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Relativistic contributions to the deuteron electromagnetic form factors
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The deuteron electromagnetic form factors are calculated in the framework of the Bethe-Salpeter
equation with multirank separable interactions. The only approximation made is the restriction to
positive-energy states. A comparison is presented with the predictions of nonrelativistic, minimally
relativistic, and other approximative calculations. The most important relativistic effect turns out
to be the boost on the single-particle propagator due to recoil, in accordance with an earlier investi-
gation.

I. INTRODUCTION

The electromagnetic (EM) form factors of the deuteron
represent a fertile testing ground for nucleon-nucleon
(NN) potentials, as well as for relativistic and non-
nucleonic effects in the NN system. Especially since the
recent measurements of the deuteron EM form factors at
high momentum transfer' theoretical models are faced
with the problem of explaining a host of accurate experi-
mental data. However, the much less firmly established
neutron form factors (see, e.g. , Ref. 3) often provide mod-
els primarily based on nucleonic constituents with still
sufficient room, so as not to be ruled out a priori by the
deuteron data. It appears, therefore, important to try to
reduce possible theoretical uncertainties to a minimum.
In this spirit we propose to fix the magnitudes of the
different relativistic contributions to the deuteron EM
form factors within an albeit phenomenological yet by no
means unrealistic model calculation. In an earlier arti-
cle, hereafter referred to as ZT, Zuilhof and Tjon al-
ready carried out a similar investigation in the frame-
work of the Bethe-Salpeter (BS) equation for two spin- —,

'

particles interacting through one-boson-exchange (OBE)
potentials. Due to the complexity of the problem, how-
ever, a few approximations had to be made with respect
to the exact expressions, thereby leaving some doubt
about the accuracy of the predictions. Furthermore, a
direct and straightforward comparison with a nonrela-
tivistic (NR) calculation was not very meaningful. Thus,
in this paper we employ relativistically covariant, separ-

able potentials in the context of the BS equation for two
Dirac particles, which allow a rigorous relativistic calcu-
lation, including recoil effects. The interactions we
choose, being very similar to those employed in a
Faddeev-type Bethe-Salpeter calculation of trinucleon ob-
servables, are covariant generalizations of the NR separ-
able Graz-II potential, with refitted coupling strengths,
so as to reproduce the S& and D, NN scattering data
and the static deuteron properties with the same pre-
cision as the original NR potential. This also permits us
to make a sound comparison with the NR predictions,
apart from an extensive study of the various relativistic
effects. Here we note that, for simplicity, we disregard
negative-energy states in our calculations, which approxi-
mation is fully justified by the conclusion in ZT that their
influence is negligible up to moderately high momentum
transfers.

This paper is set up as follows: In Sec. II the BS equa-
tion for multirank separable potentials is solved and the
results of fits to the NN data with different values of the
D-state probability are presented. Section III is a resume
of the derivation of the deuteron EM form factors in
terms of the BS wave function for a bound state of two
Dirac particles. In Sec. IV the various EM form factors
are presented and compared, not only with the respective
NR curves, but also with the predictions of several ap-
proxirnative calculations, so as to find out what are the
relative magnitudes of the different relativistic effects.
Section V, finally, contains a summary of the principal re-
sults and some conclusions.

II. BS EQUATION WITH SEPARABLE INTERACTIONS

In momentum space, the BS equation for the T matrix describing relativistic two-particle scattering reads, in terms of
the relative four-momenta p, p', k, and the center-of-mass (c.m. ) energy squared s,

T(p,p', s)= V(p,p')+, f d k V(p, k)S(k;s)T(k, p', s),
4m.

where V(p, p'), in principle, stands for the set of all irreducible diagrams, and S(k;s) is the free two-particle Green's
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TABLE I. Parameters of original Graz-II potential.

P))
P)z
I)l2)

Pzz

1

y2

2.31384X10 ' GeV
5.21705X10 ' GeV
7.94907X10 ' GeV
1.57512X10 ' GeV

28.695 5 GeV2
64.9803 GeV'

A 11

A ]2

~13

A22

A23

A 33

3.105 80 X 10 GeV
—5.54663X10 ' GeV
—2.017 38 X 10 GeV'
108.088 GeV

2.72701 GeV
2.986 5Q X 1Q GeV'

function. If we consider two equal-mass spin- —, particles in the coupled-triplet case and neglect negative-energy states
(see also Secs. III and IV), we obtain the partial-wave-decomposed equations

TLL (po, I p I;p o, I
p'I;~ ) = VLL, (po, I p I;po, I

p'I )

+ ', y f dko f Ik'ldlkl V„„(po,lpl;ko, lkl)S(ko, lkl;s)Tz-z (ko, lkl;po, lp'I;s),
27K L"—0 2

where S(ko, Ikl;s)= I(2) &s —Ek) —ko I
', with E), =(k +m )'~ . The fully on-shell T matrix, defined by

TLL, (lpl)=TLL, (po Ipl po Ipl'&) with po=o and lpl=( —,'s —m )' =(2)mE„b)', is related to the S, and D, scatter-

ing phase shifts as

TLL(lpl)= — e ' sin5L(lpl) .4v s is&([p() .

P

If we now choose for the interaction V a rank-N separable ansatz of the form

N

VLi(P P')= X ~;Jg "(P')g,"'(P'» (4)

the BS equation can be solved in closed form. The result for the T matrix is

N

TLL(po IPI'po IP I' s)= X re(s)g' (p )gj (p

with

[r '(~)],, =[X '];J —
2 g f dko f Ik Idlkl S(ko, lkl;s)g, ' '(k')g, ' '(k') .

2K

Similarly, the bound-state (deuteron) wave function becomes

&L(po, lpl ) =S(po, lpl;s)PL, (po, lpl ),
with s =md, and where the deuteron vertex function P is given by

PL(po IPI)= g ~ijgi (po Ipl)cJ(s) .

PD

TABLE II. Refitted couplings of Graz-II-type interactions.

A22' A23' A33'

4%

5%

6%

NR
BSLT
BS
NR
BSLT
BS
NR
BSLT
BS

3.357 24x 10-'
3.937 60x 10-'
6.024 23 X 10
3.05065X10 '
5.873 84 X 10
2.360 62 X 10
2.96442 x 10-'
9.37441x 10-'
5.851 81 X 10

—7.808 89 X 10
—3.468 36x10-'
—1.588 04
—5.082 87 X 10
—1.953 77 x10-'
—3.365 32 X 10
—2.987 33x10-'
—8.32704x10 '

1.82442x 10-'

—2.254 84 x 10-'
—1.672 42 X 10
—3.362 12 X 10
—1.968 67 X 1Q
—1.60101x 10-'
—1.42608 x 10-'
—1.755 66 X 10
—1.561 66 x 10-'
—1.30611 x 10-'

170.283
104.769
366.114
96.0983
57.9262
20.3917
41.9506
22.5999

—26.6096

3.426 10
2.39946
6.338 06
2.592 44
1.985 53
1.655 93
2.006 21
1.71346
1.093 45

4.05294 x 10-'
2.49197x 10-'
7.723 54 x 10-'
2.782 35 x 10
1.83408 x 10
1.44002 x 10-'
1.867 86 x 10-'
1.353 30 X 10
7.165 63 x 10

'In Ge
In GeV

'In GeV .
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TABLE III. Deuteron properties and low-energy S& scattering parameters.

Pg =5%

Pg) =6%

Pg) =4.82%

Experiment

NR
BSLT
BS

NR
BSLT
BS

NR
BSLT
BS

6raz-II

a (fm)

5.418
5.419
5.419

5.419
5.420
5.420

5.420
5.421
5.421

5.419

5.424

ro (fm)

1.780
1.779
1.781

1.780
1.779
1.779

1.779
1.778
1.778

1.780

1.759

B& (MeV)

2.2254
2.2254
2.2254

2.2254
2.2254
2.2254

2.2254
2.2254
2.2254

2.2254

2.2246

g, (fm')

0.2575
0.2664
0.2499

0.2859
0.2957
0.2774

0.3112
0.3217
0.3019

0.2812

0.286

e"",2m„,

0.8572
0.8572
0.8568

0.8515
0.8515
0.8512

0.8458
0.8458
0.8458

0.8525

0.8574

Pats

0.025 00
0.025 92
0.02408

0.027 94
0.028 96
0.026 90

0.030 59
0.031 71
0.029 45

0.027 45

0.0263

Here, the coefficients c (s) are determined, up to an overall normalization, by the homogeneous set of N algebraic equa-
tions

N

c, (s) —g H~k(s)A&&c&(s) =0,
/c, (=1

where the matrix H is defined by

', g f" dko f "Il I'dll ls(ko, ll I;»gj"'(ko, ll l)gk"'(ko, ll I) .
277 L~ —p 2

(10)

In this investigation we use a relativistically covariant
generalization of the NR separable Graz-II potential in
order to describe the NN system in the coupled S& and
D

&
waves, being of rank three in this specific case. The

employed form factors are

~o) ~ ~o~
1 —y p 2

(P2 P2 )2' r
(P2 P2 )2

(11)
(2) — (2) — (2) — (p) {)

P'(1 —r2P')
(P2 P2 )( 2 P2 )2'

The parameters P,b and y, are left unaltered with respect
to the original potential (see Table I), while the A,; are
refitted, also in the NR case, in order to reproduce, for
three different values of the D-state probability Pn (4%,
5%, 6%), as well as possible the S, and 3D, NN scatter-
ing phase shifts up to a laboratory energy of 500 MeV,
the scattering length a and the effective range rp, and the
static deuteron properties, viz. , the binding energy Bd,
the quadrupole moment Qd, the magnetic moment )ud,
and the asymptotic D/S-state ratio p&&&. This is repeat-
ed employing the BSLT (Ref. 7) approximation, for scalar
particles, to the BS equation (for details, see, e.g., Ref. 8,
Sec. II), however, without changing the form factors, so
that it does not become equivalent to the NR case, con-
trary to the approach in Ref. 8. Thus we get nine sets of
refitted couplings, given in Table II. The resulting deu-
teron properties and low-energy scattering parameters
are presented in Table III, together with the original
Graz-II predictions and the experimental values. The
calculated S, and D, phase shifts, though not depicted,
are very similar to the ones obtained with the original po-

tential. From Table III we see that, for the type of in-
teractions used, the best agreement with experiment is
obtained with a D-state probability of about 5%.

III. DEUTERON ELECTROMAGNETIC
FORM FACTORS

der =doM, «A(q )+B(q2)tan—28 (12)

where

A(q )=Fc+ ,'r) Fg+ 23r)F~-—
B(q )= 43')(1+g)Fbr—

(13)

with g= —(q /2m&). These form factors are normalized
at zero momentum transfer as Fc(0)=1, F&(0)=m~~Q„,
and F~(0)=(md /mal)pd, where md, Qd, and pd are, re
spectively, the deuteron mass, quadrupole moment, and
magnetic moment, and where mA is the (average) nucleon
mass. Nate that from unpolarized scattering data only
the quantities A and B can be extracted, so not Fc and

F& separately. In the one-photon-exchange approxima-
tion, the amplitude for the above scattering process is just

Here we sketch the derivation of the expressions for
the deuteron electromagnetic form factors in terms of the
bound-state Bs wave function. A more complete treat-
ment can be found in ZT.

In the limit of vanishing electron mass, the differential
cross section for elastic electron-deuteron scattering can
be expressed in terms of the Mott cross section and the
charge, quadrupole, and magnetic form factors of the
deuteron as
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the contraction of the electron and deuteron currents,
multiplied by the photon propagator, i.e.,

11m (P', M'I JgIP, M ) =e 5,
q ~0 MM (19)

&k', ~ Ij„lk,~& (14)

where (k', A, 'I j„'Ik,A, ) =ieu)„(,k )'y„u1, (k) .From Lorentz
covariance and time-reversal invariance one infers that
the deuteron current can be written as

Choosing now the Breit frame, defined by
P'=P+q= —P, i.e., P= —

—,'q and q =0, and taking the
photon momentum along the z axis, we arrive at the ex-
pressions (suppressing the references to the, now fixed, to-
tal momenta P and P')

(P,M IHIP, M&=—
2md

e'('(P', M')J" e (P,M),

(15)

(M'I J„IM & =e&l+riI F,5))r))r. +2ri[F) +( I+g)F,
+G1]5M o5))ro]

where the spin-1 polarization vectors e" satisfy the prop-
erties

&M'I JdlM &
= ~ &ri&1+riG)[5M ()r+1 5()r sr —1]

(20)

e„'(P,M )e"(P,M') = 5MM—
PRP„

ge„'(P,M)e„(P,M)= —g„,+
M md

P„e"(P,M )=0,
and where the operator J" is given by

(M'I Jd IM ) = i —&—ri&1+riG,[5,+5,),
2

Now we are going to express the deuteron current in
terms of a general solution of the bound-state BS equa-
tion. Near the deuteron pole, the T matrix takes the se-
parable form

Jz =(P„'+P„) g F, (q ) F2—(q )
2md

+I""q„G,(q ) .
T( .P) ~ P (P';P)(fp (P;P)

p ~p~ p2 2 7

M P —md
(21)

Here, I""is the generator of infinitesimal Lorentz trans-
formations, and F„F2,G& are invariant functions of q .
The latter are related to the deuteron charge, quadrupole,
and magnetic form factors as

Fc =F, + ', ri[F) +(1+r—i)F2+G)],

Fg =F1+(1+q)Fz+G1,

FM Gi

Hence, we see from Eqs. (15)—(18) that the so-defined
deuteron current meets the normalization condition

where the deuteron vertex functions P and ((t satisfy the
homogeneous BS equation, with the normalization condi-
tion

2P 5„M= ' f d'py(~'(p;P) S(p;P)
4m aP~

)(y(M)(p. P )

p2 2
d

(22)

if we assume that the interactions are independent of the
total momentum P. In the impulse approximation, the
deuteron current can then be expressed as

(P', M'I J„IP,M) = f d p[P' '(p', P')S"'(p', P')I „'"(q)S(p,P)P' '(p;P)
16m. md

+P (p";P')S' '(p";P')I „' '(q)S(p;P)P' '(p;P)], (23)

with p' =p +—,'q, p"=p —
—,'q, P' =P+q, and where

the two-particle Dirac propagator S(p;P)
S"'(p;P)S' '(p;P—) reads

.p) ( ) p(1)+p(1) )
—

1( ) p(2) p(2) )
—1

(24)

(N) 2 (25)

where o„=—,'[y„,y„]. Note that, since the deuteron has

isospin I=O, only the isoscalar components of the nu-
cleon form factors F', ' and F'2 ' are needed. Using the
identity

Here, the superscripts indicate that the contracted gam-
ma matrices act on the spinors of the respective particles
only. The EM photon-nucleon vertex operator I'„ in Eq.
(23) is assumed to be of the on-shell form

a S(p'P)= '[S"'(p P)y'"S(p P)—
aP~

+S' '(p P)y' 'S(p P)] (26)



476 G. RUPP AND J. A. TJON 41

we conclude from Eq. (25) that the above-defined deute-
ron current straightforwardly satisfies the normalization
condition (22). Also, due to invariance of the BS equa-
tion under the interchange of particles 1 and 2, the
second term on the right-hand side of Eq. (23) is equal to
the first one. Moreover, the isoscalar current is manifest-
ly gauge invariant for the BS equation in ladder approxi-
mation, as well as in a covariant separable representation.
The former case is proved in ZT, the latter in the present
Appendix A.

Now we proceed to transform Eq. (23), being valid in

any Lorentz frame, to the CM frame, in which the
bound-state BS equation has been solved. Thereto we
make use of the general transformation rules

y(M)(p. P) A(1)(g)A(2}(g)y(M}(g—lp.~—)P)

'(p'P)=(t)' '(X 'p X 'P)A'" (X)A' ' (L),
(27)

S'(p'P)=A"(X)S '(X 'p'X 'P)A" (X)

V(p,p')=A"'(X)A' '(X. )V(X 'p X 'p')A"' (X)

XA"} '(Z)

Here, A' (X.) is the Dirac operator for particle i, corre-
sponding to the Lorentz transformation X. With these

I

transformation laws, the BS equation is clearly covariant.
In the sequel, only boosts along the z axis are needed,
given by (dropping the particle index)

A(X)= Ed +md

2md

1/2

, + 03
Ed+md

(28)

where the subscripts refer to the respective frames. The
explicit form of the boost X is given in ZT and Ref. 8.
Hence, employing the transformation laws (27), applied
to X in the case of primed momenta, and the invari-
ance of the four-volume element, i.e., d ps =d (Xp, )
=d p, , we arrive at an expression in terms of CM ver-
tex functions and propagators, reading

with I PI the boost momentum and Ez =(P +mz )'~ .
Since the expressions (20) for the matrix elements of

the deuteron current were obtained in the Breit frame,
with the photon along the z axis, we now use the same
starting point to evaluate Eq. (23). Then, we have the re-
lations (cf. Ref. 8)

P, =X 'Ps; p, =X 'ps; P,' =SPY),
(29)

p,
' =&ps =X(ps+ )

qs ) =X[Xp, + —,'(0, 0,0, lql )],

J'd'ky( '(k', P,.)S"'(k;P,.) I('( q)S( k; P,.)y(M}(k;P,.),
8m md

with k:—p, , k'=p,', and

I "(q)—:A"'(X)A '(X)I'"(q)A "(X)A' '(X)=A"'(X)I'"(q)A"'(X)[A' 'X)]P P P

(30)

Next the partial-wave decomposition has to be carried out. Since in ZT this has been done in great detail, here only
the final result will be presented. On a basis of two-particle helicity states, which are orthogonal and form a complete
set, the two-nucleon system is, in principle, represented by a set of 16 coupled channels, accounting for the positive- and
negative-energy states of both particles, and for their spin degrees of freedom. For a coupled-triplet state with definite
parity, this number reduces to eight, which channels are most conveniently described on a basis labeled by total J, L, S,
and p, the so-called energy spin. Energy spin up or down for either particle means that it is in a positive- or negative-
energy state, respectively. Thus, we obtain eight channels, spectroscopically denoted by +'Lf, reading

(1) 'S)+, (2) 'D)+, (3) 'S), (4) 'D)

(5) 'P', (6) P' (7) 'P' (8) 'P',
(31)

where e and o stand for even and odd, respectively, combinations of antiparallel single-particle p spins. The corre-
sponding eight-component vertex function is denoted by P„(po,p). Its conjugate differs by a phase factor only, which
we choose to be —1. Thus, we arrive at the following expression for the deuteron current:

—~e
& I" dk. J,"Ik'ldlkl I d osi1p„,(k;, Ik'I)S„', „',(k.', Ik'l)l „",'„,„,(k', k;q)

d nln2
n3n4

where

I „' „' „(k',k;q ) = —,
) &(2L'+1)(2L+1)

it I 1

x X [DM'q (0) )C()qq C~. ' i„,q
Vq'(k')Vq', (k')0I,"(q)Vq'(k)Vg'(k)C()qqC„' '

~ gD)Ir')" (0) )] . (33)
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Here, V& stands for the helicity spinor of particle i, and
l

f „' '(q) —=A"'(X )I „"'(q)fM.MA" '(X)[A' '(X)]

with

5M'M for I 0 3

—,'[(5l I+,+5~ M, ) i—y') (5M ~+, —5M ~, )] for @=1,2 . (34)

The matrix elements of I are evaluated with the algebra-
ic program REDUcE. First, the boosted EM operator f is
computed on the helicity basis, giving rise to, in princi-
ple, 256 separate terms, for each p. If we neglect
negative-energy states, i.e., choose all ps positive, this
number reduces to 16, of which onIy 4 are different, due
to symmetry properties (see Appendix B for the explicit
expressions). Next the change to the spectroscopic basis
is made, given by Eq. (33). Finally, p, M', and M are
chosen such that the invariant functions F„F2,G, , and
thus the form factors F~,F&,F~, can be read off from the
general expressions (20) and (18). In fact, it is suffi-

cient to compute the current matrix elements
(0IJdl0&, (Iliad ll), and ( I~Jd ~0). What then remains
to be done is a three-dimensional numerical integration
over po, ~p~, and cos8, the former of which requires spe-
cial precautions because of the complicated singularity
structure of the integrand. This will be discussed in Sec.
IV.

IV. RESULTS AND DiSCUSSION

The propagators and vertex functions in Eq. (32) have
singularities in the complex ko plane, infinitesimally close
to the real axis, which complicate a numerical evaluation.
In the case of separable interactions, all of these are sim-

ple poles, so that, in principle, the ko integration can be
carried out analytically, applying Cauchy's theorem. An
alternative, employed here, is to perform a Wick rotation
in this variable, thereby accounting for only those poles
that are encountered in the rotation process. The only
reason for the latter choice is to have a more straightfor-
ward comparison with the calculation done in ZT, where
the first option was not feasible due to the branch-cut
singularities of the vertex function for an OBE model.
Thus, we have to study the behavior of the various poles
of the integrand. The ones corresponding to the initial
state always remain in the same quadrant, viz, the second
or the fourth, whence they do not affect the Wick rota-
tion. Explicitly, the poles of the two-particle propagator
are located at ko=+ —,'md —(k +mjv)' +is and

ko=+ —,'md+(k +m )' ~is, respective—ly, and the ones

of the vertex function at —(k +P,b)'~ +is and
(k +P,b

)'~ i e, respe—ctively, ~here a, b =1,1 or
a, b =1,2, for the S, channel, and a, b =2, 1 or a, b =2,2
for the D, . Owing to the boost transformations, the
singularities in the final state are more intricate. The
single-particle propagator has poles at

ko= —
—,'(1+4')md+[(k +mz+2amd ~k~ cos8

+a'm„') '" i e], —

with a =2&ri( 1+g). While the left-hand pole causes no
trouble, the right-hand one can, for certain values of ~k~

and cos8, show up in the third quadrant as soon as

q )md(2m& —md))0. 107 fm, and consequently be
hit by the integration path in the Wick-rotation process.
However, the residue of this first-order pole can very sim-

ply be calculated and added. Furthermore, the outgoing
vertex function has poles at

ko = rimd—+[(k +P,b+amd ~k~ cos8

+—'a'm')' —ie]

whereof again the right-hand one may reach the third
quadrant, viz. , for q ~30 fm and ~k~, cos8 appropri-
ate. Also this contribution can be computed straightfor-
wardly, although now the pole is of second order (unless
a = 1,5 =2). Albeit analytically feasible, in view of the
complicated expression of the integrand the residue of
the double pole is computed by numerical differentiation.
With all the singularities accounted for, the Wick rota-
tion can be carried out, which now amounts to replacing
ko by ik4 with k4 real. In order to achieve a satisfactory
numerical stability, additional measures must be taken, as
the above-described poles may come arbitrarily close to
the real k4 axis when changing quadrants. Thereto,
several subtractions are performed, so as to make the in-
tegrand vanish whenever such happens. As a result, a
precision of better than 1% is accomplished for the total
three-dimensional numerical integration over the whole
range of momentum transfers q up to 50 fm, with a
reasonable number of mesh points.

Now we are in a position to do the final computations.
The nucleon form factors to be used as input are from
Ref. 9, but this specific choice is of little significance,
since our investigation is primarily of a comparative na-
ture. The influence of using a different parametrization is
discussed below. In order to be able to make definite
statements about the relative importance of the different
relativistic effects, several approximative calculations will
be carried out, too. First, we reemphasize that negative-
energy states are going to be neglected, which implies the
restriction of the summation indices in Eq. (32) to the
values 1,2, i.e., to the channels S,+, D,+. In ZT it was
shown that this restraint is of little consequence, at least
up to momentum transfers of 50 fm, provided that the
boost transformations on the EM vertex I (q ) are taken
into account. Thus, we consider the following cases: (i) a
purely nonrelativistic approach, denoted by NR; (ii) a
minimally relativistic calculation, employing a BSLT
propagator, but further completely nonrelativistic:
BSLT; (iii) the so-called static approximation, which
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amounts to neglecting the boost on the argument of the
outgoing deuteron vertex function P(k') and on the one-
particle propagator S'"(k'), i.e., to evaluating them at
(ko Ilt'l)=(ko, lit+ —,'ql), but for the reason mentioned
above, not on I (q ): SA; (iv) as SA, but including the
boost on S"'(k'), while computing P(k') and P(k) in the
resulting pole term for the SA arguments (O, lk+ —,'ql)
and (0, lkl), respectively: BG; (v) as BG, but Taylor ex-
panding P(k') to first order about the SA value, leaving,
however, the pole term unaltered. This is the approxima-
tion employed in ZT: ZT; (vi) as ZT, but also expanding
P(k') and P(k) in the pole term to first order about the
respective SA values: BT; (vii) the exact positive-energy
calculation, including pole contributions from the outgo-
ing vertex function: BS.

Since the Graz-II interaction seems to favor a D-state
probability of about 5%, we first focus our attention on
this case. In Fig. 1 the deviations of the predictions for
the electric form factor A(q2) corresponding to the ap-
proximative calculations SA, BG, ZT, and BT are depict-
ed, relative to the exact BS result. The static approxima-
tion clearly ceases to be reasonable from q =25 fm up-
wards. Remarkable is the fact that the BG approxima-
tion is considerably better than the ZT one, which
demonstrates the necessity to treat the pole of the single-
particle propagator on an equal footing with the
remainder of the ko integration, viz. , to apply either a
zeroth- or a first-order Taylor approximation in both of
these terms. This conclusion is supported by the BT
curve, which deviates less than 0.6% from the BS one, up
to 50 fm . Moreover, the BT result corroborates the
conjecture in ZT that the corrections due to the singulari-
ties of the outgoing vertex function are small. For even
higher momentum transfers, however, the Taylor expan-

0.9
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PD = 5
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FIG. 2. As in Fig. 1, but now for the cases BS (

( ———), and their difference BV ( ), relative to SA.
), BG

sion breaks down, which has been verified by testing
second- and third-order approximations, too.

In Fig. 2 the same results are depicted in a slightly
different manner, namely, displaying the relative correc-
tions to the static approximation from the boost effects,
through the curves BS and BG, and their difference BV.
Thus, we see that the boost on the one-particle propaga-
tor is far more important than on the vertex function
(BV), namely, —49% vs + 3% at q =50 fm, the latter
being of the same order of magnitude as the corrections
due to the negative-energy states according to ZT. In or-
der to compare different approaches with respect to rela-
tivity, we depict in Fig. 3 the same quantity for the cases
BSLT, SA, and BS, relative to the NR one. While the to-
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FIG. 1. Relative deviations of the electric form factor A (q')
for the cases SA ( . ), BG (---), ZT ( ——), and BT ( ),
with respect to the exact BS result.

FIG. 3. As in Fig, 1 but now for the cases BSLT ( . ), SA
(- - -) and BS ( ), relative to NR.
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FIG. 4. Charge form factor ~Fc(q')~ for thecases NR( ),
BSLT(---),SA (

——), and BS ( ).

tal relativistic effect turns out to be not very substantial
though significant, minimal relativity appears as an un-
reliable approximative approach. Furthermore, from
Fig. 3 we see that the static approximation is similar to
the NR calculation at low q, but deviates considerably at
higher momentum transfer. This should be contrasted
with the observations in ZT for the case of the OBE mod-
el.

Still for the same PD, the charge form factor F& corre-
sponding to the cases NR, BSLT, SA, and BS is shown in
Fig. 4, for 20 fm q + 50 fm . Here, relativity seems
to have little influence on the position of the diffraction
minimum, which, however, lies at much higher momen-
tum transfers than, e.g. , in ZT. Noteworthy is the
confluence of the SA and BS curves. An analogous com-

FIG. 6. Magnetic form factor ~F"(q~)~ for the cases NR
( ), BSLT (---), SA ( ——), and BS ( ), in units of
emd /2m&.

parison for the quadrupole form factor F& yields only
marginal differences among these four cases, hardly visi-
ble on a logarithmic scale.

As for the magnetic form factor B(q ), relative devia-
tions from the BS calculation are depicted in Fig. 5, con-
cerning the cases NR, BSLT, BG, ZT, and BT. Qualita-
tively, we see the same type of differences as for A(q ),
though considerably larger. For instance, the BS result
at 50 fm is almost a factor of 3 larger than the ZT ap-
proximation. If we extrapolate by applying a similar
correction to the OBE calculation of Ref. ZT, then their
predicted magnetic form factor could turn out to lie
much closer to the experimental data of Refs. 1 and 2
than expected. Besides, the SA curve has not been drawn
in Fig. 5, since it would distort the graph completely.
This becomes evident from Fig. 6, where FM is shown for
the approaches NR, BSLT, SA, and BS. The static ap-

0.8—

06—

04—

PD =5m
C

'I 0

0.2—

00

02—

—0.6—

—08 (

10 20 30
I I

40' (frn ')
50

'I D

ID
0 10 20 30 40 50

q' (fm ')

FIG. 5. Relative deviations of the magnetic form factor
B(q ) for the cases NR ( ), BSLT (---), BG ( ——), ZT
( ——), and BT ( ), with respect to the exact BS result.

FIG. 7. Charge form factor ~Fc(q~)~ for the BS case with D
state probabilities of PD=4% ( . ), 5% ( ), and 6% (---).
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FIG. 10. As in Fig. 9, but now concerning the magnetic form

factor B(q'); experimental data are from Refs. l (Q), 2 (Q), and

13 (+ ).

FIG. 8. As in Fig. 7, but now concerning the tensor polariza-
tion P(q').

proximation, being the only one that produces a
diffraction minimum, is completely off and thus obviously
embodies the source of discrepancies in the observable
A(q ) between the cases BS and SA, as we have seen
above that the respective Fc and F& curves are very simi-

lar. An analogous phenomenon, albeit much less pro-
nounced, can be observed in Ref. ZT, Figs. 10, 8, and 9.
Next we investigate the effect of changing the D-state
probability PD.

In Fig. 7 Fc is depicted for the BS calculations with

10

PD =4%, 5%, and 6%. Increasing PD clearly moves the
diffraction minimum to lower momentum transfers, al-
though with the used separable interactions it is not pos-
sible to attain a value as low as with the OBE potentials
of ZT. A similar pattern can be observed in Fig. 8, con-
cerning the tensor polarization defined by

P(q )= FcFf2+ ,
' r)Fg—

3 F2+ 8 2+2
C 99 Q

(35)

Here, the maximum of the curve moves inwards accord-
ing as PD increases, but not enough to produce a zero
within the range of momentum transfers considered,
which is clearly related to the behavior of Fc.

Finally, in Figs. 9 and 10 we show to what extent a
different choice for the nucleonic form factors may affect
the deuteron results, referring to Ref. 3 for a more de-
tailed comparative study. The curves drawn, for
PD =5%, are the BS predictions for A(q ) and 8(q ), re-
spectively, with the parametrizations of Refs. 9 and 10,
and for comparison also the NR ones corresponding to
the former choice. Hence, it becomes clear that the ex-
perimental nucleonic uncertainties are still greater than
the total corrections due to relativity. Apart from that,
we conclude that the used interactions are not capable of
reproducing the recently measured diffraction minimum
in the magnetic form factor.

10

1 0 —6

0 10 20 30 40 50
q' (fm ')

FIG. 9. Electric form factor A(q ) for the cases NR { )

and BS ( } with nucleon form factors from Ref. 9, and for
the BS case with those from Ref. 10 ( ——); experimental data
are from Refs. 11 (H), 12 (8, ), and 13 (+ ).

V. CONCLUDING REMARKS

The aim of this paper has been to study in a solvable
model the various relativistic corrections to the deuteron
EM form factors. The covariance of the chosen separable
interactions and the gauge invariance of the associated
two-body EM current, as well as the very deuteron re-
sults, guarantee that the chosen approach can be con-
sidered realistic, in spite of being purely phenomenologi-
cal. Since the starting point was a nonrelativistic poten-
tial, and in order to shorten the numerical work, channels
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containing negative-energy states were discarded in the
final calculations, in accord with observations in Ref. ZT
concerning their insignificance. Thus, we obtained appre-
ciable relativistic effects for the various form factors, of
which the boost on the one-particle propagator due to
recoil turned out to be by far the most important, in qual-
itative agreement with ZT. Furthermore, the static ap-
proximation was shown to be reasonable for the charge
and quadrupole form factors, but not for the magnetic
one, which is hardly surprising from a naive point of
view. Still in connection with ZT, we demonstrated that
an excellent approximation to the exact results, for the
momentum transfers considered, can be obtained by ex-
panding the vertex function to first order about its SA
value, both in the ko integration and in the pole term

stemming from the single-particle propagator. Limiting
this procedure to the former term, as done in ZT, was
found to be a worse approximation than neglecting boost
effects on the vertex function completely.
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APPENDIX A: GAUGE INVARIANCE OF THE CURRENT

In this appendix we show that gauge invariance is satisfied in our separable model. We proceed in a similar fashion
as in ZT, writing

q"I'"=F' 'g=F' '[S'" (p'P') —S'" (p'P)]

so that

q~(P', M'~ J„~P,M }~ f d p P '(p', P')[S(p;P) S(p', P')—)P' '(p;P) .

(A 1)

(A2)

Now we substitute the homogeneous BS equation once in both terms on the right-hand side and apply only in the
second term a change of integration variable, viz. , fd p= fd (p+ —,'q)= fd p', whereafter the dummy prime is

dropped. Thus, the expression becomes

fd p f d k[77P '(k;P')S(k;P')V(k, p+ ,'q)S(p;P)P—' '(p;P) P' '(p;P'—)S(p;P')V(p ,'q, k)S(k—;—P)P' '(k;P)] .

(A3)

Next we make use of the separability of the interaction, i.e.,
N

v(p, p')= g &;,g;(p)g, (p'),
/, J =1

(A4)

where the generalized form factor g is a vector in two-particle spin and energy-spin space. Then, V satisfies the trans-
formation law

V(p, p')=A'"(X)A' '(X)V(X 'p, X' 'p')A"' (X')A' ' (X') . (A5)

Choosing now the Breit frame, i.e., 2'=X, substituting Eqs. (A4} and (A5) into Eq. (A3), and transforming the in-
tegrand for both variables to the c.m. frame gives

N

g A„fd'p f d4k[P' '(k;P)S(k;P)g, (k)g, (p+ ,'X 'qs)S(p;-P)P'I'(p;P)

'(p;P )S(p;P)g (p ,'Xqs )g, (k}S(k;—P—)P' '(k;P )], (A6)

where all cm labels have been dropped, the label B refers to the Breit frame, and where we have used the symmetry of
I,;~. in the second term. Moreover, since qs =(O, q), we have X 'q~ = —Xqs. Then, choosing the photon momentum
along the z axis, we see from Eq. (34} that it is sufficient to consider the case M'=M. Finally, we evaluate Eq. (A6} on
the two-particle helicity basis employed in the text. Thus, writing

g(p;a ) = V~'(p) Y~'(p)g (p)

and

g(p a)=g(p)VA. (P)VA.'(p»

with g(p;a ) = —g (p;a ), and where a is shorthand for A, „A,2,p„p2, we get, omitting the references to P and M,

(A7)
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X k; Xf g p f g k [b(ka ) g( k; a)g ( k a) Z( p a a b) g(a b )g (p b )b(p b )

i j =1 a, b

(A9)

gt—p(p;b )S(p;b )g (cr;b )Z(o, p; b, a )g;(k;a )S(k;a )P(k;a )j,
t I

where o'—p —
—,Xqs and Z( p, o;a, b ) =—Vz'(p) Vq'(p) Vz', (o ) V ', (gr ). Note that the two-body Green's function is diago-

nal in this basis. Now, Z(o, p;b, a)=Z (p, gr;b, a)=Z*(p, gr;a, b), whence, as

f dyZ(p, o",a, b)= f d( q&)—Z(p, o , a, b")= f dgpZ*(p, o , a, b"),
0 0 0

expression (AS) vanishes identically. The fact that we have chosen a special frame and a specific direction for the pho-
ton momentum is irrelevant, since the evaluated quantity is a Lorentz scalar.

APPENDIX B: MATRIX ELEMENTS OF THE ELECTROMAGNETIC OPERATOR

In this appendix we give the explicit expressions for the matrix elements of the electromagnetic operator correspond-
ing to positive-energy states. Defining I'~"q =—iy'y I',"(q), and [cf. Eq. (33)]

I'"(q;A, ', A~, A, ,A2)= V+, (k')V+, (k')A"'(X)I „"'(q)A"'(X)[A' '(X)] Vg (k)Vg (k)
l 2

= V,', (k')A"'(Z)r„"'(q)A'"(Z) V,+(k) V,", (k')[A"'(X)]'V,+(k)
I

P ~) A2

—:I
q

'(q; p(.I, A, , ) 8" '(q;A, 2, p(.2),

we obtain with the aid of REDUcE the following results:

(81)

I 8+ 8'
IV"'( q+, +)= &I—+rj[(EI, +mjv )(Ek +mls)+ Ikl Ik'l]«s +&g[lkl(Eg +m~)+ lk'l(Ek+m~)]cos

2 2

(82)

W (q;+, —)=——&1+ri[(Ek+mN)(Ek +mls) —Ikllk'I]sin +&g[IkI(Ek +mls) —lk'l(Ek+m~)]sin(2) 0—0' —,. 0+0',

0l" [(E„+m~)(E, +my) Ik. llk'l]F—~
' «s

2

I

+&ri(l+r)) [Ikl(EI, .+m~) —Ik'l(E +1m~)]Fz 'cos

I,"'(q;+, + ) =— [(Ek+m~)(Ek. +m&)+ Ikl lk'I]FI~' —q0»
@ k N O' N Pl~

I 0"(q; +, —) =— ~ [ (EI, +mls )(E&—+m~ )+ lk I I

k'
I ]FI

'+ g

(83)
I

[(Eq+mll )(Eq +m~)+ Ikl Ik' ]F2 ' sin
2

0l
+v'rI( 1+ri) [ I k I (Ei, , +m„)+ I

k'
I (Ek +mls )]F2

' sin

0l
I I"(q;+,+)=——&ri [(Ek+m&)(Ek +m&)+ lkllk'l]FI '+ [(Ek+m& )(Ek +m~) lkl lk'I]F2"' sin-]»

@ k X k'

I—&g(1+rI)[lkl(Ek +mz)+ Ik'I(Ek+m„)]FP'sin
2

(84)
I

I I"(q;+,—)=——&rI [(Ek+m~)(Ek +m~) —lkl lkl']FI '+ [(Ek+m~)(Eg +m~)+ Ikllk'l]F2 ' .cos
Pl~

2 2

I

+&1(1+g)[lkl(Ek +m,, ) —Ik'l(E, +m„)]F,"'cos

0+0'
I s '(q'+ +)= +ri '[(Ek+mN)(Ek +mN)+Ikllk'I]FI '+ [(Ek+m~)(Ek +mls) —lkllk'l]F2' ' .sink N k' V
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I

++ri(1+ri)[/k/(Ek +mz)+ /k'/(Ek+mz)]FI 'sin
2

(B5)
I

I'~"(q;+, —) =—&g [(Ek+m~)(Ek +mz) Ikl lk'l]FI"'+ [(E„+m~)(Ek +mN )+ Ik Ilk'l]FP' cos
m~ 2

0—0'—&g(1+g)[lkl(Ek. +mN) —Ik'I(Ek+mN)]F', 'cos
2

Here, 6 =2+Ek Ek (Ek +m~ )(E„.+mN ). The remaining terms can easily be obtained through the following symmetry

properties:

W' '(q; —,+)=—W' '(q;+, —), W' '(q; —,—)=W' '(q;+, +),
I „"'(q;—, + )= —I „"'(q;+, —), I „"'(q;—, —)= I „" (q; +, + ) for ju. =0, 1,
r',"(q;—,+)=I',"(q;+,—), r',"(q; —,—)= —r',"(q;+,+) .

(B6)
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