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The self-consistent relativistic Fermi-sea particle formalism in the quantum hadrodynamics is dis-
cussed in terms of properties of conserving approximations. The relativistic Dirac-Hartree-Fock
approximation (o, ®, p, and m), for example, is examined from the point of view of the
Hugenholtz—Van-Hove theorem and thermodynamics as a check for internal consistency. These
two conditions sufficient for constructing conserving approximations are strict constraints on
modification and simplification of the Fermi-sea particle approximations and should be used in or-
der to define consistent quasiparticle approximations. It is shown that the pion vertex and retarda-
tion which enters through exchange corrections prevent conserving properties to be maintained in
the Dirac-Hartree-Fock approximation, and this suggests a careful analysis of self-consistency in
the relativistic formalism when correlation effects are considered. The relativistic Fermi-sea parti-
cle approximations can be defined uniquely when both constraints are incorporated into self-

consistency of the approximations.

I. INTRODUCTION

The Schrodinger equation is used for the starting point
to understand nonrelativistic quantum many-body sys-
tems, and based on this formalism, nuclear matter equa-
tions of state have been discussed in order to derive them
microscopically. The consistency of approximations and
assumptions within this formulation can be checked, for
example, in terms of properties of conserving approxima-
tions.! However, we know that most of proposed ap-
proximations are nonconserving, and they violate the
known properties of conserving approximations: the
Hugenholtz—Van-Hove (HV) theorem? and certain fun-
damental thermodynamic relations. The nonrelativistic
Brueckner-Hartree-Fock approximation has been redis-
cussed, and the preceding properties are used as con-
straints in order to check the computational consistency
of the approximation and formulate a general and con-
venient method for deriving correct quasiparticle approx-
imation.

The extension of the preceding formalism to study
high-energy and high-density phenomena (neutron stars,*
supernova, and heavy-ion collisions) must be investigated
in a relativistic field theory. We consider here the quasi-
particle approach in the approximations of a renormaliz-
able relativistic quantum field theory, quantum hadro-
dynamics (QHD),’ which is based on mesons and baryons
and maintains covariance, gauge invariance, and causali-
ty. In a renormalizable relativistic field theory, the fun-
damental problem is how to define approximations sys-
tematically including the quantum vacuum, which is
technically complicated and formidable in practical cal-
culations and still not known.®’ However, there are ap-
proximations motivated by nonrelativistic results that
may correspond to the nonrelativistic limit of the QHD
approximations, such as the mean-field theory (MFT),®
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Dirac-Hartree-Fock (DHF),° and relativistic Brueckner-
Bethe-Goldstone (RBBG). ! They are defined by neglect-
ing the modifications of the Dirac sea particles (negative-
energy particles), but self-consistently defined using real
(valence) nucleons inside the Fermi sea. Therefore, the
approximations should reproduce the ground-state prop-
erties of nonrelativistic calculations with certain limits
and give appropriate relativistic corrections. We also dis-
cuss an effective vacuum fluctuation correction to the
DHEF approximation.

Internal consistency of the QHD approximations as
conserving approximations has not been discussed except
the MFT and the relativistic Hartree approximation
(RHA) (MFT plus vacuum corrections); both approxima-
tions satisfy the HV theorem and thermodynamics exact-
ly. In addition to the calculational and phenomenologi-
cal consistency, the MFT reproduces empirical data
reasonably well.!! However, the systematic higher-order
corrections to the MFT are difficult to achieve since re-
tardation interaction causes the violation of the HV
theorem and thermodynamics. The problem of the retar-
dation effects is discussed explicitly in the DHF (o ,w) ap-
proximation.'> When retardation interaction is ignored
(the static limit), the DHF(o,w) satisfies the HV theorem
and thermodynamic relations exactly. This shows that
self-consistency should be examined carefully when
correlation effects are included.

We will discuss the DHF approximation by including
o0, o, p, and 7 and show whether or not the model re-
stores thermodynamic consistency (the HV theorem and
thermodynamics). This is necessary when thermodynam-
ic quantities such as compressibility and symmetry ener-
gy are calculated, and Landau Fermi-liquid theory can be
applied exactly if an approximation maintains thermo-
dynamic consistency. The static limit of o, w, and p sec-
tors maintains thermodynamic consistency, but the
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momentum-dependent pion-vertex violates the require-
ment because the momentum-dependent vertex now car-
ries off the energy-momentum of the system. To remedy
this problem, one might follow a procedure analogous to
nonrelativistic calculation, that is, since the momentum-
dependent pion-vertex generates a contact interaction, we
should remove the contact interaction terms which lead
to strong short-range repulsion. However, this causes
serious inconsistency in a thermodynamic relation al-
though the improved approximation can maintain the
HYV theorem. Therefore, the theorem is not the sufficient
condition for constructing conserving approximations.
This will be discussed in Sec. III.

Thermodynamic consistency of the QHD approxima-
tions can be checked unambiguously by calculating ener-
gy density, pressure and single-particle energy spectrum.
We can calculate dynamical pressure rigorously for the
homogeneous infinite nuclear matter, and the pressure
must vanish at the saturation density of nuclear matter.
This is also one of the constraints for nuclear matter ap-
proximations in order to define the correct saturation
density, however, the condition is not carefully con-
sidered in nuclear matter approximations. We should no-
tice that if our approximation breaks thermodynamic
consistency seriously, it does not make sense to determine
compressibility, symmetry energy, and also the equation
of state. Conserving approximations can maintain all the
constraints already mentioned. The sufficient condition
in order to construct conserving approximations will be
discussed specifically using the DHF approximation. We
emphasize that one should examine thermodynamic con-
sistency to extract consistent calculations from the rela-
tivistic approximations for nuclear matter; and together
with successful construction of thermodynamic con-
sistency, the relativistic Fermi-sea particle approxima-
tions can be defined uniquely.

I1. THE DIRAC-HARTREE-FOCK APPROXIMATION

Dyson’s equation is used to derive the full relativistic
HF equation systematically to sum to all orders self-
consistent direct and exchange diagrams to the baryon
Green function.® We can write the full Green function in
terms of the particle-antiparticle propagator, G.(k), and
the hole propagator inside the Fermi sea, G (k),

G (k)=Gp(k)+Gp(k) , 2.1)
1
Gelk)=[y k* +M*(k . (2.2)
=1yt ( ”k;z—M*’-(kHie (
Gy (k)= [y"k* +M*(k)]—T—
D [7/ n ( )]E*(k)
X 8(kO—E (k)6(ky—|k|) . (2.3)

The dynamical variables k *(k) and M *(k) are defined by
the proper self-energy 2(k), which is decomposed gen-
erally in the infinite matter system as

3(k)=2%(k)—y=%k)+y k3 (k) .
Using 2%(k) and 2% k), we have k*(k)=k[1+Z"(k)] and
M*(k)=M +3%k), where M is the nucleon mass
M=939 MeV. It is assumed that the baryon Green func-

tion has simple poles with unit residue, and that at finite
baryon density the quasiparticle levels are filled up to

|k|=kp. The relativistic Fermi-sea particle approach is
defined by taking contributions from real nucleons in the
Fermi sea, and Gp(k) is employed in the calculation of
self-energies, energy density and pressure. The self-
consistent single-particle energy spectrum, E (k), which
is the solution to the transcendental equation is given by
self-energies as

E(k)=[E*(k)—2°(k)]k0=E(k)
={k1+3"(k|,E (k))]?
+[M +25(k|,E (k) ]} 2 —2%k|,E(k)) ,

(2.4)
and self-energies depend on E (k), |k|, and k.
We can calculate the Fermi energy according to the
HYV theorem,

d
dpg

_€
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e+ =EHV(kF)PB N (25)

where ¢ is the energy density, pp the baryon density, and
Eyy(kg) the Fermi energy. The second term can be in-
terpreted as pressure of the system and it will vanish at
nuclear matter saturation point, where we will have the
relation,

3
— =Eyuv(kg),
P HV\KF

(2.6)

which shows the equality between the Fermi energy and
the energy per particle. In the MFT, RHA, and the sta-
tic limit of the DHF (o,) approximation, E (k) given
by the Eq. (2.4) and Eyy(ky) given by the Eq. (2.5) are
equal at every density, and the approximations are physi-
cally well defined. The analytical proof of thermodynam-
ic consistency of the static DHF (o,w) approximation is
discussed, '? and so we will discuss self-energies of 7- and
p-meson sectors in order to check thermodynamic con-
sistency.

There is an ambiguity in the HF approximation to the
pseudoscalar (PS) model of pion. Due to the large
effective PS-mN coupling, scalar self-energies calculated
with the coupling are extremely large, and the ground-
state configuration at normal saturation density is
“Fermi-shell” state (see Chap. 8 of Ref. 5). The HF ap-
proximation to the PS model of pion is inadequate for a
description of the ground state of nuclear matter. There-
fore instead of the PS model of pion, we use the pseu-
dovector (PV) model of pion, which is transformed from
the PS model of pion by a nonlinear chiral transforma-
tion and renormalizable in spite of the resulting PV-7N
coupling. > The large coupling constants in the PS model
are now replaced by small effective coupling constants in
the PV model, and one may treat nonlinear interactions
in the PV model Lagrangian in a perturbative fashion.
Note that the PS-HF approximation maintains the HV
theorem and thermodynamics in the static limit,
E(k)—E(g)=0, and so we should check the properties
in the PV-HF approximation.

We use the PV-mN model of pion and rewrite the self-
energies for p and 7 mesons for the analysis of thermo-
dynamic consistency:
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where ¢ =|q| and ¢*(g)=|q[1+2%q)]|, and D2(k,q)"'=(k —q)} —m}+ie. All self-energies are evaluated on shell at
the self-consistent single-particle energies ¢°=E (q) given by the transcendental equation (2.4). ¢ is the spin-isospin de-
generacy factor, {=2 (neutron matter), {=4 (nuclear matter). The self-energies =%(k), 3%k), and =%(k) together with
dynamical variables, k *(k), M*(k), and E (k) constitute a system of coupled, nonlinear integral equations for determin-
ing the DHF approximation.

The energy density and pressure of the system are calculated from the expectation value of the energy-momentum
tensor T#*. The energy density is given by e=(T®), and the hydrodynamic pressure is T’hy— L(T"), where i is
summed (i =1,2,3),'* and off-diagonal terms are identically zero because of the rotational invariance of the system.
The explicit expressions for the energy density and pressure are

_g/2’(4_§) 2
16mf, B

$ ki 3
d’k E (k)
2mr)? f

(E— k d3k k d3
£§ )ﬁfF )fF 1

2
8p o 210 . .
D, (k,q){3—[E(k)—E(q))'D,(k,q)}[k**q; —2M*(k)M
2027 E*(k E*(q) | 2 o3 —[E(K)—E(q))'D,(k, )} [k*#q; M*(q)]

2
DY (k,q){L—[E(k)—E(q)]*D%(k,q)}F (k,q) |, (2.10)
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and
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where We can calculate the single-particle energy (2.4) using
F(k,q)=2k}(k —q)lq%(k —q) self-energies just given and check a thermodynamic rela-

tion using the energy density € and the pressure 7.
—(k —@)ilk* qr +M*(k)M*(q)] . However, the thermodynamic quantities of the system
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such as energy density and pressure are not simply given  remarkable conclusion of the HV theorem is that in any
by the energy-momentum tensor when dynamical quanti-  interacting many-body system which has a saturating
ties [M*(k), k*(k), and E (k)] are determined, but are  binding energy curve, the chemical potential must be
self-consistently related to the dynamical quantities  equal to the Fermi energy E (kp) at saturation (pressure

through the Eq. (2.5); this is the important consequence =0): p=e/pg=E (kg). This is the constraint that the
of the HV theorem. energy density and single-particle energy must satisfy.
III. THERMODYNAMIC CONSISTENCY From the energy density and the pressure given by

(2.10) and (2.11) and the dynamical variables which are
ing p and 7 is a conserving approximation or not. The defined by self-energies, we can check the HV theorem of

energy density and pressure are related by the first law of the DHF approxir_nati_on' analytically. First, we v.vill
thermodynamics: prove that the static limit of the DHF approximation

with the PV pion does not maintain the HV theorem,
(3.1) with u=E (kg) at every density. The static limit
means that we will ignore the energy transfers in self-
energies, energy density and pressure: E(k)—E(q)=0,
where p is the chemical potential of the system. In and we will show that the violation of the HV theorem
infinite nuclear matter, we have the binding energy curve comes solely from the momentum-dependent pion vertex.
(total-energy/particle versus baryon density) which satu- We can calculate the chemical potential, u, of the DHF
rates at k;=1.30 fm~'; e/py —M =—15.75 MeV. The approximation,

J

We will show whether the DHF approximation includ-

-2 9
Ps 35

=—c+tupg , (3.1
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2

+ D%(k,q)*F (k,q)+(k—q)? (3.2)

2M

The second term on the right-hand side of (3.2), which is the sum of nucleon single-particle energy spectrum, is rewrit-
ten by performing partial integration as

3 _L ke aE(k)
o )3f d*k E(k)=pgE (kp)— f Tl (3.3)

The derivative of the baryon single- partxcle energy E (k) with respect to the momentum k in the second term is calcu-
lated from the self-consistent transcendental equation (2.4) for E (k) and the self-consistent equations for M *(k), k *(k),
and 2%k). We obtain

F 3 aE F 3 kk
k k—————
(2m)} f ak 2m)} f E*(k)

_LE—1) R dk fkp d’q
2(27)° E*(k) E*(q)

2
X | 22—l Tk gy —2M* (IM*()]DY(k,q)?

2

&
F(k,q)[D2%(k,q)+(k—q)*D%(k,q)*] | . (3.4)

2M

+

Therefore, by substituting the final result (3.4) into (3.3), we can show

2

g” F(k,q)D%(k,q) . (3.5)

lg(é—_l) kg d3k ke d3q
P 202m)® f E*(k) f E*(q)

Neither ?hy nor the second term on the right-hand side vanishes at nuclear matter saturation, therefore the HV
theorem is not maintained, and also the correct nuclear matter saturation density is not well defined. Although the PS-
HF approximation maintains thermodynamic consistency in the static limit and hence defines the correct nuclear
matter saturation density, the PV-HF approximation does not. It is because the PV-HF approximation was defined in a
perturbative fashion in which higher-order nonlinear terms in the model Lagrangian were neglected. Therefore, the
PS-HF approximation is not completely transformed to the PV-HF approximation, and this is the reason why the static

€+?hy:PBE(kF)+
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limit of the PV-HF approximation does not maintain thermodynamic consistency.

In Fig. 1, we compared the Fermi energy E (kr) and Eyy(kp)=(e+%Py,)/pp defined by the DHF (0,0, ,p) approxi-
mation; they are different about 9.5 MeV at saturation and the difference between Eyy (k) and E (ky) become larger
for the high-density region. In Fig. 2, we compared hydrodynamic pressure, Py, =+ (T"), thermodynamic pressure
Pr=p%d(e/pp)/dpy, and pressure consistent with the requirement of the HYV theorem, Pyy=E (kg)pgp —e. Coupling
constants are adjusted to reproduce the saturation property, kr=1.30 fm ™!, e /ps —M = —15.75 MeV, and the symme-
try energy a,=35.0 MeV. The coupling constants and thermodynamic properties for several approximations are listed
in the Table I. At nuclear matter saturation point, the pressure of the system vanishes because of the balance of attrac-
tive and repulsive forces, and we can use this condition to check internal consistency. 7 vanishes at saturation since
the pressure is directly defined from the curvature of €/pp —M, but P, and Pyy becomes zero at different densities,
which produce different saturation densities. Therefore, saturation properties of nuclear matter should be defined care-
fully when retardation interactions are included.

The static DHF approximation can be modified in order to maintain the HV theorem:
(e+Py,)/pp=Eyy(kp)=E(kg). Following the common procedure in the nonrelativistic calculations, one can sub-
tract terms that lead to contact interactions (delta-function interactions) from self-energies. The requirement of the HV
theorem defines the subtraction terms uniquely. They are given by

s — %S F 3 0

AZ(k)=Z(k)+ 2M 2(2 )3f ——q—ln[D (k,q)], (3.6)
0 y\—%50(2)— 0

A3 (k)=3"(k) 2M i——f d3qIn[D%(k,q)] , 3.7
W) — SV Q*l 1 ke 3 0

2k =320+ | o P kf d3q cos@In[D°(k,q)] , (3.8)

where 2'(k) is not exactly subtracted, but it is sufficient structure of an approximation is not physically reliable
for the comparison between Eyy(kp) and E(kg) up to  and well defined. The HV theorem is a constraint to

the relatively high-density region (kr~3.0 fm~!). which dynamical calculations must obey, but the theorem
We can compare (e+%y,)/pp=Eyy(kr) and the self-  does not necessarily assure correct thermodynamic rela-
consistent single-particle energy E (k) at the Fermi sur-  tions. This example demonstrates the important con-

face with self-energies modified as Egs. (3.6)-(3.8). The clusion that the sufficient condition for consistent quasi-
difference between Eyy(kg) and E (kg) is less than 1% particle approximations is thermodynamic consistency.

up to kr=3.0 fm~!. However, we found large difference The problem of the pion correction comes from the
between Pyy and Pr. The modified approximation can ~ Mmomentum-dependent pion vertex. In order to show
maintain the HV theorem, but violate thermodynamics  this, we set the momentum dependence of the vertex con-
seriously; we have Eyy(kp)=E (kp) and Py, =Py #Pyp.  Stant, k —q—c (constant), t‘ogethelj with E(k)—E (g)=0.
Since the requirement of the HV theorem defines unique- ~ In this case, thermodynamic consistency of the approxi-
ly how to modify self-energies, it is not possible to resolve =~ mation is  recovered exactly: P, =Pyy="Pr;
the preceding problem. Therefore, the procedure given ~ Env(kp)=E(kp); a conserving approximation defined by
by the subtraction without considering the self-consistent ~ Gp(k) can be found within certain limits. The constant

TABLE 1. Fermi-liquid properties of nuclear matter. Results at saturation are given for the MFT of
QHD-I and QHD-II (Ref. 18), and the static Dirac-Hartree-Fock (SDHF) approximation (o, w, and p).
The coupling constants g2 and g2 are obtained by fitting the binding energy and saturation density of
equilibrium nuclear matter (¢ /pp —M = —15.75 MeV, kz=1.30 fm™'). Note that g, is fixed by repro-
ducing the value of the symmetry energy 35.0 MeV (Refs. 10 and 16) in the SDHF,. K is the compres-
sion modulus and a, the symmetry energy. F,, F,, and F are the values of dimensionless Landau par-
ticles at saturation. The hadron masses used in all calculations are m; =550 MeV, m, =783 MeV, and

m, =770 MeV.
K a,
g2 g2 g, F, F, Fy (MeV) (MeV)
MFT-1 122.43 190.06 0.559 —1.15 540 19.3
RHA 78.17 102.58 0.679 —0.62 450 15.0
MFT-II 122.43 190.06 36.79 0.559 —1.15 0.459 540 28.1
SDHF, 109.07 149.79 0.891 —0.97 0.938 570 33.8

SDHF, 107.68 148.44 6.1 0.856 —0.98 1.01 580 35.0
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FIG. 1. The DHF (o,0,m,p) self-consistent single-particle
energy at Fermi surface E (kg) (solid line) and the Fermi energy
E v (kg) (dashed line). M is the nucleon mass: M=939 MeV.

pion-vertex strength is now c*(g,/2M)%, and the curva-
ture of the pion energy density versus k. is similar about
normal density, for example ¢ =|c| ~ 100 MeV, to the re-
sult given by the momentum-dependent vertex calcula-
tion, but the equation of state becomes stiffer, resulting in
the large compressibility. The momentum-dependent
vertex and retardation have a significant effect on the nu-
clear matter calculation

We can include phenomenological vertex factors, such
as

1

1—q%/A% "’
where a and A are a range and a cutoff, respectively.
However, it is obvious that these phenomenological fac-

tors work to reduce exchange corrections from relatively
large momentum g, and so the DHF approximation be-

exp(—a’q?) and 3.9

3 1
& 1
E 2 =
~ L i
= L ]
(9] L 4
S 1 =
® [ ]
5 0 r ]
2L |
@ e 1
= b ]
-1 -

C N T B

1.3 1.35 1.4
k, (fmﬁl)

FIG. 2. Pressures calculated by the DHF approximation are
shown. Py, =3(T%) (solid line), Pyy=E (kp)pp—e (dashed
line) and P;=p}(9/3p;)(e/pp) (dot-dashed line). Note three
different saturation densities at 7=0.

comes close to the MFT result. Moreover, we can in-
clude the vacuum fluctuation correction effectively. Let
us assume that the self-energy arising from the modified
Dirac sea at finite density can be calculated in the mean-
field approximation as it is discussed in the RBBG ap-
proximation.!® Note that the procedure given in the
RBBG is valid with neglecting retardation correction
when the energy density is calculated, and so we consider
the static DHF approximation when we include the
effective vacuum fluctuation correction.

The vacuum correction to the self-energy comes only
from a scalar term, and the renormalization procedure
discussed in Refs. 5 and 15 gives the following correction
to the scalar self-energy:

2
& _d'
5 =i Tr[G(q)]+CTC
ac lmszf(2ﬂ)4 r[ Fq]

2
=& M*IM M)~ MAM* M)
s

—IM(M*—M?—L(M*~M)], (.10
where CTC denotes ‘“‘counterterm contributions’ arising
from renormalization procedure. The energy density is
calculated as
e=(T)+L(P)+Ae,+A¢,, (3.11)

where the kinetic term (T) and the potential term (¥ )
are, respectively,

k * *
(Fy= g;f P MM +k* Rk .12
(27) E*(k)
k * *
(Py=—5— [T | M) 5y K2R g sy
(27) E*(k) E*(k)
—3%k) | . (3.13)

The vacuum fluctuation corrections to energy density,
Ag, and Ag,, are given by

Ae,= —:1—2[ M*“In(M* /M)+M*(M —M*)
T
_%MZ(M _M:)z
+LEMM—M*P—-B(M—-M*)*], (3.14)

and
2
— ms s 12
Ag,= 2g2[2m] . (3.15)
Using self-energies given by (o,w,p,m) and Egs.

(3.10)-(3.15), the vacuum correction is self-consistently
included in the DHF approximation.

The effective vacuum fluctuation correction gives a
repulsive contribution to the DHF approximation. The
correction softens the equation of state in the normal nu-
clear matter range; consequently, it gives the smaller
value of compressibility than the one found in the DHF
calculation. However, we have E (kp)#Eyy(kp) and
Pr#Pyy, and thermodynamic consistency is violated
seriously in this calculation; correct or physically reason-
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able self-consistency of QHD approximations should be
carefully redefined when vacuum fluctuation corrections
are included.

We understand that the sufficient condition for a con-
serving approximation is 7, =%Pyy=?r. Equality of
pressures is sufficient condition for the HV theorem:
Eyy(kp)=E (kg), but theorem is not sufficient for equali-
ty of pressures and consistency between dynamical and
thermodynamic calculations as it is discussed in this sec-
tion. Ambiguity of an approximation arises when the ap-
proximation maintains the HV theorem, but fails thermo-
dynamic consistency, and in this case, we have to recon-
sider assumptions and self-consistent structure of the ap-
proximation. If an approximation maintains the HV
theorem, we only need to check the condition Pyy =P,
since Eyy(kp)=E (kg) assures Py ,=%Pyy. This is useful
since Pyy is readily calculated when the coupled non-
linear equation for E (k) is solved. Consistency condition
is rewritten in terms of energy-momentum tensor as

(T ®) /py)

) (3.16)
I3

KT =p}
with
HT®) _
9P

for the quasiparticle energy spectrum. Therefore, the di-
agonal components of energy-momentum tensor of ideal
perfect fluid is related to each other through the Eq.
(3.16), and together with (3.17), they define new self-
consistency for relativistic approximations. The HV
theorem and thermodynamics are strict criteria in order
to choose the exact Green function and self-consistency
to an approximation.

IV. THERMODYNAMIC PROPERTIES

E(kp), (3.17)

Since the static DHF approximation is a conserving
approximation, the thermodynamic properties, such as

4

P B S S B
0.5 1 1.5 2 2.5
k, (fm™)

FIG. 3. Dimensionless relativistic Landau parameters for
symmetric nuclear matter (Z =N). The solid lines are the re-
sults of the SDHF, approximation (o,w,p); the dashed and dot-
ted lines are the MFT-I and RHA, respectively. The dot-
dashed line of F is calculated from MFT-II (Ref. 18).
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FIG. 4. Compression moduli for symmetric nuclear matter
(Z=N), vs the Fermi momentum; the SDHF, (solid line),
MFT-I (dashed line), and RHA (dotted line).

compression modulus, K, symmetry energy, a,, and Lan-
dau parameters (F,,F,,F,) are given exactly by follow-
ing expressions:
9%
BZPB
where u is the chemical potential, u=E (kg), and Ny is
the density of states at the Fermi surface:

_ Sk
Np =25 [0k /3E ()], -,

K =9, =9p35§[’)‘:=9p3(1+F0)/NF, 4.1)

The density of states is related to the Landau parameter
F| as

dk
o =—E __(1+1F)). 4.2
3E |k=k, k'(kF)( 1) 42
RO 1 1
C 7
k- .
150_* —
= i ]
Q - 4
Z 100 - ~
<« L /'
© r ]
50 - ]
O E i

FIG. 5. Symmetry energies. The SDHF, (solid line), MFT-I
(dashed line), RHA (dotted line), and MFT-II (dot-dashed line)
are shown.
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The symmetry energy is also related to the (isospin-
dependent) Landau parameter Fy, as

%

3ps

=1
4= 7PB

pp |P3=0

1 ke
* [0k /3E (k)] —x,

(1+Fy) . (4.3

The higher-order Landau parameters can be calculated
by coupled nonlinear integral equations as discussed in
the Ref. 12. Landau parameters, compression modulus
and symmetry energy are calculated in the static DHF
(0,w,p), and compared with the results of the MFT,
RHA, and MFT-II approximations.

In the SDHF, p-meson contribution has a small effect
on the binding energy of the o-w results, but the symme-
try energy is changed considerably; and so the coupling
constant g, is decreased further in order to reproduce the
symmetry energy which is taken here to be a,=35
MeV.'® If Fermi liquid properties of the MFT and RHA
are compared in Figs. 3-5, the Dirac sea particle correc-
tion to the MFT is not so large (~20%) at saturation as
expected, and so the MFT and RHA may be good non-
perturbative starting points at normal density. The
particle-antiparticle correlation effect is important for
high-density region, while the correlation effect between
real nucleons in the Fermi sea may be more important at
saturation, which implies that the Fermi-sea particle ap-
proach should be useful to understand dynamics about
normal density. The consistent retardation correction in-
cluding pion needs to be discussed, since the binding en-
ergy curve at saturation is sensitive to the change caused
by retardation, and subsequently it changes compressibil-
ity and symmetry energy substantially.

V. CONCLUSION

The concept of quasiparticle in the strongly interacting
nuclear many-body system should be defined consistently
by the relation between Fermi energy, density of particles
and total energy of the system according to the HV
theorem. However, as it has been discussed in this paper,
the theorem is not the sufficient condition for construct-
ing a conserving approximation, and one should examine
certain thermodynamic relations in order to check inter-
nal consistency of an approximation. One can modify ap-
proximations in terms of the HV theorem uniquely, how-
ever, there may appear serious inconsistency in a thermo-
dynamic relation and consequently, in the definition of
the density of nuclear matter at saturation. The problem
raises a question whether assumptions and calculational
scheme to an approximation are physically compatible or
not. On the other hand, thermodynamic consistency,
Ppy=Pyuv="Pr and E (kp)=Eyy(kp) is the correct con-
sistency condition that is maintained in conserving ap-
proximations. This conclusion is compatible with the one
of the Refs. 1, and it will give us the criteria for
modifications to the approximation. A consistent quasi-
particle approximation can be defined uniquely when one
achieves correct self-consistency and the self-consistent
Green function to the approximation.

The specific form of the full Green function G (k) can

be written down using Dirac equation and Dyson’s equa-
tion as the solution to the self-consistent QHD approxi-
mations. The same self-consistency is employed with as-
sumptions explained in Sec. II when G (k) is replaced by
Gp(k), and this is the reason why several assumptions
must be checked; we used the HV theorem and thermo-
dynamics in order to examine internal consistency of ap-
proximations. Retardation interaction, which is absent
in the nonrelativistic HF approximation, breaks the re-
quirement of the HV theorem in the DHF approxima-
tion. The single-particle energy spectrum at the Fermi
surface defined in the DHF approximation is not equal to
the average energy per particle at saturation
[E (kp)#¢€/pp]; consequently, it defines different nuclear
matter saturation densities, which are shown by calculat-
ing pressures, P, Py, and Pr. The properties of nu-
clear matter saturation (kp=1.30 fm™!,
€e/pp—M =—15.75 MeV) are reproduced by fitting the
binding energy curve, €/pg —M, with the effective cou-
pling constants g, and g,, but we should note that we
have an additional constraint at nuclear matter satura-
tion: pressure of nuclear matter must vanish at satura-
tion. The correct self-consistent calculation should be
constructed to maintain required constraints when
modifications and vacuum fluctuation corrections are in-
troduced and retardation interaction plays an important
role in an approximation.

The DHF approximation including pion breaks the
HYV theorem even in the static limit, £ (k)— E (g)=0, and
we have found that inconsistency also comes from the
momentum-dependent pion vertex. The HV theorem can
be recovered by subtracting terms which lead to strong
short-range correlations between nucleons. The subtrac-
tions are uniquely defined by the requirement of the HV
theorem. However, we have also found serious incon-
sistency in a thermodynamic relation, and this shows that
the subtractions are not physically reliable and affect the
self-consistent solution to the approximation. Therefore,
the HV theorem and thermodynamics clarify the validity
of modifications to an approximation and where incon-
sistency of an approximation arises. The similar problem
in the nonrelativistic calculation including pion should be
carefully examined for the check of internal consistency
and the application to Landau Fermi-liquid theory. A
static DHF approximation can be defined in order to re-
store thermodynamic consistency by setting pion-vertex
energy-momentum transfer constant; we obtained
Ppy=Puv=Pr and E(kp)=Eyy(kg). In this case,
Gp (k) is the exact self-consistent solution to the approxi-
mation. A conserving approximation can be defined us-
ing Gp (k) when appropriate self-consistency is built in an
approximation; self-consistency and the Green function
of the Fermi particle approximations should be improved
in order that it maintains thermodynamic consistency.

The Fermi-sea particle approximations are noncon-
serving except the MFT and RHA approximations, but it
is possible that we can obtain conserving approximations
from other QHD approximations when appropriate self-
consistency and certain modifications are employed.
Simplifications and modifications of complicated approxi-
mations are necessary because of practical calculations
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and qualitative understanding of a physical system. To
construct a conserving approximation in RBBG, for ex-
ample, certain simplification could be suggested,!” how-
ever, the validity of modifications to the approximation
should be examined in terms of the HV theorem and
thermodynamics, and these criteria will help to construct
and find consistent approximations. The physical impor-
tance and usefulness of thermodynamic consistency in
practical calculations are emphasized through specific ex-
amples. We can build self-consistent relativistic approxi-
mation uniquely when the HV theorem and thermo-
dynamics are incorporated into the Gp(k) formalism.

Thermodynamically consistent or conserving approxima-
tions can preserve all physically required constraints, and
the general solution to the relativistic Fermi-sea particle
approximations is an open question. It is important in
the Fermi-sea particle formalism to understand how to
construct the systematic self-consistent quasiparticle ap-
proximations which maintain properties of conserving
approximations.
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