
PHYSICAL REVIEW C VOLUME 41, NUMBER 2 FEBRUARY 1990

Cluster-orbital shell model with continuum discretization
and its application to the He isotopes
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A model is formulated for a system of several valence nucleons coupled to a core. Single-particle
orbits in this model can be determined consistently with underlying potentials between the core and

the valence nucleon. A continuum spectrum for the single-particle state is taken into account
through its discretization. A very simple system, the He isotopes, is used to show the feasibility of
the model.

I. INTRODUCTION

The recent development in the sophisticated experi-
mental technique of using radioactive nuclear beams has
led to the possibility of nuclear spectroscopy of nuclei far
from stability. ' One example of the most interesting re-
sults is the determination of the matter radii of light nu-
clei deduced from the interaction cross sections of high-
energy heavy-ion collisions. We find some noteworthy
features in Fig. 1 which summarizes the matter radii of
p-shell isotopes obtained by Tanihata et al. For exam-
ple, the fact that the radii of He and He are almost the
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FIG. 1. Matter root-mean-square radii of the p-shell isotopes
taken from Ref. 2.

same and much larger than that of He suggests that the
extra neutrons in He and He fill an extended p3/2 orbit.
This is also consistent with the result on the Li isotopes,
because the excess neutrons should fill the p3/2 orbit up
to Li and the last two neutrons of "Li occupy a further
extended p, /2 orbit. It seems that even in very neutron-
rich nuclei the single-nucleon spectrum at least approxi-
mately follows the conventional order of the shell model
established in stable nuclei, but the spatial extension of
the orbits is quite different between the stable and
neutron-rich nuclei. The difference in the spatial exten-
sion of the orbits is certainly correlated with the very
weak binding of the last neutrons, as typically shown in
the anomalously large radii of the neutron dripline nuclei,
"Li, ' Be, and B.

An attempt at understanding the structure of light ex-
otic nuclei like neutron-rich nuclei has been undetaken in
a shell model approach without employing an inert core.
The nucleons are distributed mostly among major shell
configurations and effective interactions are determined
from an empirical procedure using both energies and
electromagnetic moments of isospin T 2 nuclei as input.
The binding energies obtained, however, deviate from the
empirical values for large neutron/proton ratio and it is
conjectured that an effective interaction appropriate for a
unified description of normal and exotic nuclei cannot be
determined uniquely from data on normal nuclei only. In
contrast to experiment, the calculation predicts a gradual
increase of the matter radii of the Li isotopes with in-
creasing mass number and reproduces no anomalous rise
of the radius at "Li.

The purpose of this paper is to explore in more detail
the cluster-orbital shell model outlined in Ref. 5, keeping
in mind its application to the structure study of exotic
nuclei. Although we investigate the properties of the He
isotopes with this model, the emphasis of the paper is to
establish a method for studying the structure of the exot-
ic nuclei in which very extended single-nucleon orbits are
inevitably included. The question of what the single-
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particle wave functions look like is very important, par-
ticularly in the structure study of the exotic nuclei. Sup-
pose we try to know the single-particle wave function of
the last nucleon in He, He, and Li from the spectra of
He and Li. As neither He nor Li has any bound state

but a low-lying p3/2 resonance, we guess that the sought
single-particle wave function has relevance to the reso-
nance wave function. Accordingly, we in general have to
deal with a continuum spectrum in constructing the
single-particle orbits of the exotic nuclei. The cluster-
orbital shell model is formulated particularly to suit this
purpose.

We start from the assumption that nuclei consist of a
stable core and a group of valence nucleons weakly cou-
pled to the core. The motion of the valence nucleons is
described in terms of the radius vectors measured from
the center of mass of the core. By the introduction of
this set of coordinates of independent particle nature, our
formalism can still make use of existing shell model codes
and moreover becomes completely free from spurious
center-of-mass motion no matter how highly the valence
nucleons are excited. In Sec. II we de6ne the cluster-
orbital shell model and discuss the core-valence nucleon
potential that serves to generate the single-particle wave
functions of the valence nucleons. Section III is con-
cerned with two methods of continuum discretization to
provide a square integrable, orthogonal basis for the
valence nucleons in the continuum. One is called the
momentum-bin discretization method, which borrows the
notion of eigendifferentials. Another is based on the
direct diagonalization of an appropriate single-nucleon
Hamiltonian in a certain square integrable basis. Our
formalism is applied in Sec. IV to calculate the energies,
matter radii, and densities of the He isotopes. Section V
gives a summary.

II. FORMULATION OF THE CLUSTER-ORBITAL
SHELL MODEL

A. The cluster-orbital shell model

w here R, is the normalized center-of-mass coordinate of
the core de6ned by

' 1/2
1

R, = — (r„+,+ +r„+I) .

dg, dg'„dR= f+1
' 3/2

X dr, dr„dR, .
n+

(S)

Comparing Eqs. (4) and (S) leads to
' 3n/2 ' 3/2f+1 f

f n+f dpi dg„dp,

' 3/2

dx1 ' ' dxndP~

The next step is to express the total Hamiltonian in terms
of the coordinates, x; and p, . The kinetic energy, E, with
the center-of-mass kinetic energy subtracted is given by

n
1

n

K =K, + g p2+ g „p;.p, ,

The coordinate x; is the radius vector from the center of
mass of the core to the ith valence nucleon, g, its corre-
sponding normalized coordinate, and R the normalized
total center-of-mass coordinate. Let p, and p denote a
collection of all the internal spatial coordinates of the
core and the total system including the core and the
valence nucleons, respectively. Since the transformation
of Eqs. (1) and (2) is not orthogonal, we need to express
the volume element dp in terms of the new coordinates.
By the definition we have

dpdR=dr, dr2 dr„+I=dr, dr„dp, dR, .

The transformation of Eqs. (1) and (2) enables us to ex-
press

' 3n/2

In neutron-rich nuclei like the He isotopes, we assume
that weakly bound nucleons move around a stable core.
Let n and f be the number of the valence nucleons and
the mass number of the core, respectively, and r, , . . . , r„,
r„+,, . . . , r„+f be the position vectors of the nucleons.
A system of coordinates used in the cluster-orbital shell
model is

1/2
V=V++ g u + g u,

i =1 j=n+1
(8)

where E, is the internal kinetic energy of the core,
p~= —ii)iBIBx~ is the momentum conjugate to x, and
p, =fI(f + 1)m is the reduced mass of the core plus
single-nucleon system. The interaction energy, V, is
separated as

n n+f

f+1

x;

' 1/2

1/2

1/2

(i =1, 2, . . , n), (1).

where U is the nucleon-nucleon potential and V, is the in-
teraction energy of the core. Combining Eqs. (7) and (8)
for the total Hamiltonian we get

T

n n
1H=H+g h+ g u+ p p, , (9)c l IJ (f +1) l J

1

n+f
1

n+f

(r, + . +r„+&)
' 1/2

(r, + . +r„)+ n+f
1/2

(2)

with

1 n+f
h,. = p,. + g u,z

.
j =n+1

Here the spatial dependence of 0,=K, + V, is expressed
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in terms of p„and the radial dependence of v; in the last
term of Eq. (9) is given by r; —rj =x;—xj. The ii; of Eq.
(10) expresses the Hamiltonian for the relative motion be-
tween the single valence nucleon and the core. A key
assumption of the cluster-orbital shell model is to
approximate h,- with a single-particle Hamiltonian
f, = ( 1/2p }p;+ U, , where U, is assumed to be indepen-
dent of p, . Equation (9) then takes a desired form in
which the coordinates x; and p, decouple

H =H, + g p2+ U;
2p

J=J,+L+ g s;, (12)

where J, is the angular momentum of the core, L the or-
bital angular momentum of the valence nucleons, and s;
is the spin of the ith valence nucleon. When a given or-
thogonal transformation brings the set of coordinates
r„.. . , r„,R, to a set of coordinates g„,g„,R and the
matrix connecting g'„. . . , g'„with g„.. . , g„ is denoted
by A, i.e., g'= A g, then we have

L=g ri X iR—

=g AX ill A—
k,

j=1 k=1 k

ij {f+1) pi pjj)i =1 p

The Hamiltonian (11), basic to the cluster-orbital shell
model, has the form similar to that used in the conven-
tional shell model. Namely, it consists of the core Hamil-
tonian, the single-particle energy part of the valence nu-
cleons and the interaction part among the valence nu-
cleons. The only formal difference is that the last part in-
cludes the p; pj term. The term arises because of the use
of the nonorthogonal coordinates x;. In Sec. II 8 we dis-
cuss the relationship between ii; and ji, .

The total angular momentum J of the system is given
by

where 1; =x, X p, is the orbital angular momentum of the
ith valence nucleon relative to the core. Inserting Eq.
{13)into Eq. (12} assures that the total angular momen-
tum is given by

J=J,+ g (1;+s,),
i=1

(14)

and that the ordinary rule of coupling angular momenta
for the valence nucleons can also be applied in the
cluster-orbital shell model.

One remarkable advantage of our formalism is that it is
completely free from any spurious center-of-mass motion
regardless of the excitations carried by the valence nu-
cleons because the coordinates x; are all a kind of relative
coordinates. We finally note that properly normalized to-
tal wave functions are given by

3 /4n+f
+{pcoc cjxi ' ' ' xno] ' ' ' onri ' ' ' n) j

when the function qi is normalized as

(15)

~c ~e ~
&

' ' ' ~n ~l ' ' '
~n

e'p, x x=1 (16)

where a and v stand for spin and isospin coordinates.
The necessity of the factor [(n +f)/f]3~ of Eq. {15) is
clear from Eq. (6).

B. The core plus single-nucleon system

O'=A[%(p, o,r, )ui (x)[Yi(x)Xy, jz]j ], (17)

It is essential for the cluster-orbital shell model that
the Hamiltonian for the relative motion of the single
valence nucleon, Eq. (10), can be approximated with an
effective single-particle Hamiltonian, f=(1/2 }iup + U.
When the core is assumed to be inert, the wave function
for the single valence nucleon plus core system can be
written as

n

=gg'X iA—j

XJ XpJ
j=l

(13)

where %(p,a, r, ) is the appropriate core wave function
and A stands for the antisymmetrization operator. The
equation of motion for an unknown relative motion func-
tion u&- is derived from the resonating group method '

(4(p, cr, r, )[Yi(x) Xg&&2]J ~H, + ji E~A[%(p,o,r, )u—iJ(x)[Yi(x)Xg»2]j ])=0 .

Separating the direct and exchange parts in Eq. (18) we obtain for fiJ(x) =xuiJ(x),

fP d fi 1(1+1) A k+ + V, (x)— f, (x)+f &, (x,x'}f, (x'}dx'=0,
2p dx 2p ~ 2p o

with the so-called direct potential
f+1

Pjjj~j=I'pjp, jj,~ ji j*j x pjlxZjjjU&jj njp jj ~ ji+jj*j X&jjij
k=2

(19)
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and the exchange kernel

K, (x', x")=('P(p, tt, t,), [Fi(x) XYttt] ) l(H. +h E)(A 1)(%'(P,tt, t, ) „[Yt(x)XYitt])5(x —x') 5(x —x"}

(21)

where (1/2p)fi k =F. —( %(p, cr, ~, ) ~H, ~%(p, [T,~, ) } is the energy of the valence nucleon. Equation (19) suggests that
the sought single-particle potential UI is formally given by an nonlocal potential

U„.= V„(x)S(x —x')+X„(x,x') . (22)

Although the nonlocality of the potential does not cause any diSculty in our formalism, its energy dependence through
the E term of Eq. (21}makes cluster-orbital shell model calculations complicated. At present we have to assume that
the energy dependence is not so strong that it can be neglected, at least in the energy region of interest.

For the Hamiltonian of Eq. (11) the total wave function, Eq. (15), reduces to the product form
' 3/4n+f

%(p, tr, ~, )%(x] x„cr] . u„r] r„), (23)

when the explicit inclusion of antisymmetrization is neglected between the core nucleons and the valence nucleons. To
estimate how big the effect of antisymmetrization is, let us consider the simplest example of the norm kernel for a sys-
tem of a single nucleon plus the core with a doubly closed-shell configuration, e.g., N+ He, N+' 0, and N+ Ca.
When the core nucleons occupy the harmonic-oscillator levels with the number of oscillator quanta Q up to Q =0,
1, . . . , Q„ the norms are given by

(Ng}'=—&'P(p, tT, ~, )&f' "(g)[~f(g)XX]gt]J~I~I+(p,t, r, »I "(g)[1'](k)XX]gal,m &

0 for Q~Q,
(24)

Q'=Q +1

1 f+1
f f (Q Qt)]Qtf ~ ~c

where uf ~ ](g) is the radial part of the harmonic-
oscillator wave function. The vanishing norms for
Q & Q, follow from the Pauli principle and imply that the
relative motion functions of the valence nucleon must be
orthogonal to the occupied orbits of the core. Table I
lists the values of [N& ] for the cases of N + He,
N + ' 0, and N + Ca. We see that they are close to uni-
ty for a system with the heavier core or for Q ~ 3 even in
the N+ He case. Since the deviation from unity is due
to the exchange effect of the norm kernel, we understand
that the effect of antisymmetrization becomes less
significant as the single-particle wave functions of the
valence nucleons contain less components with small Q.

III. THE DISCRKTIZATION OF CONTINUUM STATES

A. The momentum-bin discretization

One of the chief motivations for developing the
cluster-orbital shell model is the recognition that the

valence nucleons in the exotic nuclei are so weakly bound
that their motion extends farther compared to the motion
of the nucleons in stable nuclei. In this case the single-
particle Hamiltonian, f=(1l2 ][)tp + U, may have only
few or even no bound-state spectra. For example, if we
consider He as a system of the He core plus two neu-
trons, the single neutron moving around the He core
does not have any bound state in He, so that we in gen-
eral have to deal with the continuum spectrum to con-
struct square integrable orbitals of He, which is bound
against the neutron separation.

One of the methods for constructing square integrable
orbitals from the continuum is the momentum-bin
disc retization, which makes use of the so-called
eigendifferentials. ' The method has extensively been
used in three-body models of deuteron-induced reac-
tions" with very successful results. Because the generali-
zation of the nonlocal case is trivial, we assume that UI
is local in the following. We also assume that the valence
nucleon is a neutron. It is straightforward to generalize

TABLE I. Norms of the core plus single-nucleon system as a function of the number of the oscillator
quanta Q.

He+%
l6O+X
Ca+%

1.25
0
0

0.9375
1.1289
0

1.0156
0.9878
1.0769

0.9961
1.0010
0.9961

1.0010
0.9999
1.0002

0.9998
1.0000
1.0000
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to the proton case. We solve the equation

fi d fi I (I +1}
fi .(k,x)= —— + +UI fI (k,x)

21M dx 2p x

longing to the difFerent bins have no off-diagonal matrix
elements of the single-particle Hamiltonian

&0I,"[ l(x}xxry2]jm I~I%I,' '[I'((x}xy)gp],~ & =~;&;;

Rk f, (k,x) (25)
with

(31)

with the asymptotic behavior
' 1/2

f(, (k,x)~ 2 I
sin kx ——m+5& as x~ao,

(26}

k,.

P'IJ'(x)= f„w;( k) ui (k, x)dk
I i —I

(28)

with

N; = f [w;(k)] dk,
t —1

(29)

where w, (k) is an appropriate weight function. Equation
(27) assures that P'I" belonging to the difFerent bins are or-
thogonal, i.e.,

& yI,"lyI,"'& =~„ (30)

Thus PIJ' are square integrable and serve as a basis set of
the orbitals for the valence nucleon. Furthermore P'I" be-

I

where 5, is the scattering phase shift. It is easy to show
that u&J

= 1/x fIJ satisfies the normalization

f ui, (k, x)uI (k', x)x dx =5(k —k') . (27)
0

The momentum space of the valence nucleon is divided
into bins. The interval of the ith bin is denoted by
[k, „k,], and we construct the eigendifferential from the
bin

e; = f„[w,(k}]dk .
N; I, I 2P

(32)

When there is no resonance in the ith momentum bin the
weight function is chosen as unity, i.e., w;(k) =1, then

k, +k; + —,', (k, —k;, ) . (33)
f2

2p

For the resonant bin the weight function is usually
chosen as'

w(k)=

l—r
2

R k —e„+—I
2p 2

(34)

where e„ is the resonance energy and I its width. The
choice of narrower size of bins is in general preferable for
making the set of basis states more complete but leads to
slower damping of the tail of the basis wave functions.

B. The diagonalization method of discretization

In this method that is sometimes called the pseudostate
method, ' we try to diagonalize the single-particle Hamil-
tonian in a finite set of square integrable basis functions

' such as harmonic-oscillator functions,
Gaussian functions, or local Gaussian functions. The
solution of the secular equation

N

X [&((}"'[l'I(x}XX&r2]jml~lf'"'[I'I(x}Xg&njm& &&0"lk'"'&]&k=o
k=1

(35)

provides us with an orthogonal basis g; C,P". The
discretization is achieved through the process of truncat-
ing the set of basis functions to the finite number N. The
asymptotic form of the solution of Eq. (35) is usually ig-
nored and the eigenvalues with the exception of reso-
nance energies are quite dependent on the choice of the
basis functions and N. A comparative study' of both
methods of discretization has recently been done for the
deuteron breakup continuum in deuteron-nucleus col-
lisions.

IV. APPLICATION TO THE He ISOTOPES

We have applied the cluster-orbital shell model to dis-
cuss the properties of the He isotopes, He- He assuming
that they consist of the He core and the valence neu-
trons. The resonating group method study of the
He+nucleon system was done by Kanada et al. ' and a

I

local, energy-independent neutron- He potential was
determined in terms of a superposition of Gaussians. We
use this local potential to generate the square integrable
basis functions.

We have tested the two methods of continuum discreti-
zation described in the previous section. In the
momentum-bin discretization method, Eq. (25) is solved
with the Fox-Goodwin method using the mesh size of
0.05 fm. The k integration in Eq. (28) is done with a tra-
pezoidal rule of the size of (k; —k; ])/40. The p3/2
phase-shift calculation indicates a resonance at e„=0.85
MeV (k„=0.18 fm ') and the width I'=0.71 MeV.
These are in good agreement with experimental data of
He, namely e, =0.89 MeV and I =0.60+0.2 MeV. '

Although the calculation shows that the partial cross sec-
tion of the p1/2 channel reaches a maximum at a=4. 57
MeV, the peak is so broad that we do not consider it a
resonance. No other channels show a resonant behavior.
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We have discretized the momentum interval of 0.03-1.23
fm ' for the p3&2 channel and chosen the bin [0.03,0.43]
as the resonant bin. For the interaction acting between
the valence neutrons we have first used the Hasegawa-
Nagata (HN) No. 1 central potential', which has no
component in odd states. For three p3/2 discretized or-
bits constructed from the bins [0.03,0.43], [0.43,0.83], and
[0.83,1.23], the 0+ energy of He relative to He is 0.38
MeV, which is to be compared to the experimental value,
—0.976 MeV. ' If we use a smaller size of bins, hk =0.2
fm ', in the interval of 0.43-1.23 fm ', the resulting en-
ergy is 0.35 MeV, i.e., there is no significant gain in bind-
ing energy. The mixing in of the p»2 and s&/2 discretized
states constructed from the bin [0.03,0.63] decreases the
energy to 0.26 MeV, but the mixing of the d3&2 and ds&2
channels is negligible. At this moment we have decided
to restrict the single-particle orbits to the three lowest

p 3/2 orbits, one p & /2 orbit and one s»2 orbit. In the diag-
onalization method of discretization we have used Gauss-
ian functions

P, (a,x)= 2l +2a l +3/2

(21+1)!!m' b

X aX — exp
b 2

' 1/2

'2

(36)

where b is the length scale parameter chosen as 1.8 fm
and a is the variational parameter. The discretized orbits
are obtained as a superposition of Eq. (36) with different
a. When solving Eq. (35) for the s, zz channel we note
that there is one s&/2 forbidden state occupied by the core
nucleons. The occupied s&/2 state corresponds to the
wave function with a0=1.8144, ' so that the basis wave
function Po(a, x ) for the s, zz channel is replaced with

o(a,x) —&Po(ao x)lgo(a x)&go(ao, x)

to make it orthogonal to the forbidden state. Since the
semirealistic interaction such as the HN potential may
lead to the underbinding of He and in addition requires
heavy computational effort in evaluating interaction ma-
trix elements for general basis wave functions, we use the
delta function interaction, —Uo5(x, —x2), to simplify the
calculation in the following.

In the momentum-bin discretization we use the bins
[0.03,0.43], [0.43,0.63], and [0.63,0.83] for the p3&z chan-
nel, [0.03,0.63] for both the p, zz and s, &2 channels. Their
single-particle energies are 0.85, 7.37, 13.90, 3.60, and
3.60 MeV. Figure 2 displays the corresponding single-
particle wave functions. The lowest p3/2 wave function
constructed from the resonant bin has most of the com-
ponent at shorter distance, while the other p3/2 and the
p»2, s, /2 wave functions have considerably longer tails.
Actually, to show the slow damping of the wave func-
tions at larger distance, we note that the norm integrals
of the five states are 0.98, 0.91, 0.91, 0.96, and 0.98 even
when integrated up to 40 fm. In the diagonalization
method of discretization we have tested several choices of
a and list results obtained with the use of seven a' s,
a =0.20, 0.36, 0.648, 1.168, 2.096, 3.776, and 6.8. The
resulting single-particle energies of the three p3/2 one

x$(fm' )

(I)
00

0.2

0

-0.2-

~e
~1

~\ o x(fm)

FIG. 2. The single-particle wave functions in the
momentum-bin discretization. The three solid curves labeled
(l), (2), and (3) denotes the p3/p orbits in the order of increasing
single-particle energy, while the dashed and dotted curves
denote the p & &2 and s &/& orbits, respectively.

n+f
(R, , )'= g r, —

n +J
1

n+f

[R, ,(core)]n+

+ 1 1— 1

n+f n+f
n

X;'X
(n+f)

X

(37)

x$(fm '
)

04

0.2

-0.2
x{fm)

-0.4

FIG. 3. The single-particle wave functions in the diagonaliza-
tion method of discretization. See also the caption of Fig. 2.

p&/2, and one s&/2 states are 0.98, 4.48, 14.10, 2.31, and
2.20 Me V. Their single-particle wave functions are
shown in Fig. 3. Each curve of Fig. 3 seems to correlate
with the corresponding curve of Fig. 2, but, of course,
damps more rapidly than the latter. Table II lists the en-
ergies of He (0+,2+), He ( —,'), and He(0+) relative to
He obtained by diagonalizing the Hamiltonian of Eq.

(11) in the space including all the possible states that are
constructed from three p3/2 one p, &2, and one s, &2

single-particle orbits. The strength of the delta interac-
tion is determined to fit the 0+ energy of He. The calcu-
lated energies of He and He, though good qualitatively,
are deficient by 0.5-1.0 MeV. This lack of energy will at
least partly be accounted for if we had two-nucleon in-
teraction such that reproduces the 2+ energy of He as
well. Table II also lists the matter root-mean-square
(rms) radii that are calculated according to the expression

' 1/2 2



742 Y. SUZUKI AND WANG JING JU 41

TABLE II. Energies and root-mean-square radii of the He isotopes calculated with the discretization methods of momentum bin

and diagonalization. The strength Uo of the 5 interaction is set to 805 in the k-bin method and 650 MeV fm in the diagonalization
method.

He

He
'He

0+
2+
3
2

0+

k bin

—0.98
1.20
0.00

—1.78

E —E( He) {MeV)

Diagonal

—0.99
1.55
0.22

—1.88

Experiment
(Ref. 18)

—0.976
0.824

—0.535
—3.113

k bin

4.78

5.50
5.89

R, , (fm)

Diagonal

2.29

2.78
2.60

Experiment
(Ref. 2)

2.48+0.03

2.52+0.03

Here

n+f
[R, ,(core)] =—

i=n+1

' 1/2
1

R,

piv(x) = g 5 r;— 1

neutron

R —xC (38)

E

~z O.IS
0
O
LD

IX

(g) O.IO
O

U)

m QQ5

O

0 I 2 5
DISTANCE (fm)

FIG. 4. Neutron density distributions of the He isotopes.

is replaced with the experimental value of (1.57fm) .
Apparently, the single-particle orbits obtained with the
momentum-bin discretization give too big rms radii to be
compared to experiment. On the contrary, the single-
particle orbits of the diagonalization method better
reproduces the sizes of the He isotopes. The dominant
component of the wave functions is of course (lp3/2)"
configuration. The percentages of the state in the diago-
nalization method of discretization are 76, 76, and 57 %
for He(0+), He( —,

' ), and He(0+), respectively. The ex-

citation of the valence neutrons to the second lowest p3/2
orbit is next most important, and the p, /2 and s, /2 orbits
play a less important role.

Figure 4 compares the neutron density distributions of
the He isotopes. For the sake of calculational conveni-
ence we have used the density operator that measures the
density at points relative to the center of mass of the core

1/2

The neutron density distribution of the He core is as-
sumed to be given by

' 3/2
ap'iv""'(x) =2 — exp( —ax ),

L

where the v'alue of a is set to 0.609 fm to reproduce the
rms radius of He. Since the proton density distribution
of the He isotopes in our model is considered the same as
the neutron density distribution of He, we note that the
asymmetry in the neutron-proton density distributions is
enhanced at larger distance as the neutron-proton ratio
increases. Recently, it has been suggested' that the ex-
cess neutrons in neutron-rich nuclei may have a collective
motion against the core nucleus and that in particular
there is the possibility of the enhancement of the electric
dipole strength at lower energy than the normal dipole
oscillation energy.

(39)

V. SUM1VIARY

We have formulated the cluster-orbital shell model for
a system made up of a core plus several valence nucleons
in order to study the structure of exotic nuclei like
neutron-rich nuclei. We have arrived essentially at the
same form as the conventional shell model but our for-
malism has the advantage that it is completely free from
the spurious center-of-mass motion and has flexibility in
employing such single-particle wave functions that are
compatible with the underlying potential between the
core and the valence nucleon. We would be able to use
optical potentials for the potential but instead best con-
struct them by the resonating group method used in mi-
croscopic nuclear cluster model studies. Our formalism
thus utilizes the essential ingredients of both the shell and
cluster models. We have neglected the excitation of the
core in this paper. The generalization to the case that in-
cludes the core excitation is, however, not hard in princi-
ple. In this case we have to treat a coupled channel ver-
sion of Eq. (18) to define the single-particle potential U,
which now depends on the specific channels of the core
excitation.

The model has been applied to the simplest example,
the He isotopes. One of the most interesting questions
here includes how the valence nucleon orbits of He and
He are related to that of He, which is unbound against

the neutron separation. One new feature is that the avail-
able single-particle spectrum is a continuum and special
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techniques have to be used to construct square integrable
basis functions. The continuum single neutron spectrum
outside He has been discretized by two methods, the
momentum-bin discretization method and the diagonali-
zation method. Although the former seems to be in prin-
ciple more natural and sound than the latter, we think
there remains some problems for the former before it can
be used as a practical tool in structure studies. For exam-
ple, we have to find out a way to have the amplitudes of
single-particle wave functions damp at large distance
when we use small momentum bins. Although we can ex-
plain the empirical fact that He is less bound and He is
more bound than sHe, the binding energies are still too
small by 0.5-1.0 MeV. The calculated matter radii of the
He isotopes are in good agreement with experiment.

Migdal argued that under certain circumstances two
particles outside a well form a bound state, even in the
case when their attraction is insuScient for the formation
of a bound state outside the well but is sufficient to give
rise to a resonance level with energy close to zero. His
argument is based on the equation to determine the ei-
genvalue E and the eigenfunction %'.

&e.ia'ie&= I dE~ &+~AH'ie &,
& e.iH'i+~&

P

where '0 denotes the noninteracting two-particle state in
the state a=(k, , k2) and the energy E, and H' is the
two-particle interactions. Although he tried to solve Eq.
(40) approximately by the use of factorized form of
scattering wave functions at low energies, the continuum
discretization described in this paper should in principle
facilitate a convenient basis of square integrable wave
functions for solving Eq. (40).
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