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A relativistic Lippmann-Schwinger equation for production reactions is developed. To obtain
such equations a relativistic generalization of the Schrédinger and Lippmann-Schwinger equations
is given, which, when applied to a Fock space appropriate for particles of mass m and zero spin, de-
scribes production reactions. Separable potentials are used for the production channels, which then

incorporate the correct inelasticity in the elastic channel.

Exact solutions to the relativistic

Lippmann-Schwinger equations are given for potentials that are separable on all subspaces of the

full Fock space.

I. INTRODUCTION

In the preceding paper (hereafter called I), a method
was presented for taking model 2— n partial-wave ampli-
tudes and making them unitary. The idea was to view
model 2—n partial-wave amplitudes as elements of a
partial-wave Hilbert space and compute the lengths of
the partial-wave amplitudes. These lengths were then
modified in such a way as to satisfy exact inelastic unitar-
ity.

While such a procedure is quite general, there is no
dynamical input. It is desirable to have a formalism in
which production reactions are incorporated into a
dynamical set of equations, with potentials generating the
production reactions. Strictly speaking, it is not possible
to do this in the context of many-body nonrelativistic
quantum mechanics, because the mass is superselected in
any quantum-mechanical system whose natural (kinemat-
ic) invariance group is the Galilei group. While it is pos-
sible to have bound clusters break up into subclusters, the
number of fundamental particles making up the clusters
cannot change in the reaction.

One usually thinks of quantum field theory as provid-
ing the correct context in which to describe particle pro-
duction. However, it is generally difficult to maintain ex-
act unitarity when dealing with perturbative solutions of
a quantum field theory. In fact, one of the goals of this
and succeeding papers is to show how to take any set of
perturbative scattering amplitudes and modify them so as
to make them exactly unitary. This is done in the context
of a relativistic quantum mechanics, in which the pertur-
bative amplitude for elastic scattering is used to form a
separable relativistic potential.

Relativistic quantum mechanics have a long history,
starting with the fundamental papers by Dirac' and
Bakmjian and Thomas.? More recently relativistic quan-
tum theories have been applied to a variety of problems
in intermediate energy nuclear physics.® While it is not
difficult to formulate a relativistic quantum mechanics, in
the absence of any locality requirements, it is necessary to
impose cluster requirements* on the potentials to have a
sensible theory.

The main goal of this paper is to show how to formu-
late a relativistic quantum mechanics for production re-
actions in such a way as to circumvent the cluster re-
quirement; this is done by setting those potentials con-
necting multiparticle states with multiparticle states hav-
ing more than two particles to zero. If further the 2 to n
potentials are chosen to be separable, the dynamical
equations for the (possibly) infinite degrees of freedom are
reduced to two (or if desired a finite number of) degrees of
freedom. There is no loss in generality in choosing separ-
able 2 to n potentials, as it will be shown that such poten-
tials correspond to the most general multiparticle
partial-wave amplitudes. The two-particle dynamical
equations have extra terms in them, corresponding to the
production channels. If the 2—2 potentials are also se-
parable, the relativistic equations can be solved exactly;
Sec. V discusses these solutions as well as showing how to
make separable potentials from perturbative 2-—2
scattering amplitudes.

The way in which a relativistic quantum mechanics is
constructed is to translate certain properties of a nonrela-
tivistic many-body Schrodinger equation into a group
theoretical language, with the underlying group being the
Galilei group. In particular, the free Green’s function for
the many-body system is shown to be related to a Casimir
operator of the Galilei group. After briefly reviewing
nonrelativistic quantum mechanics from this point of
view in Sec. II, the translation to a relativistic quantum
mechanics, with the underlying Hilbert space now a Fock
space and the underlying group in the Poincaré group, is
given in Sec. III. Thus, tensor products of irreducible
representations of the Poincaré group constitute the
starting point for the relativistic quantum mechanics, and
relativistic wave equations, such as the Klein Gordon or
Dirac equations, are not used. The reduction of equa-
tions with infinite degrees of freedom to equations with a
finite number is given in Sec. IV.

For simplicity, in Secs. III and IV only a model world
consisting of spinless particles of mass m called pions is
considered. However, once the forms of the solutions of
the exactly solvable models are given, the generalization
to spinless particles of different mass will be evident.
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II. REVIEW OF NONRELATIVISTIC
QUANTUM MECHANICS

In this section we consider a simple nonrelativistic sys-
tem consisting of n spinless particles interacting via a po-
tential denoted by V. The Hilbert space is L*R3") and
the action of the Galilei group on this space is inherited
from the one-particle action:’

(Uadu)pys - - Pn)=expi ZP;-a)d,(P1y - - -, Ps)
(Uv¢n )(pl’ <Py ):¢n(p1+mlv’ e ’pn +m,,v) ’ (1)
(UR¢n )(plv <Py ):¢n(R _lpl’ e ’R 41pn) ’
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Here a is a space translation, ¢ a time translation, R a ro-
tation and v a Galilei boost; taken together these ten
transformations give the action of the Galilei group on
n-particle wave functions ¢,. m;, i=1,...,n, is the
mass of the ith particle.

The infinitesimal transformations generated by Eq. (1)
give the observables P, the momentum operator, X, the
position operator, L, the angular momentum operator,
and H, the energy operator for the n noninteracting par-
ticles. One of the Casimir operators that can be formed
from these generators is C =H —P?/2M with M =3 m,;
C commutes with the Galilei group action, Eq. (1).

The potential ¥ which produces the interactions
among the particles must commute with U,, U,, and Uy,
but not C (or U,) to guarantee Galilei invariance (if V
commuted with C there would be no scattering). A sim-
ple way to construct potentials that commute with U,,
U,, and Uy is to make a change of variables, from
Py».-.,P, to Jacobi variables P,q;,...,q,_;, with
P=3p,;. With these new variables the transformation
properties become

(U,¢,)(P,q;)=exp(iP-a)$,(P,q;) ,
(U,¢,)(P,q;)=¢,(P+Mv,q,),
(Urd,)(P,q;)=6,(R 'P,R lq;),

(U,¢,)(P,q;)=exp |i t¢,(P,q;), (2)
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where u; are reduced masses. From these transforma-
tions it is clear that if the kernel of ¥ does not depend on
P, V will commute with U, and U,. Furthermore, with
these new variables the Casimir operator action is

2

p
H— o 6,(Pq,)

(C¢n )(P’ql = ‘
2

5 3
—2 2.“'1 ¢n(P7qi) ’ (3)

which is exactly the relative kinetic energy. Thus, the
free Green’s function can be written as

Gy(z)= z complex . 4)

1
z—C’

There are a number of different ways in which ¥ can be
made to commute with Ug. If the kernel of V depends
only on scalar products of the q;, then V will commute
with Uy. A more systematic way to construct rotational-
ly invariant potentials is to make use of the fact that Uy
acts on ¢, [Eq. (2)] in such a way as to rigidly rotate all
the q;. New variables can be chosen which rotate the q;
as a rigid body. The rotation variables which rotate the
rigid body, when suitably transformed, become the angu-
lar momentum and spin projection variables. Such a
change of variables corresponds to decomposing the Hil-
bert space L2(R3"), viewed as carrying a reducible repre-
sentation of the Galilei group, into a direct sum and in-
tegral of irreducible representations. (For details of this
decomposition, including the case when the particles
have spin, see Ref. 5.)

If a potential V is given which commutes with U,, U,,
and Uy, the Schrodinger equation becomes

(C+VW=Ey, YyEH, (5)
while the Lippmann-Schwinger equation is
Yv=0¢+G, Vi, G, (E)$p=0. (6)

A simple instance when the Lippmann-Schwinger
equation can be solved exactly is for separable potentials
which are written as

V=3u® u,-*,u,-Ei-[ .
i

In order that ¥V commute with U,, U,, and Uy, it is
necessary that the u; be invariant with respect to these
transformations. With a separable potential the
Lippmann-Schwinger equation becomes

v =¢+G,(E +) l};u,guf v,

which has a solution ¢"=¢+3SG,u 4;, where
A;=(u;,¥") satisfies a matrix equation which can be in-
verted to give A,»=2jM,-;1(E)Bj, B;=(u;, ). The
transition matrix is then

Tfin =(¢f’ Vll};)
= (bp,u;)Nu;, i)
J

J

=3 (s u )My (E)uy,d,,)
ik

and it is exactly this type of solution which will be of in-
terest in the relativistic case, when the Lippmann-
Schwinger equation is a relativistic Lippmann-Schwinger
equation, the Hilbert space is a many-particle Fock
space, the kinematical group is the Poincaré group, and V
is a separable potential that induces transitions in the
many-particle Fock space.



III. RELATIVISTIC QUANTUM MECHANICS
AND PRODUCTION PROCESSES

We consider in this section a model world consisting
only of spinless, uncharged particles of mass m called
pions. The wave functions for such particles transform as
irreducible representations of the Poincaré group labeled
by mass m and zero spin and are elements of the one-
particle Hilbert space L *(R3):

(U, pd)p)=e?*¢(A"'p), ¢€LXR’), (7

where a is a four translation, and A a Lorentz transfor-
mation. p-a is the Lorentz invariant inner product given
by p-a=Ea,—p-a, with a =(ay,a). Actually ¢ depends
only on the three-momentum p, since E = +(m2+p?)!/2.
For production reactions, the appropriate Hilbert
space is the symmetric Fock space (L %(R?)), defined by

SILARY))= I o[LARY)®...9 LAR)]Y™, (®)
n=0
where [ ]13'™ is an n-fold symmetrized tensor product of
L*R3). A nonnormalizable basis in the n-particle sub-
space is given by n creation operators a'( p) acting on the
vacuum state:

prs - py)=a'(p))...al(p,)0), 9)

where |0) corresponds to the one-dimensional n =0 sub-
space of $(L*R%)). The transformation properties of n-
particle wave functions and states are given by

(Ua,A¢n )(pl’ e ’Pn)
n
—exp iEPj‘a ¢n(A“1p1,...,A“1pn)
=1
! (10)
n
Ugalp1s - »pn ) =exp iAY p;a [Apis. .., Ap,) .
=1

As in the nonrelativistic case the infinitesimal generators
of the transformations (10) give observables such as the
momentum and angular momentum operators; in partic-
ular one of the Casimir operators is the mass operator,

M?=P}—P-P,

M?¢,=(p,+...+p,)’s, . (11)

Interactions in the many-particle Fock space will be
governed by a “potential” V that connects the different
n-particle subspaces. To construct potentials that com-
mute with U,, it is simplest to introduce a boost B(p), a
Lorentz transformation whose inverse carries all the n-
particle momentum vectors p; to the center of mass
frame, where the momenta are p*, satisfying 3pf=0. A
boost is defined by

Vis
pP=Bp) | o |, s=p+...+p,)
p*=B '(plp;, P=3p; - (12)

The action of the Poincaré group on the new variables p
and p;* is given by
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(Ug an PP )=e? ¢, (A" 'p,Ry'p}) (13)
where R, is a Wigner rotation,
Ry =B p)AB(A"'p) .

As in the nonrelativistic case, if the kernel of the poten-
tial V is independent of p, then V will commute with U,.
From the transformation properties of ¢, under a
Lorentz transformation A, it is clear that all the p; are
rotated as a rigid body by R,,. This again suggests mak-
ing a change of variables to a body fixed frame of refer-
ence. The rotation which transforms between the body
fixed frame and a space fixed frame, where the momen-
tum vectors are p;’, 3,;p; =0 can itself be transformed to
give the angular momentum j and angular momentum
projections along the z axis of the body fixed frame (7)
and space fixed frame (o). Such variables are the natural
variables to use when decomposing the n-particle sub-
space of the Fock space into irreducible representations.
Details of these transformations (including particles with
spin) are given in Ref. 6.

An n-particle wave function is now written as
¢,(posjy,), where the y, are a set of variables describing
the internal configurations of the n —particle system.
With these variables the Poincaré transformations are

(Uy, 480 )(POsjY, ) =e?*ZD 0 (RS, (A 'p,0'sjy,) -

(14)

To ensure relativistic invariance the kernels of potentials
acting on elements of § should depend only on the vari-
ables s, j, and y,. Assuming, as is generally done, that
the potentials are diagonal in the angular momentum j,
the kernel of a potential connecting an n to n' particle
subspace is written as

(Vn_m‘¢n )(pasjyn’)
= [ 7 aV’s' [duyV(sy,,s'va)d,(posiyy) . (15)

Using Egs. (14) and (15) it is easy to see that [U,, V]=0,
but in general V will not commute with U"o or U, be-

cause the s four-vector
p=Wp*+5)'"%p).

Let u, be an element of the n-particle subspace of §
that does not depend on p or o; then from Eq. (14) it is
seen that u, will be invariant under the action of U, ,
(that is U, \u,=u,). This suggests defining new
“partial-wave” Hilbert spaces #*, in which elements u,

not depending on p or ¢ have the norm

dependence of the

a2 = [ duly,)lu, (sjy,)1? (16)

which is the same norm as for partial-wave amplitudes
given in I; the measure du(y, ) is given in Eq. (A8) in the
Appendix of I. Since the variables p,o only describe the
n-particle system as a whole, they will be dropped and
the norm of an element in the reduced Fock space be-
comes
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In this reduced Fock space V, as given by Eq. (15), will
automatically commute with U, , (since the action U, 4
on u, is trivial) but not with M2 Then a relativistic
(time-independent) Schrdodinger equation can be written
as

(M+VW=Vs9, YES qucea (18)

and the corresponding relativistic Lippmann-Schwinger
equation is given by

Vv=0¢+Gy(s)VY¥, Gy'(s)$=0, (19)
where
G,
Gy= G, ,

and on each n-particle subspace,
G,(s)=1/(s —M?) .

Note there is no one-particle Green’s function, and the
sum in (15) begins at the two-particle subspace.

It is important to see how the potential V acting on &
differs from the nonrelativistic case. Depending on the
choice of ¥, there will be subspaces of L*R*"), the non-
relativistic Hilbert space, which correspond to bound
subsystems of the n-particle system; in particular there
may be n-particle bound states which are orthogonal to
the scattering sectors. For each V these bound subsys-
tems must be investigated separately.

Implicit in our formulation of relativistic quantum
mechanics is the idea that there is only one “bound
state,” namely the one-particle sector of the Fock space
corresponding to a physical particle of mass m and zero
spin and charge. Only those potentials which generate
this one stable particle are allowed in the Lippmann-
Schwinger equation. This constraint on the potential is
most easily satisfied by demanding that the only pole of
the 2—2 partial-wave amplitude be that corresponding
to a particle of mass m and zero spin. It will be obvious
how such a constraint can be satisfied in the simple solv-
able model discussed in Sec. V.

IV. RELATIVISTIC QUANTUM MECHANICS
AND PRODUCTION REACTIONS

To solve the Lippmann-Schwinger equation for pro-
duction reactions, potentials must be given satisfying Eq.
(15) which connect different particle number subspaces.
If these potentials connect arbitrarily large particle num-
ber subspaces, the Lippmann-Schwinger equations will
describe an infinite degree of freedom system. However,
if the potentials are zero beyond a certain particle num-
ber, the system will have finite degrees of freedom.

The main result of this section will be to show that it is

always possible to describe production reactions by separ-
able potentials, in such a way that the (potentially)
infinite degrees of freedom Lippmann-Schwinger equa-
tions reduce to equations with finite degrees of freedom,
with all the inelastic thresholds correctly built into the
equations.

For simplicity we consider two particles interacting via
the potential ¥?™2, which connects the two-particle to
two-particle subspace; then a potential ¥ which connects
the entire Fock space can be written as

pi—2 u2®u;r , u2®uz ,
u3®u£
= . 2
|4 u4®u§ 0 (20)

The u;, k=2,3,... are elements of the k particle re-
duced Fock space. The Lippmann-Schwinger equations
for such a potential are given by

V,=¢,+G,

V32 tuy 3 (g, )] )
k=3
(21)
Ui =Gru(uy, ), k=3,4,...;

the ¢,, k =3,4,. . . are assumed to be zero, since it is not
possible (at present) to produce three or more particle ini-
tial scattering states. Substituting ¥, into ¥, gives

v,=¢,+G, Vz‘*zwz-l—uzE(uk,Gkuk)(uz,d}z)]
k=3
=¢,+G, |V "2 +u,0ul 3 g ¥ (22)
k=3
where
o~ lluglP(s)
= = Vs——m——
gk_(uk’Gkuk) fnmd SSO_S+i6

If u,(sj)=0, Eq. (22) reduces to a Lippmann-
Schwinger equation for 1, driven by the potential ¥'>~2,
However, if u,(sj)70, then each term u,® u,:r will gen-
erate a new channel at Vs =km. The term
u2®u;2,‘f= 38x in Eq. (22) represents the inelasticity,
whereby flux from the initial two-particle system is flow-
ing into the various inelastic channels.

Given Eq. (22), the various amplitudes are

A2~2:(¢{’ lein)

=(¢f, VW + 3 (¢, u,) g, ¥
k=3

=(¢5, V22 + 3 (¢d,u,)g, (uy, Y3
o (23)
A= 8], Ve
k

=(¢L,u N uy, ) .

Since (u,,¥%") depends only on s and j and u,, is an arbi-
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trary element of the reduced n-particle subspace and has
the variables associated with partial-wave amplitudes dis-
cussed in I, any model partial-wave amplitude can be
used for u;, and the inelasticity will automatically be put
into the 2—2 amplitude via the term

©

> (¢{,u2)gk(u2,z/;§") .

k=3

Thus, from a phenomenological point of view, to incorpo-
rate inelastic channels there is no loss in generality in as-
suming that V""" =0 for n,n’'>2; this means that pro-
duction reactions can always be included in any relativis-
tic Lippmann-Schwinger equation. In the final section
we assume that ¥>~2 is also separable, and show that un-
der such circumstances, the Lippmann-Schwinger equa-
tion can be solved exactly.

V. EXACTLY SOLVABLE PRODUCTION MODELS

The V22 potential is needed as input to solve the rela-
tivistic Lippmann-Schwinger equation; there is a simple
way to make V22 separable, using perturbative elastic
scattering amplitudes. Let A(sj,r ry,rir;) be the
partial-wave amplitude of any perturbative elastic
scattering amplitude. For particles with spin, r; and r,
(r} and r}) are the invariant spin projections of the initial
(final) system, and vary between —j; (—j,) and j; (j,),
respectively.

Now choose the kernel of the V272 potential to be

ViZAs,ryrgs'riry) =3 Alsj,riry,riry)
riry
XA*(s'j,riry,riry)
=Suev, v,EH; (24)
then Eq. (22) becomes
V=61 Gy [ 20 (v;,8,)+ 3 uyuy, )
i k=3

:¢2+Zszi(Ui»¢2)+62u228k(u2’¢2) )

(uz"pz):(“2’¢2)+Zgzi(vn%)"‘gzzgk(uzxd’z) , @29

(vj,¢2)=(vj,¢2)+2gj,~(v,-,¢2)+gj22gk(u2,¢2) ,

with g;; =(v;,G,v;), &5, =(u,,G,v;), g;,=(v;,G,u,), and
g,=(u,,G,u,), as before. It is possible to solve for
(u3,9,) and (v;,¥,) and insert these solutions into the
equation for 1, [Eq. (25)], which will then give an exact
solution.

For the pion Fock space of Sec. III, ¥2~2 will be of the
formv,;® UI, with only one term in the sum, Eq. (24); then

1
(uz»lf’z):B[(l_gn Ny ¢y)—821(v1,65)],

(Uh'/’z):% { [l—gzzgk l(vpd’z)

—gngk(uz,(tz)] s (26)

where

D(s,j))=1—(g1,8,+8,821) 28 -

Substituting into Eq. (23) then gives an explicit solution
for the 2—2 and 2—n > 2 scattering amplitudes.

It should be noted that there are other ways of choos-
ing ¥V so as to be able to get an exact solution to the
Lippmann-Schwinger equations. For example, choose ¥V’
so that

0 u2®u§ 0
u3®u; 0 u3®u1 0
V'= t

0 Uusy @7

Though it is somewhat more complicated to solve for ¢,

k=2,3,..., the general form of the scattering ampli-
tude will again be of the form
A= u,) faals, )y, d) (28)

in fact, for all separable potentials associated with infinite
degree of freedom systems, the general form of the pro-
duction amplitudes is given by Eq. (28), where f,,(sj) de-
pends on the form of the separable potential and guaran-
tees that the amplitudes will be properly unitary.

VI. CONCLUSION

We have shown how to write a Lippmann-Schwinger
equation that is properly relativistic and includes particle
production. For the example discussed in Sec. IV, where
two particles interact via a two-body relativistic potential
¥2~2, adding separable potentials of the form u,®u ,I in-
corporates production channels for as many number of
particles as desired. Further there is no loss in generality
in assuming the production potentials to be of the form
u,®u ,f . For let the 2—n partial-wave amplitude be
given as A2~". From Eq. (23) the 2— n partial-wave am-
plitude is u, (u, ¥i'). But (u,,¢¥5") depends only on s and
J» so that if u,, is chosen to be A*~"(u,, ")}, then the
2—n partial-wave amplitude of Eq. (23) will be A2~"
and give all the correct thresholds in the 2—2 amplitude.
Using multiparticle data to get model 2— n partial-wave
amplitudes, as described in I, should then make it possi-
ble to extend 2—2 phase-shift analyses beyond produc-
tion thresholds.

Section V showed how to get exactly solvable solutions
from separable potentials. Of particular interest here is
the pion-nucleon system, which is dominated by the A
resonance in the j =32 channel. It is straightforward to
construct separable potentials V™V—7N pyTN—7TN  hy
writing

V2->2=frrNA(er)fﬂNA*(srr;v) ,
V2—>3=f1rNA(s1TNrN )gn'AA(srA )frrNA"(srr[lv)

and use the solution, Eq. (26). f™A and g ™2 are vertex
functions in partial-wave variables. Results of such a
procedure will be reported in a succeeding paper. More
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generally what has been shown is how to take any pertur-
bative amplitudes for the elastic and inelastic channels
and use them as input for the relativistic Lippmann-
Schwinger equation. The solutions to these equations are
unitary at all energies and have the correct threshold be-
havior.

It should be noted that the models described here can
not be used for initial states of more than two particles,
for the partial-wave amplitudes for n’'—n reactions with
n,n'>2 will not have the correct cluster properties,
whereby, when subsystems of particles are moved far
away from one another, the amplitudes reduce to prod-
ucts of subsystem amplitudes. However, this is no prob-
lem for 2—n reactions, which are the only reactions for
which there is experimental data; moreover, since the in-
teractions are purely phenomenological, the separable po-
tentials are not meant to be approximations to more fun-
damental strong interactions.

As is well known there is an intimate relationship be-
tween poles of 2—2 scattering amplitudes and bound
states. For the model discussed in Sec. V, the only stable
particle is the pion itself, with a mass given by m. The
zeros of the denominator of Eq. (26) determine the bound
states and so a (weak) constraint on the partial-wave ele-
ments u, is that they give a zero at the mass m of the pi
meson. If there are other stable particles such as the nu-
cleon, then there must be zeroes at the masses of these
particles also. Such a point of view is to be contrasted
with the usual situation in quantum mechanics where the
bound-state problem must be solved first before the
scattering problem can be addressed.

One of the drawbacks to using the simple multiparticle
partial-wave amplitudes given in Eq. (23) is that the ele-
ments u, which form the multiparticle partial-wave am-
plitudes must be chosen so that the matrix elements of

the Green’s functions are well defined and can be calcu-
lated analytically. Such a requirement is not needed for
the partial-wave amplitudes discussed in I. Since only
single-particle distribution and multiplicity data are, for
the most part, available, this suggests choosing u, ele-
ments that are explicit functions of V's, j, and Vv s,, the
invariant mass and angular momentum of the overall sys-
tem, and the invariant mass of the undetected cluster X,
only. The various multiparticle systems are then dis-
tinguished by the range of Vs, which can vary from the
rest mass of the X cluster to V's —m,, where m_ is the
mass of the detected particle. With this simplification it
is not difficult to construct models for which the Green’s
function matrix elements can be computed analytically.

As discussed in I this simplification of the u, elements,
in which they depend on three variables only, means
thinking of the multiparticle reactions as two-body-like
reactions in which a +b —c¢ +X, where c is the detected
particle and X is the cluster of undetected particles. To
use such a point of view to fit data, it is also necessary to
include relativistic spin and internal symmetries such as
isospin. From the way in which the partial-wave spaces
were defined, it is clear that these extra degrees of free-
dom can readily be included. Then the cluster X will be
described by its mass Vs, , its “spin”” and spin projection
J, and m,, where j, can range between O and , and its
isospin I,. Choosing the partial-wave elements to depend
on such variables should make it relatively straightfor-
ward to compute Green’s function matrix elements and
use the phenomenological elements to fit data.
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