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The optical potential for elastic scattering of protons from "0at incident beam energies between
100 and 500 MeV is calculated from a full-folding integral of a simple s-p-shell representation of the

target density matrix together with fully off-shell nucleon-nucleon t matrices derived from two
different Bonn meson exchange models. Elastic scattering observables calculated from this full-

folding optical potential are compared to those obtained from "optimum factorized" as well as on-

shell local ("tp") approximations. The optimum factorization is found to provide a good approxi-
mation to elastic scattering observables obtained from the full-folding optical potential, although
the potentials differ in the structure of their nonlocality. A perturbative treatment of the nonlocali-

ty is used to extract approximate localized potentials and associated Percy damping factors for the
interior wave functions. The results indicate that the interior wave function from the optimum fac-
torization potential and the full-folding potential are very similar.

I. INTRODUCTION

The theory of the nucleon-nucleus optical potential
continues to play an important role in modern nuclear
physics. The motivation for ongoing work on this topic
is twofold. First, elastic and inelastic nucleon-nucleus
scattering seem to provide an important and sensitive test
for theoretical corrections at the first-order level of the
optical potential given by relativistic dynamics, ' medi-
um modifications of the nucleon-nucleon interaction,
and off-shell effects. Second, high-energy coincidence
experiments will be extremely important in the next de-
cade and the wave functions needed for continuum nu-
cleons in the interior of the nucleus will require a better
understanding of the theoretical optical potential than is
necessary for just the elastic observables.

There have been extensive analyses of relativistic mod-
els which appear to show that it is more appropriate to
treat the nucleon as a relativistic Dirac particle than as a
nonrelativistic Pauli particle. Indeed, it has been suggest-
ed that these tests, among others, strongly indicate that
our underlying theory of nuclei should be relativistic. If
our analysis of intermediate energy scattering is to pro-
vide that strong a lever on our view of nuclear physics,
we must proceed with considerable caution and be cer-
tain that we understand in detail the corrections to our
calculations of the optical potential, both relativistic and
nonrelativistic. There are already strong indications that
some models of effective interactions that are assumed to
produce good representations of nonrelativistic methods
have some very inconsistent features. Calculations using
these models to "test nonrelativistic theory" may not, in
fact, do so, and conclusions based on the inadequacy of

the nonrelativistic approach may be premature.
In the next decade, a number of important high-energy

coincidence experiments are planned with weak or elec-
tromagnetic probes. In these experiments, a probe parti-
cle (electron or neutrino) will interact with a nucleon in-

side the nucleus and knock it out. The struck particle
will then be observed, in some cases in coincidence with
the scattered projectile. The inference from these experi-
ments of the behavior of nucleons within the nucleus may
have important implications for our understanding of nu-

cleonic as well as nuclear structure. Ho~ever, the
"source" for the "beam" of nucleons that we will detect
will in fact be inside the nucleus. In order to extract any
information about how the fundamental process is
modified inside the nucleus, we will have to understand
how the struck nucleon interacts with the nucleus on its

way out. This is not a trivial extension of optical model
theory. Our current tests of the optical potential are
mostly based on elastic scattering which is not very sensi-
tive to what is happening in the nuclear interior. In or-
der to interpret knockout experiments, we will need to
have a much better understanding of optical potential
mechanisms than we do now.

In this paper we consider one of the corrections to the
single-scattering nonrelativistic theory of the optical po-
tential: the effect of full-folding. The single-scattering
optical potential is given by the triangle graph shown in

Fig. 1. Since there is one loop, the graph requires a
three-dimensional integration involving a fully-off-shell
two-nucleon scattering amplitude and the nuclear density
matrix. [See Eq. (2)]. Usually, one makes the assumption
that the nucleon-nucleon amplitude varies slowly as a
function of its arguments compared to the nuclear densi-
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FIG. 1. Diagram for the optical potential matrix element for
the single-scattering approximation.

ty matrix. This corresponds to the argument that the
range of the nucleon-nucleon force is srnaH compared to
the size of the nucleus and leads to the approximate non-
relativistic form t(q)p(q) for the first-order nucleon-
nucleus optical potential.

This is an appealing starting point, because both the
on-shell nucleon-nucleon (NN) scattering amplitude t and
the one-nucleon density p for the target nucleus can be
obtained from independent experiments. It is also con-
venient because it is local and thus serves as a basis for a
large body of phenomenological work. The underlying
assumption leading to the local t(q)p(q) form is certainly
approximately correct and higher-order effects at forward
scattering angles relate to the energy derivative of t.
However, intermediate-energy nucleon-nucleus elastic
scattering is highly sensitive to details, especially the spin
dependence of scattering near interference minima.
Therefore, it is necessary to investigate the effect of the
range of the two-nucleon force on the momentum nonlo-
cality in an appropriate fashion and perform the integra-
tion indicated in the triangle graph of Fig. 1.

The purpose of this paper is to test in a simple model
the accuracy of commonly used approximations to the
full-folding calculation, namely the local on-shell and the
optimum factorized off-shell approximation. ' ' Also,
approximate expansions, which have been developed to
obtain an effective local form, " can be tested for their
ability to capture the dominant nonlocal effects. We con-
struct the full-folding optical potential after a method
proposed by Redish and Stricker-Bauer (RSB).' This
method is based on the observation that the fully-off-shell
central and spin-orbit nucleon-nucleon amplitudes appear
to simplify, when their momentum dependence is ex-
pressed in terms of an appropriate set of variables. In the
case that the nuclear density matrix ean be expanded in
terms of harmonic oscillator functions, the full-folding in-
tegral can be partly performed analytically. Preliminary
results for the matrix elements of the resulting optical po-
tential based on the Reid Soft Core potential as two-
nucleon input were shown in Ref. 13.

!n this paper we construct the full-folding single-
scattering optical potential for ' 0 using a two-parameter
harmonic oscillator density matrix. for closed s and p

I

shells and the fully-off-shell nucleon-nucleon scattering

amplitudes from the full Bonn meson exchange model'
at 200 MeV and from one of its derivatives at 500 MeV
scattering energy. We find that the off-shell optimum
factorization provides a very good approximation for
both the elastic scattering observables as well as the inte-
rior damping' of the wave function, especially at higher
energies. The investigations carried out here have many
similarities to a recent study' of the full-folding optical
potential for Ca based upon the t matrix derived from
the Paris Potential. In particular the qualitative nature
of the effects upon the spin observables reported here
agrees with the ones found in Ref. 16.

The structure of the paper is as follows. In Sec. II we
review the formalism for the single-scattering optical po-
tential and the RSB method. In Sec. III, we discuss the
harmonic oscillator model employed for the density ma-
trix. The calculations of the full-folding optical potential
are carried out in Sec. IV and the resulting potentials are
displayed. We discuss the elastic scattering results in Sec.
V. In Sec. VI we carry out an approximate localization
of the nonloca1 potentials and extract Percy damping fac-
tors for the interior wave functions to provide a charac-
terization of the dominant effect. Our conclusions are
presented in Sec. VII.

II. THE FIRST-ORDER OPTICAL POTENTIAL

In the nonrelativistic multiple-scattering theory of
Kerman, McManus, and Thaler, ' the first-order optical
potential may be expressed as

«'I U(E) lk &
= k'40 g t (E) k@0

a=p, n

Here t (e) is the free NN t matrix at an appropriate ener-

gy c. In principle, this energy should be the beam energy
minus the kinetic energy of the center of mass of the in-

teracting pair less the binding energy of the struck parti-
cle. ' Thus e is coupled to the integration variable. In
practice, the relevant matrix elements of t do not depend
strongly on this variable, ' so we will fix it at the two-
body c.m. energy corresponding to free XX scattering at
the beam energy. This corresponds to ignoring the effect
of the binding correction and Fermi motion on the ener-

gy shift. The momenta k' and k are the final and initial
mornenta of the projectile in the frame of zero total
nucleon-nucleus momentum, respectively. The effect of
Fermi motion upon the effective XX relative mornenta is
retained, however.

With insertion of complete sets of momenta for the
struck target nue1eon before and after the collision, we

get the following explicit expression for the optical poten-
tial in momentum space:

&k'IU(E)Ik& = 3 I 3 I I

(2~) (2m )
I it (e)i p (p', p)5(k'+p' —k —p) . (2)

Recoil effects have been ignored. The density matrices p and p„are normalized to the number of protons and neu-
trons, respectively. The integrations over the initial and final rnomenta of the target nucleon are reduced to a single
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momentum integration by the conservation of the total two-nucleon momentum by the two-body interaction. If U(E),
t (e), and p are rewritten as functions of the difference and average of their momentum arguments and one integration
is performed, Eq. (2) becomes

(k'~U(E)~k)=U(q, K)= g I r q, ;& p (q, &) .
(2~)'

(3)

Uf„(q, K)= A —1

A
r, q, ;s p(q). (4)

K
a=p, n

Since q and K are arbitrary and not related to the on-
shell value of the two-body t matrix, we refer to Uf„as
an "off-shell tp" approximation. If we further assume
that for any K the two-body t-matrix t (q, K/2; s) in Eq.
(4) is equal to its on-shell value t '"(q;e), we obtain the lo-
cal "tp" approximation. This involves the replacement
of K in Eq. (4) by the value calculated from the on-shell
conditions q-K =0 and q +K =4kp with kp being the
on-shell relative momentum for NN scattering at energy
c. Since the new value of K is determined completely by
the argument q in Uf„at a given energy e, the potential
becomes independent of the variable K and thus is local.
Explicitly, we have the on-shell or local approximation:

U,„(q,K)=
A a=p, n

t (q)p (q) .

Our principal concern in this work is the evaluation of
Eq. (3). In general, this three-dimensional integration is
complicated due to angular dependence of both the off-
shell t matrix and the target density matrix in the
momentum variables. Off-shell effects from the t matrix
have been found to be quite important when the optimum
factorization in Eq. (4) is employed. ' ' For this reason
we wish to evaluate the full-folding integration of Eq. (3}

The tilde indicates a function of initial and final momenta
and has been expressed as a function of the difference and
average of those momenta, that is,

j(k' —k, (k'+k)/2) f=(k k',) .

Explicitly, the momenta in Eq. (3) are defined by
q=k' —k, K=(k'+k)/2, and P=(p'+p)/2.

Common approximations to the full-folding expression
in Eq. (3) are obtained as follows. If we observe that the
nuclear size is significantly larger than the range of the
NN interaction, the two-body t-matrix t is expected to
be the most slowly varying factor in Eq. (3). This argues
for the method of optimum factorization, ' which
proceeds via an expansion of t in a Taylor series in P
about a fixed value Pp. The reference momentum Pp is
determined by requiring that the contribution of the first
derivative term be minimized. In the present elastic

scattering case, this contribution can be made to vanish if
Pp is chosen to be zero. For further details we refer to
Ref. 4.

After integration over the density matrix to produce
the diagonal one-body density, the optimum factorized
approximation for the optical potential is

T

in the context of a simple model for the density matrix

p (q, P) wh&le retaining the full off-shell structure of the t
matrix. With a harmonic oscillator model for the target,
the density matrix depends only on the magnitudes q and
P and the task is considerably simplified. It is convenient
to apply the variable change Q=(K —P)/2 so that Eq.
(3) becomes

U(q, K)=8 g I 3
t (q, Q}

(2n )

XP (q, iK —2Qi) . (6)

III. DENSITY MATRIX FOR ' 0
Since our goal is to test the accuracy of approximations

to the full-folding integral rather than to make a detailed
comparison with data, we choose to consider the scatter-
ing from the closed-shell nucleus ' 0 with the assumption
of occupied s and p shells only. We approximate the den-
sity matrix by two harmonic oscillator terms. The one
particle s-wave harmonic oscillator wave function is
given by (the notation is 4„1 )

0 ~(p) =(2~)3" 4
3l2
S

' 1/2 —p /2v,
e

3/4~

and the one-particle p-wave function by
' 1/2

4
3/7rv3"

p

4O, (P) =(2n')

/2v
Xe 'P, (P) .

The s-shell contribution to the density matrix is therefore

POO(P P ) q'000(P )+000(P)
' 3/2

4& —(p' +p )/2vs
e

With the change of
P=(p+p')/2, we obtain

3/2
4m

P~(q») = e
&s

variables, q =p —p' and

—(P /v +q /4v )
(10)

The momentum Q is the average of the initial and final
relative momenta of the two active nucleons, and the t
matrix has a very simple orientational dependence in the
variables shown. As detailed in Sec. IV, the two angular
integrations can be performed analytically in the case of
an oscillator density matrix leaving a one-dimensional
numerical quadrature to complete the full-folding in-
tegral.
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The p-shell contribution to the density matrix is

poi(p' p)=3++ot (p')+oi (p») .

This becomes explicitly
' 3/2

2 4m
Po((q») =-

P

—(P /v +q /4v )
Xe

(P /v~ —
q /4v~)

(12)

after use is made of the property

happ'&, (p')P) (p)=(3/4~)p' p

satisfied by spherical harmonics. The density matrix for
' 0 in this harmonic oscillator model is then given by

p(q, P) =4poo(q, P )+ 12po&(q, P ) . (13)

I

I

f I l I

I

I I 1

It should be noted that due to the special choice of har-
monic oscillator wave functions the density P(q, P) de-
pends only on the magnitudes of q and P. The diagonal
density p(q) is obtained by integrating over P, i.e.,

p(q)=f,p(q, P) .
d P

(14)
(2m )

The insertion of Eqs. (10), (12), and (13) into this expres-
sion leads to the simple result

1 0 s

103
N

102

2 )o&

100

10

10

10

1.0 I I I I I I I I
I

I 1

I

I I 1 1

I

1 I I

I

I 1

0(p, p) 200 MeV

p(q) =4e '+ 12(1—
—,'P )e

where we have used the abbreviations P, ~=q /4v, z.
We determine the oscillator parameters v, and v by
fitting the diagonal density of Eq. (15) to a three-
parameter Fermi shape density which describes the ex-
perimentally determined proton charge distribution ob-
tained from electron scattering up to about 4 fm

In Fig. 2 the Fourier transform of the Fermi shape
density distribution is represented by the dashed line.
Our best fit to the density with harmonic oscillator wave
functions is given by the solid line. We obtain the oscilla-
tor parameters v, =0.310 fm and v =0.336 fm
The curve from the first peak at q =0 down to the zero in

p in the neighborhood of q =1.6 fm ' is excellently de-
scribed by the oscillator model. However, the enlarged
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FIG. 2. Momentum-space density for the proton distribution

of ' O. The solid curve represents the harmonic oscillator mod-
el described in the text, the dashed curve is the three-parameter
Fermi distribution of Ref. 19.

FIG. 3. The angular distribution of the differential cross sec-
tion, analyzing power (A ), and spin rotation function (Q) for
elastic proton scattering from ' 0 at 200 MeV laboratory ener-

gy. The calculations are with a erst-order optical potential
from the full Bonn interaction in the on-shell local approxima-
tion. The solid curve uses the oscillator model density, whereas
the dashed curve represents a calculation with the three-
parameter Fermi shape density from Ref. 19. The data are from
Ref. 25.
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scale of Fig. 2(b) shows that small deviations occur in the
minimum and that the model density cannot fit the
second zero at q =2.8 fm

In order to test the sensitivity of the differences in the
two densities on the elastic scattering observables for pro-
ton scattering from ' 0, we calculated the angular distri-
butions of the differential cross section, the analyzing
power, ( A ), and the spin rotation function (Q) with a
first-order optical potential based on the full Bonn in-
teraction' in a local on-shell approximation. The results
are displayed in Fig. 3. The dashed curve uses the three-
parameter Fermi shape density of Ref. 19 whereas the
solid curve is based on the model density of Eq. (15). The
agreement between the two curves for angles smaller than
40' is very good. At larger angles deviations occur,
which are reflections of the inadequacies of the oscillator
model for higher q.

IV. FULL-FOLDING OPTICAL POTENTIAL FOR ' O

Since ' 0 is a spin saturated target, the required two-
body t matrix reduces to a spin-independent component
(corresponding to the Wolfenstein amplitude A) and to a
spin-orbit component (corresponding to Wolfenstein am-
plitude C). The required t tnatrix can be written as

t (q, Q;e)= A(q, Q;e)+i(o, +o2) n C(q, Q;e), (16)

where q and Q are, respectively, the difference and aver-
age of the final and initial NN relative moments and
n=qXQ.

The evaluation of the full-folding potential of Eq. (6)
I

can be simplified if we note that the two-body t-matrix
has the following general characteristics.

(i) The off-shell Wolfenstein amplitudes A and C are
only slowly varying functions of the two-particle scatter-
ing energy c.. ' Consequently we can evaluate the Wol-
fenstein amplitudes at the fixed two-body scattering ener-
gy c,, which we choose to correspond to free NN scatter-
ing at the beam energy. It should be noted that the s1ow
energy variation of the off-shell amplitudes does not mean
that the on-shell amplitudes are energy independent. A
great deal of the energy dependence comes from the on-
shell constraint between q and Q.

(ii) The off-shell amplitudes A and C' (where
C'=C/sin8) are nearly independent of the angle 8 be-
tween q and Q. In Ref. 12 this has been shown for the
amplitudes derived from the Paris potential. This
finding is also true for other potentials based on a meson
exchange model for the XN interaction. '

We can thus write

t (q, Q;s)=A(q, g)+i( o+crz) qXQC'(q, Q), (17)

where the dependence upon the fixed NN energy c is to be
understood. After integration over the density matrix the
amplitude A leads to the central part of the optical po-
tential, and C yields the spin-orbit part. Since the model
density matrix employed does not distinguish protons
and neutrons, the NN t matrix that enters is the average
for pp and pn contributions. In the following, the NN
amplitudes A and C are understood to be this average.

From Eq. (6) the central term of the full-folding (II) op-
tical potential is

U s(q, K)=
(2m. )

fdQ Q A(q, g)f dQgp(q, lK 2Ql) .

After the angle integration is carried out, the s-shell density matrix given in Eq. (10) leads to the contribution

7T' 9$

while the p-shell density matrix given in Eq. (12) leads to the contribution

(19)

U '(q K)= A —1 8 ~p —&~+0 ~ sinhgp
e ' ' f dQ Q A(q, g)e (ap —p +yp+1) —

cosh'~
p

(20)

Here we have introduced the following abbreviations: 8,~=(4m/v, ~), r1, ~=4KQ/v, ~, a, &=K /v, , and

y, =4Q /v, . The quantities P, are defined in Eq. (15). The total central part of the full-folding potential is then
given by

U tt(q, K)=4Utt (q, K)+12U tt'(q, K) . (21)

It should be noted that U z is independent of the angle between q and K due to the simple density matrix employed.
For a spin-saturated 0+ target ( cr 2 )~0 and with the notation cr, =o, the spin-orbit (I.S) part of the optical potential

obtained from Eq. (6) is

(2~)' q
(22)

A A
To facilitate the angular integration, we take K as the polar axis and describe the orientation of Q through g=Q K and
an azimuthal angle W. The azimuthal integration yields
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f d 4 q X Q =2~$(q X K )Q /K .
0

We can thus make the factorization

Ua (q, K)=icr.qXKUs(q, K}

where the spin-orbit amplitude U & is independent of q-K and is given by

(23)

(24)

U s(q, K)=— f dQ Q
' f d g (P(q, iK —2Qi ) .

A qK
(25}

The contribution from the s-shell density matrix given in Eq. (10) is

A —1

A

s —(a +p +y ) 1 Sl~h7ls
dQ Q C'(q, Q }enqK. ls Is

—cosh', (26)

while the contribution of the p-shell density matrix given in Eq. (12) is

U '(q K)= fdQ Q C'(q, Q)e ' ' ' (a —Pz+y +2)
3m qK gp

sinhg —cosh' +sinhgp
7l

(27)

The definition of the constants is the same as given in Eq.
(20). The total spin-orbit part of the full-folding optical
potential is then given by

Utt(q, K)=4Utr (q, K)+12Us'(q, K) .

The complete optical potential is thus

Utr (q, K ) = U tr(q, K}+f tT"q X K U rt( q, K ) .

(28)

(29)

The individual s-shell and p-shell contributions in Eqs.
(19), (20), (26), and (27) are evaluated with standard
Gaussian integration methods and the produced values

I

are tabulated on a sufficiently fine grid of equally spaced
points in the q-K space. The real parts of Us(q, K) andC

U s(q, K) from Eq. (29) for ' 0 at 200 MeV scattering en-

ergy are displayed in Fig. 4(a}. The corresponding real
parts of the central and spin-orbit potential of the off-
shell factorized approximation of Eq. (4) are shown in
Fig. 4(b). The general tendency is that the full-folding
potentials appear to be more local than the optimum fac-
torized ones. By this we mean that the dependence on
the gradient with respect to K is smaller for the full-
folding potential. This is especially obvious in the real
part of the central potential, where the optimum factor-

e U&& (MeV fm )
-'.= 1200

. -600

MeV fm)

(200

~-0

~ -600
0 600

(a) (b)

0

Ug(MeV fm )
40
20

-20

U~(MeV fm~)

40
20

-20

F&G 4. Real parts of the central and spin-orbit potentials U s(q, K } and U ss(q, K } as function of q and K for ~6O at 2QQ MeV labo-
ratory energy. The potentials of the fu11-folding integration are displayed in (a), the ones obtained by the off-shell optimum factoriza
tion are shown in (b).
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ized potential is about 30% more attractive in the interi-
or than the full-folding potential.

V. ELASTIC SCATTERING RESULTS

We have carried out elastic scattering calculations '

from ' 0 at several energies between 100 and 500 MeV,
to compare results obtained from the full-folding optical
potential with those arising from the factorized off-shell
and the local on-shell approximations. We do not draw
definite conclusions from the comparison with experi-
mental data because the simple harmonic oscillator densi-
ty is inadequate at higher momenta. A second considera-
tion is that in most calculations presented here we omit
the Coulomb interaction, in order to isolate more precise-
ly the effects resulting from treating the off-shell charac-
ter of the full-folding optical potential and its approxima-
tions. We also omit recoil effects for calculational simpli-
city.

For 200 MeV scattering we employ the NN t matrix
from the full Bonn interaction. ' This includes the effects
of relativistic kinematics, retarded meson propagators as
given by time-ordered perturbation theory, and crossed
and uncrossed meson exchanges with NN, Nh, and hh
intermediate states.

The scattering observables at 200 MeV are displayed in
Fig. 5 with Coulomb effects omitted. The solid curve
represents the calculation with the full-folding optical po-
tential, the dashed line the off-shell optimum factoriza-
tion, and the dotted line the on-shell local approximation.
Since the former two calculations give similar results, it is
apparent that the bulk of the nonlocality comes from the
off-shell structure of the factorized NN t matrix. This
can be especially seen in the spin observables A~ and Q,
where the off-shell character of the r matrix changes the
phase behavior of the observables. The full-folding opti-
cal potential produces little effect on the angular distribu-
tion of the differential cross section, but does deepen the
interference minima of the spin observables.

We have extended the calculations to energies as low as
100 MeV and found that the character of the differences
in the spin observables between the full-folding and the
optimum factorized calculation is the same as at 200
MeV. Even at lower energies, the optimum factorization
is found to be a good approximation to the full-folding in-
tegral.

In the work of Ref. 16 at 200 MeV the optimum factor-
ization in terms of a fixed energy t matrix is found not to
be such a satisfactory replacement for the full-folding in-
tegral. This may be due to the coupling of the effective
energy of the NN t matrix to the momenta of the target
density matrix that is included in that full-folding work.
We keep this energy fixed for both the full-folding and
factorized potentials so that the comparison will identify
effects due only to the off-shell momentum dependence
associated with the range of the NN force. The relevant
downward energy shift that we have ignored for the t ma-
trix consists of the single-particle binding energy (typical-
ly 20 MeV) and the deviations of the NN center-of-mass
energy away from the most favored value which is half
the beam energy. This latter shift is about p /4m, where

104

10~
X

] Q2

E t01

e
10

b
10

10

1.0 r s I I s s s s s s s I I s r s s

I I I

0.5

0.0

—0.5

Q
I I I I

0.5

0.0

—0.5

—1.0
0

s s s l s s s r l s s r r l s s s s l
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(), ~(d g)

FIG. 5. Differential cross section A and Q for elastic proton
scattering from ' 0 at 200 MeV. The solid curve shows the cal-
culation based on the fu11-folding optical potential, the dashed
curve represents the factorized ofF-shell approximation, and the
dotted line the local on-shell approximation. The data are from
Ref. 25.

p is a typical momentum supported by the single-particle
bound states (about 1.4 fm '). The total downward ener-

gy shift of the t matrix away from the value correspond-
ing to physical NX scattering at the beam energy should
thus be at most 40 MeV. The behavior of the relevant
off-shell t-matrix elements for values of the variables q
and Q that dominate Eq. (6) is found to not be
significantly altered by such an energy shift. This esti-
mate may not be appropriate, however, for very high
momentum components of the optical potential.

It is dificult to relate unambiguously the nonlocal
property of a potential to the elastic scattering observ-
ables produced. In order to characterize how the poten-
tials shown in Fig. 4 might influence the interior wave
functions of the nucleus, we plot in Fig. 6 the real part of
the phase shift 5 as function of the orbital angular
momentum L. We separate the cases J=L+—,

' and
J=L —

—,
' to isolate the effect of the spin-orbit force. We
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also show the absolute value of the S-matrix (rij, that
gives a measure of the absorptive character of the poten-
tials in each partial wave. As is seen in Fig. 6, the full-
folding and the optimum factorized potentials have near-
ly the same value of g in all partial waves, whereas the
on-shell local potential is clearly more absorptive in lower
partial waves. The real parts of the phase shifts show an
increasing suppression for L ~7 as the nonlocal effects
are treated more adequately. Because the absorption is
relatively strong for these low partial waves, the elastic
observables are not particularly sensitive to such refrac-
tive effects generated by the nonlocality.

In Fig. 7 we show the elastic scattering observables for
' 0 at 200 MeV including Coulomb efFects. Since an ex-
act method for handling the Coulomb distortions in
momentum-space scattering without problems in han-
dling higher angular momentum states is presently not
available, we employ the prescription developed in Ref. 4.
There the Coulomb distorted nuclear bar phase-shifts are
approximated by the pure nuclear phase shifts. The
remaining effects, namely the multiplicative Coulomb

2l CT(

partial wave S-matrix factor e and the additive pure
Coulomb scattering amplitude, are included in the stan-
dard way. Figure 7 shows that the Coulomb effect
enhances the difference between the calculations, espe-
cially in the spin observables for the full-folding and the
optimum factorized optical potentials. Evidently the
differences in the real parts of the interior phase shifts are

2l CT Imodified by the factor e, and the nonlocal effect is
enhanced. This is especially clear at the interference
minima.

For our scattering calculation at 500 MeV, we start
from an extension of the Bonn meson exchange interac-

tion above pion production threshold, which is described
in more detail in Refs. 6 and 22. This NN model, called
D52, contains iterative meson exchanges with NN, Nh,
and AA intermediate states. Pion production in this
model is described through the decay of the delta isobar
with a width obtained consistently from the imaginary
part of the one-pion loop diagram for the delta self-
energy. In Fig. 8 we show the scattering observables for
elastic scattering from ' 0 at 500 MeV laboratory energy
with Coulomb effects omitted. The solid curve represents
the calculation with the full-folding optical potential, the
dashed curve the off-shell optimum factorized approxi-
mation, and the dotted curve the on-shell local approxi-
mation. As already shown at 200 MeV, most of the non-
locality effect is contained in the NN t matrix. In fact,
the optimum factorization is an excellent approximation
to the full-folding integral at 500 MeV. The off-shell
effects evident in Fig. 8 from comparison of the two fac-
torized approximations are smaller than those previously
reported for this case by two of us in an earlier work.
This is due to the neglect of recoil effects and the use of
the simple harmonic oscillator density in the present
work. Both of these simplifications have been made to fa-
cilitate the full-folding integral. The present factorized
calculations also include these simplifications for the sake
of comparison. The earlier factorized results for the
same case as Fig. 8 contain larger off-shell effects at for-
ward angles (especially in diffractive minima) due to the
influence of recoil, while at angles beyond about 35', the
more realistic density employed previously has a
significant impact on the observables. The clear trend
from the present simplified investigation is that as the en-
ergy is raised the full-folding integral becomes better
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represented by the optimum factorized prescription. We
have confirmed this through calculations up to 800 MeV.
We would expect this trend to persist in the context of a
more realistic density matrix.

In Fig. 9 we show the real part of the phase shift and
the absolute value of the S matrix as a function of I for
scattering at 500 MeV. Although the quenching of the
real phase shift for small values of L (L ~10) with in-

creasing nonlocality is more evident here than at lower
energies, the strong absorption overcomes this effect in
observables.

VI. APPROXIMATE LOCALIZATION
AND EFFECTIVE MASS

H(q, &)=(2n) 5 (q) +U(q, K),K
(30)

where the previously derived optical potential U(q, K)
has central and spin-orbit components and is given by

The elastic scattering observables only measure the
asymptotic properties of the scattering wave function.
Inelastic scattering, transfer reactions, and knockout all
require the elastic nucleon-nucleus wave function in the
nuclear interior. Potentials with differing nonlocalities
can agree in their elastic scattering observables and still
have different interior wave functions. The nonlocality of
the full-folding optical potential can have an impact on
the results from distorted wave treatments in particular
reaction channels.

The study of nonlocality in the nucleon optical model
potential was initiated by Percy and Buck in the early
1960's." They developed a perturbative scheme to ap-
proximate the nonlocal potential by a local one and
identified a resulting damping factor for the interior wave
function. A treatment of nonlocality of this type is help-
ful in identifying the underlying simple physics. Further
efforts in studying nonlocal effects of the first-order opti-
cal potential were pursued in Refs. 5, 8, and 11. The inte-
rior damping factors of the Percy-Buck type are a useful
device for characterizing both the nonlocality and the
effects on interior wave functions.

In this section, we take an approach similar to that of
Ref. 11 and formulate an approximate localization of the
potential U(q, K) by retaining the first two terms in the
Taylor expansion in the variable K. The momentum-
space matrix element of the effective nucleon-nucleus
Hamiltonian is given by

U'(q, K)= U'(q, KO)

+(K K—o)(2KO) ' U'(q, KO),
aK,

(32)

where the superscript a stands for either C or S. As pre-
viously formulated, both of the amplitudes U and U
are independent of the orientation of K. The spin-orbit
operator is not approximated and its full orientation
properties are included.

In a coordinate space representation in which r' and r
are the final- and initial-state positions of the projectile,
the combination R=(r'+r)/2 is conjugate to q and r' —r
is conjugate to K. After Fourier transformation from q
space to R space where the relation

dF(R,K) = f e''i F(q, K)
(2~)

(33}

+K2
2m

1

2m *(R)
(34)

where U(R, KO) is defined by

U(R, KO)=U (R,KO)+o"RXK— U (R,KO),
1

R i}R

(35)

and the eff'ective inass m *(R) is defined by

1

2m "(R)
a+ U(R, KO) .

m 2KO BKO
(36}

The choice of expansion point Ko is so far unspecified. It
should be a value close to a typical average nucleon
momentum in the scattering process. Obviously, the sim-

plest choice is the asymptotic momentum Ko which is
defined by Ko= +2mEk, where Ek is the beam energy

After we Fourier transform Eq. (34) to convert the
dependence upon K to a dependence upon r' —r, the
Schrodinger equation

is applied to Eqs. (30)—(32), the K terms of the potential
may be combined with the kinetic-energy term to pro-
duce an effective mass. This yields the mixed representa-
tion for the Hamiltonian:

H(R, K)=K + U(R, KO)
1

2m *(R)

U(q, K)=U (q,K)+io qXKU (q, K) . (31)
I

f d rH, r' —r ip(r)=Eel(r')
2

(37)

To retain the lowest-order nonlocality of the amplitudes
U and U we expand both of them in K about an arbi-
trary value Ko to obtain

will involve terms up to second order in derivatives of
both m *(r) and 4(r}. With the definition

P(r, KO) = = 1+m'(r) m i} c 1
U (r, KO)+ — U (r, KO) o.rX—V'

m Ko aK, 1
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FIG. 10. Real and imaginary parts of the approximate local
potentials for ' 0 at 200 MeV laboratory energy. The solid
curve is the local approximation to the full-folding optical po-
tential, the dashed curve the local approximation to the off-shell
optimum factorized optical potential, and the dotted line is
representative of the on-shell local potential.

FIG. 11. Real and imaginary parts of the approximate local
potentials for ' 0 at 500 MeV laboratory energy as discussed in
Sec. VI. The notation is the same as in Fig. 10.

where we have neglected terms of second order in deriva-
tives of P(r, Ko). The factor P is the Percy factor, which
exhibits the damping of the wave function in the nuclear
interior due to the nonlocality of the original optical po-
tential. The effective local potential associated with 4(r)
is given by

the first-order derivatives of %(r}are eliminated. The re-

sulting Schrodinger equation is U)„(r,Ko)=P(r, Ko)U(r, Ko) . (41)

1
V +P(r, Ko) U(r, Ko } @(r)=E4(r), (40)

2m

1.0

Slight differences in the choice of K0 do not seriously
affect the resulting local potential U&„. Our calculations
confirm this point.
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In Figs. 10 and 11 we show the e6'ective local poten-
tials U&„calculated from the nonlocal potentials of the
previous section for proton-oxygen scattering at 200 and
500 MeV. The solid and dashed curves represent the lo-
calized versions of the full-folding potential and the op-
timum factorized potential, respectively. The dotted
curve is also obtained from the optimum factorized po-
tential except that the Percy factor P(r) is set to unity.
This removes the principal nonlocal efFects and corre-
sponds closely to the original on-shell local optical poten-
tial. The correspondence is not exact because of the fixed
value of Ko that is employed here instead of the q-

dependent condition for the on-shell limit of the XX t

matrix [as discussed after Eq. (4)].
In Fig. 12 the real part of the Percy factor as defined in

Eq. (38) is displayed for both energies. The figures show
the factor P(r, Ko) for the S wave and for a peripheral
wave. The value of the real part of the Percy factor at
the nuclear center is about 0.8 at 200 MeV which is con-
sistent with an earlier estimate for the type of optical po-
tential treated here. ' The imaginary part of P(r, Ko)
is very small. Its peak value at the nuclear center is
about 0.02 —0.03. In all calculations of observables, both
real and imaginary parts are included. The scattering ob-
servables calculated from these approximate local poten-
tials are plotted in Figs. 13 and 14. In each graph, the
solid line is the result from the localized full-folding po-
tential while the long dashed and dotted lines are from
the localized optimal factorization with and without the
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FIG. 13. Diff'erential cross section A» and Q for elastic pro-

ton scattering from ' 0 at 200 MeV laboratory energy. All cal-
culations are based on the local equivalent treatment of the opti-
cal potentials as discussed in Sec. VI. The solid line corre-
sponds to the full-folding, the dashed line to the optimum fac-
torized, and the dotted line to the on-shell local optical poten-
tial. These calculations are to be compared to the full calcula-
tions shown in Fig. 5.
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FIG. 14. DifFerential cross section A and Q for elastic pro-
ton scattering from ' 0 at 500 MeV. The calculations are based
on the local equivalent optical potentials of Sec. VI and to be
compared to the full calculations of Fig. 8. The notation is the
same as in Fig. 13.
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Percy factor, respectively. A comparison of these results
with the results from the original potentials (Figs. 5 and
8) shows that the approximate localization carried out
here retains the dominant effects of the original nonlocal-
ity especially at forward angles. The calculation and use
of the Percy damping factor for full-folding potentials
can, to a large extent, summarize the reduction of the as-
sociated nonlocal wave equation to a convenient local
form.

VII. SUMMARY AND CONCLUSIONS

We have investigated the accuracy of factorization ap-
proximations that are usually employed to calculate the
single-scattering term of the nonrelativistic nucleon-
nucleus optical potential. The complete full-folding in-
tegral for this first-order optical potential has been car-
ried out with the simplifying assumption that the density
matrix for ' 0 is given by a simple harmonic oscillator
model. Without the factorization of an appropriate NN
t-matrix element from the full-folding integral, one is
faced with a very large calculation in order to properly
treat the complicated coupling between the t matrix and
the off-diagonal one-body density matrix for the target
nucleus. An ad hoc prescription for avoiding this com-
plexity can misrepresent the intrinsic nonlocality present
in the theory. It is important to retain the dominant non-
locality in approximate procedures not only for the task
of obtaining elastic phase shifts that are an accurate
reflection of the simple first-order theory, but also to ob-
tain accurate elastic scattering wave functions inside the
nuclear environment for future application in distorted
wave treatments of reactions such as inelastic excitations
and nucleon knockout.

For elastic nucleon-nucleus scattering at intermediate
energies, we find that the effects of the intrinsic nonlocali-
ty of the complete full-folding first-order optical potential
are extremely well accounted for by the optimum factori-
zation procedure. Here a particular off-shell NN t-matrix
element is identified as the best object to remove from the
integral. The integral then recovers the diagonal (local)
single-particle density. This result leads to the con-
clusion that of the two sources of nonlocality in the prob-
lem, the t matrix and the off-diagonal density matrix, the
former is dominant for elastic observables.

We have confirmed that even for energies as low as 100
MeV the full-folding optical potential can be safely re-
placed by the optimum factorized potential with little
loss of accuracy. Of course, at such low energies the
physical relevance of a first-order optical potential theory
in terms of a free space NN t matrix is in doubt due to the
importance of medium effects related to Pauli blocking as
demonstrated elsewhere. However, if the t matrix is re-
placed by an in-medium g matrix, the same question of
the appropriateness of a factorization prescription arises
in practice. If the dependence of the g matrix upon the
variables 0 and c. is as weak as is found for the t matrix,
then our results here imply that the optimum factoriza-
tion of a similarly defined off-shell momentum matrix ele-
ment of the NX g matrix would be required to take prop-
er account of the intrinsic nonlocal effects on the elastic

observables. At low energies, the g matrix is known to be
less sensitive to the energy variable than is the t matrix.
This needs to be investigated for intermediate energy.
Finite nucleus effects should be included in such an inves-

tigation since the dependece of the g matrix upon the to-
tal momentum of the interacting pair must be dealt with.
This dependence is trivial for the free t matrix (a delta
function), but can be quite complicated for a finite nu-

cleus g matrix.
Much of the work reported here has been concerned

with the assessment of whether a factorization approxi-
mation retains the dominant nonlocal effect upon elastic
wave functions interior to the nucleus compared to the
use of the more exact full-folding potential. Unfortunate-
ly such information is distributed over many angular
momentum components and the net effect is an aggregate
of delicate phase behavior. A further complication is
that due to surface dominance of elastic scattering, the
elastic observables can be insensitive to a nonlocality that
modifies the low angular components of the wave func-
tion. This is evident in the figures that display the phases
and magnitude of the S matrix as a function of the orbital
angular momentum.

To obtain a better characterization of the effects on the
interior wave function, we convert the nonlocal potentials
to approximate local ones through a first-order Taylor ex-
pansion in the momentum variable that carries the nonlo-
cal behavior. This converts the nonlocality into a vari-
able effective mass for the nucleon projectile after the
spirit of the analysis first performed by Percy and Buck.
The result of this analysis is the identification of a Percy
damping factor (the ratio of effective mass to bare mass)
that describes the suppression of the interior wave func-
tion due to nonlocality in the original potential. The
Percy factors are largely independent of angular momen-
tum and our results strongly suggest that the optimum
factorized potentials reproduce the dominant nonlocal
suppression on the interior wave functions that comes
from the more correct full-folding potential. The
effective mass extracted here comes entirely from the
nonlocality of the free effective NN interaction. No
many-body effects have been included in this calculation.

Besides the extraction of Percy factors, the approxi-
mately localized version of the scattering problem de-
tailed here is of practical utility. The elastic observables
obtained from the effective local wave equation give a
good account of the observables obtain from the nonlocal
potentials. Evidently one can arrange an effective mass
to carry most of the burden of the nonlocality of first-
order optical potentials. It is hoped that the results from
this work can help in the task of incorporating the effects
from nonlocal first order optical potentials into distorted
wave treatments of reactions via realistic elastic wave
functions.
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