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Rotational g factors of ' Er at low spins
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Using a pairing-plus-quadrupole-model interaction Hamiltonian in a variation-after-exact-

angular-momentum-projection approach we have calculated g factors of '"Er for the low-spin yrast

states with I=2—8. We find that g factors decrease very slowly with the increase of spin

{g,=0.86gl) even though shape parameters {p,b,„,h~) change appreciably as a function of angular

momentum. This is in contrast to a rapid fall predicted in the cranked Hartree-Fock-Bogoliubov

approach which happens because of a too early (I ( 8) strong rotation alignment of neutron il3/p or-

bitals.

The cranked Hartree-Fock-Bogoliubov (CHFB)
method' has provided a very simple and elegant ap-
proach to study the effect of collective rotation on the
single-particle motion. That is, the effect of interplay be-
tween collective and single-particle degrees of freedom is
naturally present in the CHFB approach. However, the
CHFB method is weil known for its two shortcomings,
namely, the wave function is not an eigenfunction of the
particle number and angular momentum operators.
These are conserved only on an average. To shed some
light on these weaknesses, we have investigated recently
at Giessen ' the effect of spin and particle number pro-
jection of CHFB wave functions on the variation of g fac-
tors with spin for a rare-earth backbender 158Dy. We
found that the CHFB method, as is usually practiced, is
quite adequate for a qualitative study of high-spin proper-
ties. Figure 9 of Ref. 4 and Fig. 8 of Ref. 5, for example,
illustrate this point. In Ref. 5 it is established (see the
discussion there on page 486) that a correction of the spin
projected energy for errors in the value of the average
particle number with respect to the good angular momen-
tum wave function is essential, and this, to a great extent,
can be taken into account by following a simple recipe of
Allart et al. Furthermore, we have also shown in Ref. 5
(page 495) that the efFect of particle number projection on
the spin projected CHFB wave function is not significant
as far as the variation of g factors with spin is concerned.

Er is one of the most interesting and well-studied
backbending nuclei. Besides the yrast energy spectrum

I

up to I=46, where the band is terminated, '" its 8(E2)
transition rates have also been measured up to I=22,
though uncertainties are rather large. From the 8(E2)
rates transition quadrupole moments and thereby change
in collectivity with spin is deduced. The g factors of
some N=90 isotones like ' Dy (Ref. 10) and 's2Sm (Refs.
11 and 12}are now measured for a few excited states with
I 10. In &52Sm g factors for I =2-10 are almost a con-
stant, and in ' Sm it shows only a small reduction with
spin. It should, therefore, be interesting to see how g fac-
tors of ' Er vary with spin. In the usual CHFB ap-
proach we have already' studied the changes of g factors
with spin up to I=42 where it starts decreasing fast at
I=4 itself. We known that strong rotation alignment
effects are inherent in the CHFB approach. So, it may be
worthwhile to see how the corresponding values turn out
in the axially symmetric variation after spin projection
(VAP) approach. Then by comparison with the experi-
mental data, as and when these are available, one can
learn about the pairing and single-particle structure of
the yrast levels of ' Er at low spins. In view of this we
present here axial VAP results for g factors of ' Er up to
I=8.

First we will briefly present the formalism and then our
results will be presented and discussed. Finally we
present a brief conclusion.

As already mentioned, we take the pairing-plus-
quadrupole-model Hamiltonian of Baranger and Kumar
(BK) (Ref. 14)

a=g,.".c. ,y g —&~IQ,„ly&&PI( —»"Q, „I»".cg,c, --,'GXc' .c,c, , --
a age, & a, y

where the quadrupole moment operator y=70/A '", G =26/A, G„=21/A (3)

Q~„=r Y2„(r) . (2)

The quadrupole moment interaction strength y (the same
for proton-proton, neutron-proton, and neutron-neutron
interactions) and the pairing interaction strengths G for
protons and neutrons used here are [see Eq. (4}of Ref. 4].

(all in MeV). e are the spherical single-particle energies.
The mode1 space consists of %=4,S major shells for pro-
tons and X=5,6 major shells for neutrons with an innert
core of 40 protons and 70 neutrons. Solving the HFB
equations' with Hamiltonian (1) we obtain the axially
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symmetric intrinsic many-body wave function. Then us-

ing the standard angular momentum projection tech-
nique' ' we calculate the total energy for a given spin, I,
for a fixed set of shape parameters

f d 8 sin81OO(8)H (8)

f d 8 sin8d oo(8)N (8)
0

where

H(8) H;sj
'N(8) '=(HFB~ '

1
'e ~HFB) .

In Eq. (4) d (8) is a rotation matrix, 8 denoting the angle
of rotation about the y axis. Energy depends upon shape
parameters: the quadrupole deformation parameter, P,
and proton and neutron pairing gaps, 6 and 5„,respec-

tively. As already discussed, we have not performed a
particle number projection of the HFB wave function,
but instead have corrected ' the energy for the error in
the average particle number

EJ =EI A.~—(N —N )
—

A,„(N„N—„),
where N „ is the exact number and N „ is the expecta-
tion value of the number operator with respect to the
spin projected state 4r, namely,

(7)

Then the spin projected energy EI is minimized with
respect to the shape parameters.

After the energy minimization is carried out, the corre-
sponding wave function is used to calculate the magnetic
moment

I I (+I,M=I ~I 0~+1,M=I )

1 I f d8sin8d ~(8)g (HFB~p,„'e '~HFB) f d8sin8doo(8)N(8),
0 0

3

where v3 is the isospin projection quantum number and the brackets denote a Clebsch-Gordan coefficient. For an even-

even nucleus, as is the case here, the values of I are even and the v=O term in (8) will not survive. Also, it can easily be
seen that contributions from the v= 1 and v= —1 terms would be equal. Thus Eq. (8) is finally simplified to

f 18sin8d &0(8) g (HFB~p+' e "~HFB)
I 3

v'I(I+1) f"ae misdeal„(ew(e)
0

with the usual definition of step-up operators

p+ —gi QI+(i)+g, ps+(i), (10)

where gi and g, are the free nucleon orbital and spin g
factors; for protons g&=1 and g, =5.586, whereas for
neutrons gi =0 and g, = —3.836. However, spin

gyromagnetic ratios are assumed to be attenuated' by a
factor 0.6. Then the rotational g factors are calculated
from

Pr =Igr

As we know, the best aspect of the CHFB theory is
that it includes the possibility of alignment of s.p. orbitals
along the collective rotation axis. But at the same time,
producing alignment in ' Er at very low spins' like I=4
is unphysical. On the other hand, in the axial VAP ap-
proach the rotation alignment mechanism is not explicit-
ly present. Only the process of angular momentum pro-
jection and minimization of the projected energy with

respect to the shape parameters, particularly 5„,produce
some changes in structure as a function of spin. The axi-
al VAP approach is, therefore, limited in application and
is suitable only to study the structure of states well belo~
the band crossing region where the effect of mixing with
the s band is negligible. For I ~8 in ' Er this should be
the case.

Following the method already outlined, we have com-
puted the g factors of ' Er in the axial VAP approach
for the low-spin yrast states with I =2—8. We should
point out that the pairing interaction strengths Gp and

6„ in Eq. (3) are slightly reduced as compared to 6~
27/A and 6„=22/A taken by BK. ' This is done to en-
sure that in this calculation the values of 5 and b,„at
I=O (ground state) more or less agree with their self-
consistent intrinsic values employing the standard BK
Hamiltonian' (see also Ref. 4).

In Table I the values of the shape parameters, y-ray ex-
citation energies, and g factors are presented as a func-
tion of spin. Variation in the values of P showing stretch-
ing (for the low spins considered) is qualitatively similar
to CHFB results as well as the experimental trend. The
values of the shape parameters at I=O are closer to the
ground-state intrinsic values of P=0.243, 5 = 1.217, and
5„=0.890 computed with the Hamiltonian parameters of
Ref. 14. As expected, the decrease of 6 with the in-

crease in spin is rather slow [h~ (I =8)=0.72 4~ (I =0)]
whereas b,„decreases at a faster rate [b,„(I=8)
=0.586,„(I=0)]. The y-ray excitation energies, after
somewhat arbitrary correction' (a constant multiplying
factor, independent of spin) for the core polarization such
that E2""=E2"P', look in reasonable agreement with the
experimental numbers. ' For the valence particles con-
sidered, the total binding energy for a given angular
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TABLE I. Quadrupole deformation parameter, P and proton and neutron pairing gap, b~ and 5„,
respectively, as a function of spin for the yrast states of '"Er. Also excitation energies and g factors are
listed. For the computed numbers E~(I)=0.7 X(EI—EI 2). The only known experimental value (Ref.
20) of the g factor is g2 =0.37.

0.245
0.255
0.265
0.275
0.287

bp
(MeV)

1.195
1.125
1.025
0.940
0.860

{MeV)

0.920
0.853
0.755
0.651
0.530

E~(I)
(MeV)

0.196
0.376
0.462
0.494

EexPt
y(I)

(MeV)

0.192
0.335
0.443
0.523

0.400
0.391
0.375
0.346

momentum state is about 300 MeV, whereas the excita-
tion energies are only of the order of a few hundred keV
that are computed as di8'erences of those large numbers.
Therefore, the calculations have to be very accurate and
these are very sensitive to even slight modifications in the
Hamiltonian parameters.

Experimental data on g factors of "Er are still not
available, except that quoted recently by Sugawara-
Tanabe and Tanabe at I=2 and 16: g, =0.37 and
g&6=0.0. %'e get a somewhat larger value of g2=0.40.
This is understandable because, as evident from the cal-
culated excitation energies, our effective rnornent of iner-
tia is smaller. Furthermore, with the increase of spin the

g factors are decreasing, but very slowly (gs=0. 86g2),
particularly in view of the cranking results' ' ' where
even g4/g2 =0.4 (using the same Hamiltonian). Here we
should point out that recent CHFB calculations of
Sugawara-Tanabe and Tanabe which also include the
quadrupole pairing term (besides the usual monopole
pairing} in the Hamiltonian predict a similar slow de-
creasing trend. It may be emphasized that the inclusion
of the quadrupole pairing term hinders the rapid rotation
alignment of single-particle orbitals in the CHFB ap-
proach. On the other hand, in our VAP approach these
extra degrees of freedom are not required.

In view of these results on g factors we would also like
to add that in calculations of Bengtsson and Aberg g
factors of ' Yb, an isotone of ' Er, turn out to be almost
a constant ( =0.4} for I ~ 10. Also the experimental data

for some other deformed rare-earth nuclei like ' Dy,
Yb (Ref. 24), and ' ' Gd (Ref. 25) show only a

small reduction of g factor with the increase of spin for
I ~ 10.

The g factors of ' Er in the low-spin region, I=2-8,
have been calculated in the axial (asymmetry parameter,
y =0) VAP approach. Of course, it is not the most gen-
eral variation, but is rather restricted to the variation of
the macroscopic shape parameters P, b, , and b,„. We
find that g factors are decreasing very slowly with the in-
crease of spin. This appears quite reasonable in view of
the rotational nature of the energy spectrum (soft rotor,
E4/E2=2. 74) and known data' ' ' for many nuclei at
low spins.

Thus, it again emerges, like in Ref. 5, that the structure
of deformed rare-earth nuclei in the low-spin region
should be studied in the axial VAP approach rather than
the cranking one, particularly if the Hamiltonian in the
latter approach contains only the monopole pairing in-
teraction. Also in the VAP approach the wave functions
are exact eigenfunctions of the angular momentum opera-
tor.
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