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Medium effects in electric form factors and transition strengths
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Electric transition strengths are calculated in a relativistic model. It is found that for electric
transitions there is, in addition to the spin-orbit current, an extra medium-induced current coming
from the Darwin term in the Hamiltonian. A medium-modified transition strength is defined and

the eft'ects of both medium-induced currents are studied. The application for the first 3 excitation
in Ca yields unrealistic results. However, when vacuum polarization corrections are included the

resulting 8 (E3) value comes close to the nonrelativistic shell-model one.

I. INTRODUCTION

The role that the efFective mass plays in relativistic
mean field theories has been a subject of controversy ever
since Miller pointed out that the experimental spin-orbit
splittings and magnetic moments of single-particle states
in nuclei cannot be reproduced simultaneously by any
single-particle Dirac Hamiltonian with local interactions.
The primary origin of the discrepancy was initially as-
cribed to the enhancement of the convection current in
the nuclear medium by a factor of M/M* which roughly
amounts to a factor of 2 enhancement in the current. Re-
cently, this diSculty was resolved by taking into con-
sideration the polarization of the positive- and negative-
energy core. The valence particle couples to NN excita-
tions of the core nucleus thus reducing the convection
current by a factor which approximately cancels the
effect of M/M'. Later on, however, it was pointed out
that the above argument on the cancellation was not
enough to resolve the problems of the magnetic moments
of finite nuclei. Nishizaki et al. argued that these argu-
ments apply only to nuclear matter and, when one deals
with finite nuclei, there is an additional term in the
current stemming from the spin-orbit force (and related
to it through the continuity equation) which affects mag-
netic moments even more than the effective mass does.
Yet, more recently, we found that the contribution due
to this term is only noticeable when dealing with hole-
valence nuclei where the convection and Dirac magneti-
zation currents cancel each other out. Because of this
cancellation even a small medium-induced current (MIC)
affects strongly the value of the magnetic moments.
Furthermore, we found that the inclusion of the vacuum
polarization, in the local density approximation, to
quench the MIC contributions does not always improve
the results.

All the arguments given above apply to the transverse
magnetic operator in the limit of q going to zero. In
Refs. 3 and 4 it was already noted that there is also a
MIC contribution to the transverse electric form factor
that may turn out to be important at low q values.
Whereas in Ref. 3 the MIC contribution was purely of
the magnetization type (i.e., depending on the spin), the

one we found in Ref. 4 contained the same magnetization
piece and, in addition, a term related, through the con-
tinuity equation, to the Darwin term of the Hamiltonian.
This piece of the current does not contribute to magnetic
transitions but it is present for the electric ones. The pur-
pose of the present paper is to assess the importance of
both MIC terms to transverse electric form factors. Be-
sides, as electric transitions always involve at least one
nuclear state that is not spherically symmetric, we con-
sider it worthwhile to study the inclusion of the renor-
malization due to particle-vibration coupling as done pre-
viously for magnetic moments. In particular our calcula-
tions show that in the long wavelength limit (LWL)
(q ~0) transition amplitudes [8(EJ) values] are strongly
affected by the presence of the medium. If we include
vacuum polarization corrections the effects of the medi-
um are somewhat suppressed but the corrections are still
sizeable.

In order to show clearly the origin of every term we
shall work in a two-component model. The Hamiltonian
for the nuclear sector in the mean-field theory through
second order in U/c is given by
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where U~ and Uz are the vector and scalar mean fields.
Notice that there are not m *-like terms in the denomina-
tors. Third term within the second pair of curly brackets
is the Darwin term. This Hamiltonian was obtained
along with the other nine generators of the Poincare
group by (i) finding a realization of the algebra that
satisfies the conmutation relations of the group, (ii) in-
cluding in this algebra the constraint of charge conserva-
tion, that here translates into

41 753



754 MARCELO CHIAPPARINI AND ANIBAL O. GA'I 1'ONE 41

[H,p]+[P,j]=0, (2) with e the proton charge and

and finally (iii) applying a unitary transformation to all
the generators of the group (the Hamiltonain is one of
them) which has the virtue of diagonalizing the Hamil-
tonian and at the same time maintaining the algebra of
the group and preserving the gauge-invariant character
of the one-body current (details about this transformation
can be found in Ref. 6). The expression for the spatial
part of the four-vector current which transforms covari-
antly under the generators of the group and conserves the
charge is given by

p, +pv =2 X 1.793,

P Pv=2P„=2X —1.913,

and where the normalization of F, 2 is such that in the
limit q ~0

F, (q )=F2(q )=1 .
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K~(q )= ,'(IJ,s+r3pv—)eF2(q ),

2mN

(3)

(4)

In Eq. (3) the factor g takes into account the transforma-
tion of the gradient operator to the relative coordinate
system. The first term in Eq. (3} is the convection piece,
the second does not contribute to electric transitions; the
third one is the Dirac magnetization current. The fourth
term we shall call Darwin-induced current (DIC) and to-
gether with the fifth one [medium-induced magnetization
(MIM) current in Ref. 4], which is related to the spin-
orbit term, they give rise to the medium-induced
currents. When dealing with magnetic form factors, and
in particular magnetic moments, the Darwin current van-
ishes because of parity reasons, but the MIM current still
contributes (see Refs. 3 and 4). Finally the last term is
the anomalous magnetic moment contribution.

In the notation of Ref. 7 the effective current of Eq. (3)
gives rise to the following transverse electric operator:

2(J+1)' 2(J)IJ2
~ JM(r&q) =

2 (2J+ I)'J ' (2J+1)'JF(r)JJ I(qr)YJ J I'V Ii2F(r)j J+I(qr)YJ J+I V

1 dF(r) .+qF(rj)J(qr)YJ J cr+&J(J+ I)— jJ(qr)YJ Jqr dr

1 dF(r) gKN+ [JJ'J+I(qr) (J+1)jJ I(q—r)]YJ.o+jJ(qr'}YJJ cr .
2J +1 dr )AN

(10)

In the preceding expression the two terms proportional to the derivative of the function F (r) are due to the medium-
induced currents referred to above and in Eq. (3). The first one comes from the DIC term and the second one is due to
the MIM current.

We concentrate now on the q ~0 limit of the matrix elements of this operator. In this limit (LWL) the matrix ele-
ments of the transverse electric operator depend on the divergence of the current in the form

q~0
TJM ~ d r[(J+1)jJ(qr) qrj J+I(qr)]YJM—(r)V.jf(r) .&J(J+1)

We can make use of the continuity equation [Eq. (2)] to get rid of j,f(r) in terms of the full density. If we further
keep only the first term in the expansion of the Bessel functions, then Eq. (11)becomes

1/2q~o J+1 J —
1
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(12)
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Here ni,f is the transition energy, p;f(r) is the transition
charge density, and finally pM, D(r) is the "medium-
induced charge density" which explicitly reads

e dF(r) J
pMID(r) = — p—,f(r)+i@'p,f(r)rr X9

2m~co)f dp p—

(13)

where p;f(r) is the nuclear transition density. The origin
of the two terms in pMiD(r) can be traced, respectively, to
the Darwin and spin-orbit terms in the Hamiltonian.

Now we notice that the transition charge density in Eq.
(12) is slightly modified by the presence of the medium so,
for all intents and purposes, it can take to be equal to the
"free" transition charge density. Naively, one can argue
that the medium introduces a modification to the stan-
dard definition [where only p,f(r) is present] of the elec-
tric transition operator for photoabsorption via this
medium-induced density. Thus, we may define a
modified B(EJ) as the square of the value of the integral
in Eq. (12):

2
B (EJ)f fd r r YJM(r)p, f(r)

B(EJ),d= Jd'«'Y& M(r)[pf(r)+pMiD(r)]

(14)

(15)

In the following section we study the implications that
this redefinition of the transition strength has for the nu™
cleus Ca. We also analyze the corrections that are in-
troduced when the polarization of the vacuum is con-
sidered as was pointed out recently by Blunden and
Horowitz.

II. NUMERICAL RESULTS AND DISCUSSION

TABLE I. Parameters of the interactions used in the calcula-
tion of the single-particle wave functions.

Nucleus

Ca proton
neutron

Uv
(MeV)

189.9
189.9

Us
(MeV)

—254.23
—254.23

R
(fm)

4.50
4.50

(fm)

0.53
0.53

In the numerical example that follows we deal with
transitions in Ca. The relativistic single-particle basis
wave functions are the eigenfunctions of the Hamiltonian
of Eq. (1). The mean-field potentials are chosen to be of
Woods-Saxon form and their strengths are adjusted so
that (i) they reproduce (in the case of protons) the root
mean square radius of the "core," (ii) they approximately
reproduce the known experimental single-particle ener-
gies, and (iii) the description within the same formalism
of the elastic-scattering electron data from the "core" is
reasonable out to q =4 fm '. The value for the Woods-
Saxon parameters that we obtain are reproduced in Table
I.

As we are interested in electric (natural parity) transi-
tions in Ca we chose for the final state the first 3 state
at 3.75 MeV. For this wave function we take a linear
combination of particle-hole pairs weighted by

where

R(r) = 1

1+Ui, (r)r)(r)
(17)

TABLE. II. Percentile increase of the transition strength
[8(EJ)] with respect to the free value as described in the text.
MIC: medium-induced currents. MIMC: medium-induced
magnetization current. DIC: medium-induced Darwin current.
RMIC: renormalized medium-induced current.

"Free" MIC
Medium

MIMC DIC RMIC

0.00 1.59 1.16 0.42 0.22

coefficients obtained from the random-phase approxima-
tions (RPA) calculation of Krewald and Speth with a
Landau-Migdal particle-hole interaction. In fact, for the
results we present below, the collectivity of the wave
function is not very relevant considering that all of them
are shown normalized to the "free" transition value.
This is in line with our interest in displaying only the
effects introduced by the medium and not performing a
sophisticated nuclear structure calculation. One must al-

ways bear in mind, however, that there may be slight
modifications to these ratios when using different wave
functions.

In Table II we present the results for the electric tran-
sition strengths as obtained from Eq. (12). The results are
given as the increment fraction g with respect to the
"free" value, i.e., B(EJ),d=(1+g)B(EJ)r„,. For the
"free" case there is obviously no increment. When the
medium modifications due to the relativistic treatment
are introduced we notice the following.

(i) The first column (MIC) on the right hand side of
Table II (Medium) corresponds to the case in which both
medium-induced current terms, i.e., the Darwin and the
spin-orbit current, are included. The resulting transition
value is increased a hefty 159% with respect to the free
value. The partial contribution of each of the medium-
induced currents is displayed in the next two columns.
Thus we notice that more than two-thirds of the increase
of the B (EJ) values comes from the MIM current while
the rest is due to the Darwin term [in fact, there is small
(1%) contribution coming from the interference between
these two]. Thus, despite the fact that the Darwin term
contribution is not as large as that of the MIM current
term, it cannot be neglected.

(ii) The last column on the right hand side of Table II
shows the same percentile increment as the first one but,
this time, including the vacuum polarization. The way
we included this corrections follows the approach
developed in Ref. 2. The so-called "backflow" term is
calculated in nuclear matter, in fact only for the isoscalar
case, and then applied to Ca by using a local density ap-
proximation. All in all, the backflow term is equivalent
to a renormalization of the function F (r) in Eq. (3) which
becomes

F(r)~F(r)R(r),
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1
q(r) =

( p 2 ( )]2/3+ «2( ) )
1/2

m '(r) =m~+ Us(r), (19)

and p(r) is the nuclear density. The final result is a per-
centile increase of 22% with respect to the free value.

It can be concluded from the two observations above
the electric transitions are dramatically affected by the
presence of the strong relativistic potentials in the im-
pulse approximation. Though the medium corrections
that we have calculated in this paper appear somewhat
large, asserting that they are definitely unrealistic is not
as safe as in the case of magnetic moments. There, we
have the Schmidt values and the experimental results to
constrain the theory. Here there are model-independent
(in some sense) sum rules and no experimental counter-
parts (except for the dipole). One might argue that in
fact there is some model dependence to any sum rule but,
on the other hand, in the long wavelength limit that we
consider here only the dipole sum rule requires some
model input (see Ref. 10 for a relativistic study of the di-
pole sum rule). Thus, granting the validity of the octu-
pole sum rule for Ca the increment we obtained for the
transition strengths in this work, without including the
vaccum polarization, does certainly overestimate the sum
rule value. We are led to conclude, therefore, that for the
determination of electric transition rates it is necessary to
include the coupling of the spatial piece of the vector in-

teraction to NN excitations. This is in line with the re-
sults arrived at by other authors (see Ref. 11 and refer-
ences contained therein) who studied the nuclear
response to the electromagnetic probe.

As a last remark we note that after the vacuum effects
are included we are still left with a 22%%uo increase in the
transition strengths with respect to the simple impulse
approximation. This increase is due to the presence of
the medium which shows up in the current through the
current conservation constraint. In fact, some recent cal-
culations on quasielastic electron scattering in oxygen'
have already employed medium-modified currents like
the ones presented here. In these calculations, however,
the radial dependences for the convection and spin-orbit
medium currents are chosen ad hoc. In addition the
Darwin current is treated at a very phenomenological
level and without satisfying current conservation. It
would be interesting to see whether a similar calculation
but including the consistent current presented here would
modify the results found in Ref. 12.

In summary, we have calculated electric transition
strengths in a relativistic model. We find that in the
LWL the corrections induced by the medium increase the
nonrelativistic result by more than 100%%uo. When the cou-
pling to excitations of the vacuum is included these
corrections are reduced to approximately 20%%uo, for the
particular case we studied. A similar calculation for
transitions in other nuclei and the implications for sum
rules is currently in progress.
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