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Relation among theories of inclusive breakup reactions
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The relation among various recently proposed theories for inclusive breakup reactions is clarified
from a unified viewpoint. Udagawa and Tamura's prior form formalism, Ichimura, Austern, and
Vincent's post form formalism, and Hussein and McVoy's formalism are understood on a common
basis by referring to a three-body model of Austern et al.

I. INTRODUCTION

d 2&inc d2EB d2&NEB
+

d QbdEI, d QbdEb d ObdEI,
(1.2)

The former represents the process a+ A ~b+x+ A

where the target A stays in its ground state, and the
latter is the rest which is sometimes called inelastic break-
up or breakup fusion. '

Methods of calculating the EB part are on a common
basis in all the theories, but the NEB part is calculated in
very different ways. Very interestingly the theories all
have a common formal structure

A variety of theories have been proposed for inclusive
breakup reactions

a+ A ~b+anything,

where the ejectile b is a definite fragment emitted from
the projectile a (=b+x). A prior form formalism was
proposed by Udagawa and Tamura' (UT), while a post
from DWBA formalism was given by Austern and Vin-
cent and elaborated by Kasano and Ichimura. This for-
malism was carefully investigated by Ichimura, Austern,
and Vincent and thus it is usually referred to as the IAV
formalism. A surface approximation method of Baur
et al. belongs to this kind. Hussein and McVoy (HM)
introduced a different formalism through a somewhat in-
tuitive way and Austern et al. presented a formalism
based on a three-body model (3B).

The differential cross section of the process (1.1) is
often decomposed into elastic breakup (EB) and nonelas-
tic breakup (NEB) parts,

The main aim of this paper is to understand these for-
malisms in a unified manner, to clarify the meaning of the
differences, and to consider their merits and demerits. In
the following argument the three-body model plays a
key role. A preliminary report was given in a Calcutta
conference. '

In Sec. II we review the theories in a way that compar-
ison among the theories is as transparent as possible. We
clarify the relation among them in Sec. III and discus-
sions are given in Sec. IV.

II. REVIEW OF THE THEORIES

Let us consider a system with a Hamiltonian

H =K~ +Kx +H~ + Vbx + Vx~ + V (2.1)

where we assume that b and x are structureless and A is
infinitely massive. Here Kb and K are the kinetic energy
operators of b and x, respectively, and H„ is the internal
Hamiltonian of A and V, . is the interaction between par-
ticlesi and j.

In the post interaction form the T matrix for the pro-
cess a+ A ~b+c (c being a state of the x+2 system) is
given by

T, —~X'b ''P '~ ll b + b~ (2.2)

where 4'+', 4'„'„' ', and y&
' are the wave functions of

the total system with the incident wave in the a+ A
channel, of the state c of the system (x+ A ) and the dis-
torted wave of b, respectively, and Ub~ is the optical po-
tential of b on A. They obey the equations,

d 2~NEB

d QbdEb
p(E )(~p

l w„„l'p„),
Ua

(1.3)
H+'+'=E+'+', (2.3)

(2.4)
but the definition of 4' in this expression differs very
much from theory to theory. Here U, is the velocity of
the projectile a and 8' z is the imaginary part of the op-
tical potential of x on A, U „,and p(Eb ) is the state den-
sity of the observed ejectile b with energy Eb. That is to
say that 4, of UT, IAV, HM, and 3B, are, respectively,
given by the formulas (2.37), (2.27), (2.29), and (2.20),
which will be rederived in the next section. The
differences sometimes give rise to controversy. '

and

(Kb+ UbA Eb )+b (2.5)

A spectator model commonly used in all the theories
mentioned above assumes that particle b travels simply in
the complex mean field (the optical potential) Ub„and it
replaces V» by U„~. The inclusive breakup cross sec-
tion is then given by
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d2 inc

d QbdEb
p(&b) g IT, I'5(Eb+E, E—)

VQ

p(~, )l &~"'Iv,„ly', )G„„(y', 'Iv,„l~"'&,
VQ

(2.6)

with

1

E —Eb H„A+is

where the completeness of 4„'A' ' is used.

A. Three-body (38) model of Austern et al.

(2.7)

l

subject to the equation

(2.10)

where n =0 denotes the ground state and we set EA =0.
The first key equation is the exact optical reduction

1

E Eb E„U„A+ie
In order to make the presentation of the theories clear-

er, let us disturb chronological order and start with the
latest one, the three-body model of Austern et aI. In
this model the structure of the targets is frozen to its
ground state and its excitation is implicitly included
through the complex potential Ub„and U„A. Then, the
wave function of the total system +'+ ' is approximated as

where the optical potential U A is defined by

and

v„„=(a'„
I O„„~'„), (2.12)

O'„„=PV„„P+PV„„Q(E„QH„„Q—+i e) 'QV„„P,
+(+&,i,3B(+)@0

+xb A (2.8) (2. 13)

Here g„b(+' obeys the three-body model equation

(Kb+K„+ V,„+V„„+Vb„)y„(3Bb)+=Zq„3+Bb(), (2.9)

and 4„ is the ground state wave function of the target
I

with P= IC„&&(I)„land Q= 1 P. —
Inserting Eq. (2.8) into Eq. (2.6), noting that Vb„does

not excite C&„and using Eq. (2.11), we obtain the expres-
sion

2&inc, 3B

p«b»m&4.'b"'I Vb. Ir'b ')G:~~'(X'b 'I Vblg,''b+'&
b b VQ

The second key identity' is

ImG„'~~'= (1+6„'~' U„„)[lmGo](1+U„„G„'~)")+G„'~~' W„„G„'~'

(2.14)

'(k„)l+G„'~' W„„G„'~', (2.15)

(2.16)

'(k„) &5 F. Eb ——
where Go is the free Green's function of x, Go =(e Eb —K„+ie)—'. The distorted wave of x, y„' '(k, ), is defined by

+( —)(k )
—(@0 I)I(co, (

—)
&

and is subject to the equation

(K„+U„„E„)y„' '(k„)=0, —
k„E=E—E=

b 2m x

where c0 denotes the elastic breakup channel.

Employing Eq. (2.15), the inclusive breakup cross section (2.14) is decomposed into EB and NEB parts as

d 2 EB,3B k
p(Fb) y I&~(b 'q„'-'(k, )lvb„ly„"b'+'&I'5 F. eb-

b 8 Va k
b ' 2m.

(2.17)

(2.18)

and

d 2 NEB, 38

d QbdEb
p(e, ) & e„"IIV„„I e."&,

Va
(2.19)

TEB
& +( —)@cO,( —)

I
V I

q(( )
& (2.21)

I

They have now a manageable form. Using the expression
of the T matrix for EB

with

q(3B GoPt(~( )I V Iq3B( )
& (2.20)

and Eqs. (2.8) and (2.16), we can identify Eq. (2.18) with
the EB cross section.
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Rewriting Vb„ in Eq. (2.20) as

V„„=[( Vb„+Ks +K„+Ub „+U„q E—)

(—Kb +K„+Us „+U„„E—)], (2.22)

B. Post-form 0%'BA
(Ichimura-Austern-Vincent formula) (IAV)

In the post form DWBA, tp(+) in Eq. (2.2) is approxi-
mated as

(I)3B (~(
—)

l

q3B(+ )
& (2.23)

which is very useful for later discussion.

and using the Schrodinger equations for f„b'+' and yI,
Austern et ai. derived an interesting identity

tp(+) ~(+)y @0 (2.24)

where t})t, and y', +' are the bound state internal wave
function and the distorted wave of a respectively.

Following the same procedure used in Sec. II A, we ob-
tain the formulas for the cross sections by simply replac-

d 2 EB,IAV

d QbdEb

k„
p(E ) ~ l &~»~„(k„)lV „l+, ~, & l ~E E—

k 2mx
X

(2.25)

and

d 2 NEB, IAV

p(E„)& e„'"'l IV„„le„' "&,
b b Ua

with

(I)IAV GoPt(+( —
)

l
V l+(+ )y

(2.26)

(2.27)

(2.28)

with

(2.23) instead of in (2.20). Thus the EB cross section of
HM is the same as that of IAV, but the NEB one is given

by

d 2 NEB, HM

(E )&(IIH
l
IV le/HM&

b b Ua

where Eq. (2.20) is used. tI(HM (~( ) l~(+ )y (2.29)

C. Hussein-McVoy formula (HM)

A way' ' to derive their formula is to replace ttt3~&(+)

by g,'+'(tt, as was done in IAV, but in the expression

In the original paper they derived these formulas in an
intuitive way and considered that they gave the full in-

clusive breakup cross section, but later it turned out that
Eq. (2.28) with (2.29) only represents the NEB part. '

D. Utlagawa-Tamura formula (UT)

UT started from the total reaction cross section

2 (+] op(E$)lm&y'. +'(r). @g I( V.g+ Ubg
—U.g ) . ( V.g+ Ubg

—U. g )IX.'+'(().~ g &,
Ua E —0+i@ (2.30)

and claimed that the inclusive breakup contribution can be singled out by replacing (E H is} b—y a—"Green's func-
tion of the breakup channel"

Gd =[E (Kb+ Ub„+K„—+ 0„„+H„}+if] (2.31)

The point is that this Green s function does not contain Vb„and thus the bound state of 6+x system does not appear in
the asymptotic region of the final states.

This still allows processes in which b is a participant. To discard processes in which b is absorbed and to fix the out-
going momentum of b, UT developed a more elaborate manipulation, with some additional approximations. Then they
reached an approximate expression for the inclusive breakup cross section

d2 inc, UT

p(Eb)im&y,'+'((), tp„ l( V„„+U„„—U, „)ly'b ')
b b Ua

&&«E) K ~ ~
—H~+i&) '(&'b 'l(V ~+Ub~ —U.~)lx'+'((). @~ & .

Further if one makes the replacement

(2.32)

(2.33)

the excitation of the target A by the interaction V„„does not occur any more and one can set H„by E~ =0 and arrive
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at the expression

2 inc, UT

p«b)™&X."'W. l(U. A+UbA —U. A)IXb ')G'A'(X'b 'l(U A+UbA —U.A)IX."4.& .
d QbdEb va

Using Eq. (2.15), one obtains the UT formula

(2.34)

d 2 EB,UT

d QbdEb

k
p(F-b) g l&x(, 'x.' '(k, )l(U.„+U» —U.A)lx.'+)y.

&
'6 E Eb——

x

(2.35)

d 20 NEB, UT

p(E, )&+,"'I~. Iq',"'&,
b b va

(2.36)

with

+x GxA (Xb I( UxA + UbA UaA }IXa Na ) (2.37)

@co,( —) —(p +g )q)co, ( —
)

xA xA

The replacement (2.33) means that this formalism
does not include breakup with simultaneous excitation of
the target A by the interaction Vx„. Therefore the ex-
pression (2.36) only represents the process,
a+ A ~b+x+ A ~b+c, which UT named elastic
breakup fusion (EBF).

1+ 1
V P%"'Qg gH g

~ Q XA XA

(3.5)

and using Eqs. (2.12), (2.13), and (2.16}. Thus the
equivalence between Eqs. (2.25) and (2.35) is proved.

III. RELATION AMONG THE THEORIES B. Nonelastic breakup (NEB)

In the preceding section, the 3B-model, IAV, and HM
forrnalisms are derived in a unified manner. The relation
between IAV and UT formalisms was first discussed in
IAV. In this section we clarify the relation among them
in a more explicit and/or simpler way.

A. Elastic breakup (EB)

As was shown, the EB formulas if IAV and HM are
equivalent and are obtained just by the replacement

in the 3B-model formula. The
equivalence of the EB formulas of UT and IAV was
shown by IAV. A detailed proof is the following.

The prior-post symmetry of the DWBA amplitudes is
expressed as

Recently Frederico, Mastroleo, and Hussein' (FMH}
discussed the relation among these theories by using the
Faddeev equations for the three-body model. Here we
present similar argumentation in a somewhat different
manner.

The three-body model wave function g„b'+' is ex-

pressed in terms of the wave function, X(+)P„used in

DWBA as

—X'a+'(t'a+G3B UxA+ bA UaA )Xa (3.6)

where G3B is the Green's function of the three-body mod-

el

G3B
1

F- —(Kb + Ub„+E„+U„„+Vb, ) +i e
(3.7)

(xb 'q'."A' 'lv. , +U» —U., Ix."'g.@'A)

(x( —)@co,( —
)I v lx(+)y @0 ) (3.1)

Inserting Eq. (3.6) into Eq. (2.20), we obtain the rela-
tion

qp3B qp IAV +gq(3B
X X x (3.g)

rhs=(X', 'X„' '(k„)l Vb„IX(.+)y. ) . (3.2)

Using Eq. (2.16) and noting Vb„does not affect C)„, the
right hand side (rhs) of Eq. (3.1) becomes

with

A~(XbX~ bxG38( UxA + UbA UaA }IX ~a )

(3.9)

On the other hand, the left hand side (lhs) is rewritten as

lhs= (Xb 'X,' '(k„)l( U„„+Ub„—U, „)IX,'+ (J)„), (3.3)

by use of the identity

On the other hand inserting Eq. (3.6) into Eq. (2.23), we
get

)p, =)p™+(x''IG (U„„+U„„—U, „)x,' '(t, ) .

(3.10)

( q(„'„' 'I V„„I
e ) = (x'„'(k„)

I U,„,
which is proved by writing +„'A' ' as

(3.4) Using the identity

(xb 3B
— .A(xb 'I+G„A(xb 'lvb. G3B, (3.11)
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the second term of Eq. (3.10) turns out to be

q'. +G pyb 'IVb G3B(U.~+Ub~ U.~)IX.'
Equations (3.8) and (3.13) lead to a previously known re-
lation8'4' ~5

(3.12) qllAV qUT+ qgHM
X Z X (3.14)

Thus we get the relation

@3B q)HM+ qgUT+ gqy3B
X X X X (3.13)

I

From Eqs. (3.8) and (3.14), we get relations among the
NEB cross sections

2 NEB, 3B d 2 NEB, IAV

P( b)[ R.( '"'I „„IW„")+( "I „„I ")]
d QbdEb d QbdEb U~

(3.15)

and

d 2~NEB, IAV

d AbdEb

d 2~NEB, HM d 2 NEB, UT

+ — (E )Re(qH"lwP b X XA X (3.16)

The latter relation was first derived by IAV. The first
term of the lhs (the HM term) is often called the
nonorthogonality term.

Within the framework of the three-body model, IAV
and HM are approximations in which the replacement
$3b'+'~y,'+'p, is made in Eq. (2.20) and Eq. (2.23), re-
spectively. The same approximate replacement in for-
mally identical but different expressions can lead to
different results. The difference between the IAV and
HM cross sections is explicitly given in Eq. (3.16).

IV. DISCUSSIONS

Here we compare these formalisms and discuss their
merits and demerits, problems in derivation and in appli-
cation, etc.

A. 3B model vs DWBA

In general the three-body model is more advanced than
DWBA. However it should be noted that the distorted
wave approximation, 4'+ '~y', + 'P„ is not necessarily
within the three-body model, because U, ~ could implicit-
ly include some processes which are not in the three-body
model. For instance, the 3B model does not include the
process in which the target A is excited by Vb„or V ~
then Vb acts and then A is deexcited by Vb~ or V„~, be-
cause U „and Ub~ are used instead of Vb„and V „and
thus A is always in the ground state when Vbx works. On
the other hand, the optical potential U, „ implicitly in-
cludes such a process.

B. IAV vs HM formalisms

As was discussed, the IAV and HM formulas are de-
rived by inserting the same replacement (2.33) in formally
equivalent but different expressions, (2.20) and (2.23), of
the 3B model. Therefore it is hard to discuss which is
better. However, it is worth pointing out that to calcu-

late 4" one needs a good approximation for the wave
function only for small separation rb„between b and x,
because of the presence of Vb„, while to calculate 4„
one needs a good wave function in the whole region of
rb„. We may use zero range approximation in IAV (e.g.,
in the case of deuteron breakup) but a full finite range
calculation is needed in HM.

According to numerical analysis by Mastroleo,
Udagawa, and Tamura'3 (MUT), the NEB cross section
of HM is very close to that of IAV for Ni(a, p) but the
former is much smaller (about a factor of 2) than the
latter for Ni(d, p). This suggests that IAV and HM
give similar results for a tightly bound projectile like a,
but they are different for a loosely bound one like d.

It is interesting to note that the second term of Eq.
(3.6) involves both the bound and unbound states of the
6+x system, but the first only contains the bound state

Therefore the second term may be relatively more
important for a loosely bound projectile than for a tightly
bound one.

Further, one may expect that in the loosely bound case
the unbound components have large effects on overlaps
(2.23) of the HM type but not so much on %„ofthe IAV
type (2.20), because in the latter the wave function $3nb'+'

is only used at small separations of b and x. This obser-
vation seems consistent with the results of the MUT cal-
culation. Therefore the IAV method seems preferable in
practical use.

C. Meaning of UT formalism

The interaction (V„„+Ub„—U, „) in Eq. (2.32) re-
minds us of the prior form DWBA, which has the t ma-
trix

(Xb q' 'g IV„„+Ub„—U, g IX, f~c'g ) ~

(4.1)

instead of Eq. (2.2). The equation corresponding to Eq.
(2.6) is found to be
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d 2~III~, prDw

d QbdEb
p(&b»m&X'. "4.+'&

I V, ~+ Ubg Uog IXb )G &(Xb V g+ Ubg U g IX'."N.@'& & .
~Q

(4.2)

Note that here V„„appears in the Green's function G,„,whereas Eq. (2.32) contains U z.
However, the replacement (2.33) in the interaction again reduces Eq. {4.2) to the UT formula (2.34), because U, z

does not excite 4 ~ and hence G ~ is sandwiched by 4 ~ . The physical meaning of the UT approximations is now
clearer. Namely, the UT formula for NEB represents the cross section of the EBF process in the prior form DWBA via
the interaction ( U„„+Ub„—U, „),

2 NEB, UT

p(&„) y I&X' 4 „' 'IU„„+U,„—U, „IX', 'y, e„&I'6(E +F., E) . —
d QbdEb uQ c~cp

(4.3)

It is worth commenting that the procedure (F. H+—ie) '~Gd=(E —Kb —K„—U„„—Ub„H„—+ie) ' in the
step from Eq. (2.30) to Eq. (2.32) is replaced in Eq. (4.2) by the weaker approximation (E H+—i e)
~(E Kb ——K„—V„„—Ub„H„+—i e)

On the other hand, starting from Eq. (4.2) and eliminating V„„by exact manipulation, IAV (Ref. 4) derived the rela-
tion (3.16) between the UT and IAV formalisms and also proved that the prior-form DWBA cross section is given by
the rhs of Eq. (3.16), that is,

d 2 NEB, IAV
=rhs of (3.16)

d QbdEb

p(~b) g 1&x' '+ '4 'Iv. ~+Ubg —U. ~ lx'.+~{(.@0~ &I'o(&b+F-, F. ), —
Q e&cp

(4.4)

as is required by the post-prior symmetry of the DWBA
formalisms. Comparing Eqs. (4.4) and (4.3), the
difference between the two methods is very transparent.
The interaction V, ~ can excite the target A but U, „does
not.

The replacement V,„~U,„used by UT (Refs. 1 and
11) holds only in the matrix element (3.4) but not in gen-
eral, as is proved below Eq. (3.4). Therefore this pro-
cedure of UT is an additional approximation which only
picks up the EBF process. On the contrary, a complete
treatment of V ~ in the interaction and in the Green's
function leads to the IAV formulas (4.4) and (3.16). To
remedy the defect of missing the process a + A

~b+x+ A * in which the target is simultaneously excit-
ed with breakup, UT proposed a CCBA-type approxima-
tion. The IAV formalism can also be extended to a
CCBA version. '

If one considers 4,' to be the leading order of
4„, 5+„represents higher order processes. On the oth-
er hand if one starts from HM, 4," +5%', corresponds
to the higher order. FMH call this a three-body contri-
bution and conclude that the UT formula only takes into
account higher order processes and misses the leading
part. However, since IAV and HM are both considered
to be of leading order, UT may also be of leading order,
as is seen from Eq. (3.14). Equation (4.3) shows that the
UT formula represents the DWBA cross section via the
interaction ( U ~ + Ub~

—U, ~ ). Therefore it is natural to
consider the UT formula as a part of the leading order.

Such ambiguity about the order of processes stems
from manipulations in which a Green s function is elim-
inated by rewriting interactions in the numerator as a
sum of the inverse of the Green's function and the rest, as
is done in the derivation of Eq. (2.23) from Eq. (2.20).
Remember that the latter contains one Green's function
and one interaction whereas the former does not. This

ambiguity about the number of perturbative steps is in-
herent for rearrangement processes between different
clusters. A typical example of this kind is seen in the
simultaneous plus sequential two-nucleon transfer for-
malism in which the two step process in the prior-post
representation can be reexpressed by the sum of the one-
and two-step processes in the post-post representation. '

D. UT vs other formalisms

Even after a lengthy dispute, ' ' the UT group still
criticizes all the other formalisms on the argument that
they erroneously include processes other than inclusive
breakup. In their latest paper, ' they present two kinds
of arguments for the relation

IAV HM rec &&ob ob 0 ob (4.5)

where o.b, o.b, and o.
b are angle and energy integrat-

ed inclusive breakup cross sections, of the form

d 2~ inc

ob= f dAbdEb
b b

(4.6)

for the exact, IAV, and HM formalisms, respectively.
In the first argument they rewrite the angle-energy in-

tegrals of Eq. (4.6) in terms of the operator

Ab=—f dEbdQbp{Eb)Xb '*(kb, rb)Xb '(kb, rb), (4.7)

and claim that if Ub„ is real then & Ab & is unity, due to
completeness. For completeness the integral over Eb
must run up to infinity; however, the Eb variable in the
cross section is restricted by energy conservation [i.e.,

Fb ~ F. —min(E, )]. Therefore completeness is not applic-
able in Eq. (4.7).

Their second argument has already been described in
Ref. 11 and rebutted by Ref. 12. The point of this argu-
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ment is the following. The replacement (E H-

+ie) '~(e —Kt, K—„—U~„—V„„+iE) ' in the total
reaction cross section (2.30) may not change the value
very much and may be considered as a good approxima-
tion for o.'". Therefore the relation o'„=o. =o."' is
obtained. We think that not only is this statement
without any theoretical foundation but it also contradicts
their original derivation of the UT formula based upon
the replacement (E H+—i e )

' ~(E Kb—K„——Ub „—U„„+ie) ' to extract the breakup process.

E. A common problem

A common shortcoming of all the theories discussed in
this paper is that the particle x is assumed to be either

structureless or a cluster in a particular state (usually the
ground state). The difficulty of relaxing this restriction
prevents easy generalization of the optical reduction
(2.11) in a practical calculation. This may be a reason for
the discrepancy between tr' (o ) and the experimen-
tal data of (a,p ) in the MUT calculation. ' A reasonable
fit of o to the data of (a,p) does not necessarily mean
UT theory is superior to others, because it only includes
the EB and EBF processes.

The author thanks Professor Norman Austern, Profes-
sor Tokuo Terasawa, and Professor Martin Vincent for
valuable discussions and comments.
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