course,
a restriction to this N introduces a gauge dependence of
the electric matrix elements. If a gauge of type (7)-(10) is
used, the effects will be of relative order (kx)?, but they
may not be negligible, since the importance of MEC
beyond N is known. Clearly, the Cb gauge (20) is totally
unsuited when restricted to its N, because in this case the
large MEC contribution would be ignored completely,
whereas the gauges of the restricted class (7)—(10) include
the dominant (kx)L part of the MEC contributions con-
sistently.

Figures 2(a) and 2(b) show the N’s for the OPEP at 30
and 140 MeV as ratios, where [N, gauge (x)] denotes the
calculation restricted to its N corresponding to the
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FIG. 1. Illustration of the GI of the differential cross section
at 100 MeV photon laboratory energy for the OPEP with con-
sistent currents as functions of the proton c.m. angle ©. Shown
is 1—do/dQ [gauge (i)-(iv)]/do /d Q[gauge (v)] with the fol-
lowing notation for gauges: dotted line (z%), dashed line (Pa),
dotted-dashed line (st), and dotted-dotted-dashed line (FF).
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FIG. 2. Gauge dependence of N for the differential cross sec-
tion at (a) 30 and (b) 140 MeV for the OPEP. Shown is do /dQ
[N, gauge (i)-(iv)]/do /d Q[gauge (v)]. In (c) the magnetic ma-
trix elements are switched off. (Notation of gauges as in Fig. 1)
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specified gauge (x). The gauge dependence turns out to
be of order 1% at 30 MeV (6% at 140 MeV), whereas the
N’s exhaust the full calculation up to ~2% at 30 MeV
(10% at 140 MeV). Therefore, the neglect of that part of
the # MEC not covered by the Siegert operator is
reflected in this non-negligible gauge dependence of the
results. Here it is not obvious that one can favor one of
the gauges (i)—(iv) for N as an optimal approximation to
the full calculation. For example, the purest and least so-
phisticated zX gauge seems to be as good as any other
choice. However, since the question of an optimal gauge
refers to electric transitions only, one should leave out
the magnetic contributions in this comparison. If the
magnetic matrix elements are switched off completely,
one obtains the results of Fig. 2(c) for 140 MeV. Now the
ordering of gauges becomes clearer, and from a practical
point of view one would uniquely prefer the z or FF
gauge against the standard and Partovi gauges.

Figure 3 shows the total cross sections as ratios in the
nomenclature of Figs. 2(a) and 2(b). With increasing pho-
ton energy, the insufficiency of the N’s is getting stronger
and this effect is accompanied by an increase of the gauge
dependence. Note that at 7 threshold the missing -
MEC contribution in the case of the Partovi gauge is
about twice the size of the one in the z~ gauge.

From this OPE model we get a qualitative impression
of the gauge dependence of the cross sections as caused
by the inconsistencies in the currents taken into account,
in this case artificially simulated by the restriction to N.
To further deepen the insight into this interplay, we will
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FIG. 3. Gauge dependence of N for the total cross section for
the OPEP. Shown is o, [N, gauge (i)-(iv))/o, [gauge (v)].
(Notation of gauges as in Fig. 1.)

now consider a one-pion-one-rho-exchange potential
(OPORP). This potential is defined by

Vosp =V, 4V, , @1

with

l_rzf)]]_(mpHAp) . (22)

We have chosen this simple form (22) because normally the pNN vertex is dominated by its tensor part, i.e., g, <<f,.
(Here we have chosen g2 /4m~15.1, A,~730 MeV, (g, *+f, )2 /41 ~5.9, A,=2 GeV.) From (22) minimal coupling

gives again the corresponding current

(g, +/,)" 1
4T 4m?

Jp(x)=—le (7, X73)

X {=8(x—r)o X[(0,Xp,y),J(m,;|x—1,)]+8(x—1)0, X [(0; Xpy),J(m,;[x—1,])]

+ﬁ[(a,Xpl);[(UZsz),J(mp;|x~r1|)VxJ(mp;Ix—rzl)]]} —(m,oA,) . (23)

With this OPORP we again have a consistent model for
which the continuity equation for j,(x)+j,(x) is fulfilled,
and the electric matrix elements (11) will again be in-
dependent of the gauge for any arbitrary ®{X1 in (6).

This OPORP now allows us to examine the following
problem that usually plays a critical role in any calcula-
tion with realistic potentials, if the corresponding
currents are not completely consistent: What is the
gauge dependence of the results, if only the dominant
MEC contribution beyond N, i.e., m MEC, is consistently
included but shorter-range MEC effects are still missing?
The answer as given by the OPORP model will be a pes-
simistic estimate, since in realistic calculations one nowa-
days would always include at least the dominant part of
the p MEC of (23), thus shifting the problem to the role

|
of MEC effects beyond 7 and p MEC.

To simulate this typical problem for realistic potentials
with the OPORP, we look for the gauge dependence of N
and the gauge dependence of (N +7 MEC). Of course, if
[N +(m+p) MEC] is considered, because of its con-
sistency no gauge dependence occurs. Figures 4(a) and
4(b) show the results for the differential cross section at
100 MeV. In Fig. 4(a) is shown do/dQ [N, gauge
(i)-(v)]/d o /d Q [gauge (v)], where gauge (v) now stands
for the full gauge independent calculation including con-
sistent 7 and p MEC. The effects are qualitatively the
same as discussed earlier for the case of the OPEP.
Figure 4(b) shows do/dQ [N+x MEC, gauge
(i)=(@v)l/do /d Q [gauge (v)], where [N +7 MEC, gauge
(x)] denotes the inclusion of consistent # MEC in the
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FIG. 4. Gauge dependence of the differential cross section at 100 MeV for the OPORP. In (a) is shown do/dQ [N, gauge
(1)-(iv))/do /dQ [gauge (V)] and in (b) do /dQ [N + 7 MEC, gauge (i)-(iv)]/d o /dQ [gauge (v)]. (Notation of gauges as in Fig. 1.)
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magnetic matrix elements and in the A%} part of (11)
corresponding to the gauge (x). As it can be seen, the in-
clusion of m MEC strongly reduces the gauge dependence
(from say 5% to 0.1% in forward direction, for example).
But the contribution of missing p MEC is still sizable,
i.e., up to 0.8%, and stronger than the gauge dependence
of m MEC.

Thus, several things can be learned from this simple
OPORP model and will be supported later by the exam-
ination of realistic potentials:

(a) Even if not considered explicitly, the short-range p
MEC is implicitly included in the Siegert operators up to
a high degree, i.e., the calculations are accurate on the
1% level at 100 MeV, for example.

1000
PARIS , 30 MeV (a)
0.998 1
/ /’/)::7?* N NN
4 -~~~
0996 4 \\\
/ PRl -
7 AN
v “\
AN
0.994 - "\
\§\‘\
&N
0992 —————
0 60 120
6 (deg)
1000
OBEPR , 30 MeV (c)
0.998 - TR
7 N
V4 AN
/s N\
osssw p: \Q
. \\
V./-/'/ b\
&: H‘\\
0994 " \“-
0992 —
0 60 120
6 (deg)

FIG. 6. Gauge dependence of (N +m MEC) for the cases considered in Fig. 5.

(1)-(@v))/do /dQUT). (Notation of gauges as in Fig. 1.)

(b) The increased consistency by including 7 MEC in
the magnetic matrix elements and in the A![‘! part of
(11) in addition to N is reflected in a strongly reduced
gauge dependence of the matrix elements.

(c) The lack of consistency cannot be read off the size
of the gauge dependence quantitatively. For example, in
Fig. 4(b) the gauge dependence becomes rather small at
intermediate angles, whereas the contributions of missing
p MEC is still relatively large.

Finally, we will consider two realistic potential models:
the Paris potential’ and the OPEPR Bonn potential.'!
First, we look again at the gauge dependence of N and of
(N +7 MEC). In Fig. 5 the ratio do/dQ [N, gauge
(i)-(iv)]/do /dQ(T) is plotted for the differential cross
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section at 30 and 140 MeV, where “T’ refers in the case
of the Paris potential to a calculation using the consistent
exchange current (Paris EC) from Ref. 4 mentioned al-
ready and in the case of the OPEPR to [N +(7+p)
MEQGC, gauge (i)]. The results turn out to be rather similar
for both potentials and, furthermore, agree qualitatively
with those of the OPEP in Fig. 2, which is due to the
dominance of m MEC corresponding to the long-range
OPE tail implemented in any realistic potential.

The remaining gauge dependence after adding the 7

da /dQ [ub/'sr]

.| OBEPR , 140 Mev

0o 60 120 180
6 (deg)

102

~. PARIS , 140 MeV

100 -

0.98 . /

%6 +——— 1+
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FIG. 7. Influence of the p MEC on the differential cross sec-
tion at 140 MeV for the OBEPR and the Paris potential. Shown
in (a) is do/dQ: [N+x MEC, gauge (v)], dotted line;
[N +(m+p) MEC, gauge (v)], dashed line; [N +7 MEC, gauge
(1)], dot-dot-dashed line; and [N +(7+p) MEC, gauge (i)], solid
curve, and in (b): do/dQ [N+ MEC, gauge (iii)]/do/dQ
(T), dot-dot-dashed line and do /dQ [N +(7+p) MEC, gauge
(iii)}/d o /d Q (T), solid curve.
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FIG. 8. Gauge dependence of the forward differential cross
section for the OBEPR. Shown is 1—do/dQ [N +(7+p)
MEG, gauge (i)—(iv)]l¢-/do /dQ [N + (7 +p) MEC, gauge ()]
(Notation of gauges as in Fig. 1.)

MEC is shown in Fig. 6, illustrating the most important
result of our investigations that the inclusion of the =
MEC beyond the Siegert operators reduces the gauge
dependence within the restricted class of gauges drasti-
cally by more than one order of magnitude. Thus, the
gauge dependence in deuteron photodisintegration below
the pion threshold is reduced to a relative uncertainty of
distinctly less than 1 percent in cross sections and also in
other observables not shown here and the question of
which gauge one should prefer does actually become
rather unimportant.

In Fig. 7 we demonstrate the crucial role of Siegert
operators in incorporating exchange current contribu-
tions beyond 7 MEC, if realistic potentials are used. To
this end differential cross sections at 140 MeV are plotted
in Fig. 7(a) for the OPEPR calculated with Siegert opera-
tors, where zL gauge was chosen and with Siegert opera-
tors corresponding to the Cb gauge. The curves show the
different influence of the p MEC in both approaches,
which gets reduced from a 20% effect at extreme angles
in the nonSiegert approach to a 2% effect in the Siegert
approach. In Fig. 7(b) the p MEC influence in the Siegert
approach is shown more quantitatively for the Paris po-
tential again for the cross section at 140 MeV by using a
relative representation referring to the consistent Paris
EC result. Because of this analysis of p MEC, it seems
reasonable to assume that the dominant contribution of
other short-range exchange currents beyond 7 and p
MEQC, although not known explicitly, is also included in
the Siegert operators to a large extent. Whereas in a non-
Siegert approach rather large contributions, for example,
corresponding to the difference between the full and
dashed curves in Fig. 7(a) would be completely ignored.

Concluding the discussion we may state that our re-
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FIG. 9. Differential cross section at (a) forward and (b) backward direction for the OBEPR (solid curve) and the Paris potential
(dashed curve) including [N + (7+p) MEC], isobar configurations and the relativistic spin-orbit current. Data points are from Ref.

12: O, Ref. 13: A, Ref. 14: O, Ref. 15: X, Ref. 16: O, Ref. 17: +.

sults clearly contradict Ref. 6. There a rather strong
gauge dependence in the forward differential cross section
for the OPEPR was found, which remained almost un-
changed within the order of some percent after adding
MEC. For comparison with their results we show the
gauge dependence of this quantity again for the OPEPR
in Fig. 8. The variation inside the restricted class of
gauges is less than 0.3% over the whole energy range.
We note that the curves in Fig. 8 also include the p MEC,
however, its influence concerning the gauge dependence
is very small compared to the # MEC. Thus, it seems
indeed that the approximate evaluation of the MEC in
Ref. 6 is poor and responsible for the gauge dependence
of their results.

Our main conclusion is that the conventional theory
provides a reliable framework for the calculation of
deuteron photodisintegration if the dominant” 7- and p-
exchange currents are included in conjunction with the

Siegert operators. Then the gauge dependence is negligi-
ble even if the exchange current is not consistent beyond
m and p exchange. Also, the neglect of explicit p MEC
beyond the Siegert operator does not increase the gauge
dependence. Thus, the critique of Nagornyi et al.! is not
well founded. As an illustration of the present state of
the conventional theory in comparison to the experiment
we show in Fig. 9, for the differential cross section at 0°
and 180° presently available experimental data and
theoretical results for the Paris and Bonn potentials,
where besides MEC also the relativistic spin-orbit current
and isobar configurations are included. In view of the
still rather large experimental uncertainties the agree-
ment is quite satisfactory.
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