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Analyzing multiparticle reactions. I. Unitarizing perturbative amplitudes
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In order to analyze multiparticle reactions in which a small number of particles are created, it is

necessary to ensure that model multiparticle amplitudes are properly unitarized. Multiparticle
partial-wave amplitudes can be thought of as elements in a multiparticle Hilbert space; it is shown

how to modify the lengths of model partial-wave amplitudes so that they will satisfy inelastic unitar-

ity conditions.

I. INTRODUCTION

It has long been desirable to have a generalization of a
phase-shift analysis for multiparticle reactions. A phase-
shift analysis is basically a method for approximating the
partial-wave amplitude of a 2~2 reaction from experi-
mental data. The goal of a phase-shift analysis is to
present experimental data in terms of the phase shifts and
inelasticity parameter. These quantities are functions of
relativistic invariants only, namely the invariant energy
and angular momentum.

It is well known that there are a number of ambiguities
involved in extracting the phase-shift and inelasticity pa-
rameter from 2~2 reaction data. ' The situation be-
comes much more complicated when dealing with pro-
duction reactions; in contrast to 2~2 reactions, whose
amplitudes require only two variables, scattering ampli-
tudes describing 2~n production reactions, where there
are n &2 particles in the final state, require 3n —4 vari-
ables for a complete description of the reaction. Howev-
er, experirnentalists cannot hope to carry out a complete
analysis of a 2~ n reaction, as this would require compli-
cated correlation experiments over large regions of phase
space.

Nevertheless, there are considerable data available on
multiparticle reactions, generally in the form of multipli-
city data or single-particle distribution data. Such data
are the simplest generalization of 2~2 reaction data; it is
the goal of this and the following paper to present
methods for analyzing such data. The motivation for this
analysis is to analyze the pi-nucleon and 1-nucleon sys-
tems, but the formalism to be presented in these two pa-
pers will not be specifically tied to these two systems, but
will rather present a general formalism, valid for any pro-
duction reactions.

Though there are considerable production data avail-
able, there seem to be no models that are able to fit these
data. Up to about fifteen years ago there was consider™
able experimental and theoretical effort devoted to trying
to fit and understand rnultiparticle reaction data; for ex-
ample, the book of Perl devotes several chapters to these
topics. However, from the point of view of quantum
chromodynamics (QCD), the kinematic region involving
the production of a few particles (say, ten or less) is ex-
pected to be very complicated, so interest in trying to de-
scribe and understand low-multiplicity data has waned.

One of the reasons that it is diScult to use model am-
plitudes to fit production data, particularly those ampli-
tudes coming from a perturbative field theory, is that
such amplitudes are not unitary. Yet a particularly strik-
ing feature of rnultiparticle data is the way in which
channels open, contribute significantly to the cross sec-
tion, and then die out as the bearo energy is increased. In
dealing with multiparticle data, it is very important that
model amplitudes be unitary. One of the goals of this pa-
per is to show how model production scattering ampli-
tudes can be made unitary. Manifestations of unitarity
are particularly evident in total cross section data, where
the total number of particles [both charged and (hopeful-
ly) uncharged] in a reaction are detected, but there is no
knowledge of the particle's direction or energy. Plotted
as a function of beam energy, one can see the cross sec-
tions of the various channels rising and falling in such a
way as to satisfy unitarity.

Total cross section data typically come from bubble
chambers. The other type of data that will be of interest
in this paper is single-particle distribution data, in which
one outgoing particle is detected, so that its direction and
momentum are known. Since all the other particles are
undetected, such a reaction is typically written as
a +b~c+X, where c is the detected particle and X
denotes all the undetected particles. Experiments in
which one particle is detected are the simplest generaliza-
tions of 2~2 reactions, in that the variables needed to
describe the kinematic configurations of the particles are
the beam energy, which can be chosen as the invariant
mass, Vs, of the system [s =(p„+ps) ], the laboratory
scattering angle O~,b between the beam direction and the
outgoing direction of particle c, and the relativistic ener-

gy (or momentum) in the laboratory, E~,b of c.
It is a straightforward kinematic exercise to show that

these variables can be transformed to more natural
center-of-mass variables. These variables have often been
chosen to be the longitudinal and perpendicular momen-
tum components of c in the center of mass; the distribu-
tion functions are then called Peyrou plots. However,
for the purposes of unitarizing model amplitudes, it is
more useful to choose as variables the center-of-mass
scattering angle 8*, and the invariant mass Qs„, of the
undetected particles [s„=(g, ,„p, ), where p, is the four
momentum of the ith undetected particle].

To keep the enumeration of channels as simple and
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general as possible, we will write a +b ~c+X as 2~n,
and specifically think of particle c as the first of the n par-
ticles while X contains the remaining n —1 particles. As
different channels open, they are enumerated by n. For
example, in the pi-nucleon system 2~2 means mN ~mN,
2~3 means ~N ~m~N, 2~4 means mN ~~me.N, and
so forth. Thus, for a given reaction a+b~c+X (or
2~n) there is a distribution function D„(s,8', s„);usual-

ly, however, the undetected particles do not come from
one channel ~ Then it is necessary to sum over all possible
open channels to get the distribution function measured
by experimentalists, namely

D(s, 8', s )= QD„(s,8',s, ) .

particles. The scattering amplitude for such a 2~n reac-
tion has 3n —4 independent variables, three of which are
chosen as s =(p, +pb ), the angle 8* between the detect-
ed particle and the beam direction in the center-of-mass
system (the notation of Ref. 2 is used, in which center-of-
mass quantities are denoted by asterisks), and Qs„, the
invariant mass of the undetected particles comprising the
X cluster. The transform of 0* gives the angular momen-
tum, so as discussed in the Appendix, a 2~n partial-
wave amplitude can be written as A "(sjy„), where y„
denotes a set of variables including s which describe the
final-state configuration.

If the 2~n partial-wave amplitude were known, the
total inelastic n-particle cross section would be given by

If D„(s,8",s„) were known, the multiplicity would be
given by integrating over 8* and s„. Though only
D (s, 8', s„) is generally measured, by also using multipli-
city data, in which the open channels are known, infer-
ences can be made about D„(s,8',s„}.

The goal of this paper is to show how to take model
multiparticle amplitudes (often arising from perturbative
quantum field theory) and unitarize them so they can be
used to try to fit multiplicity and single-particle distribu-
tion data. The reactions that motivate this work are the
pi-nucleon and 1-nucleon systems, primarily the pi-
nucleon system in which one has reactions of the type
nN~N+(n —1}m. Section II gives the general analysis
while Sec. III works out a simple example of a multiparti-
cle amplitude, and then discusses other model amplitudes
more suitable for fitting data.

II. MULTIPARTICLE PARTIAL-WAVE AMPLITUDES

As stated in the Introduction the reactions of interest
in this paper are of the form a +b ~c +X, where c is the
detected particle and X denotes the cluster of undetected

o„(s)=g f dp(y„)~A "(sjy„)~

where ~~A "(~ is the length of the partial-wave ampli-
tude, defined by

(2)

dp(y„) is the measure associated with the variables y„.
Its concrete form depends on the variables chosen; a
method for deriving the measure along with a
justification for calling ~~A "~~ defined in Eq. (2) the
length of the partial-wave amplitude is given in the Ap-
pendix.

Also, if A " were known, the single-particle distribu-
tion function would be given by

D„(s,8', s„)=fdp(y„)5(s„—s„(y„)) ~
A "(s,8',y„) ~

= fdp(y„)5(s„—s„(y„)) g PJ(cos8')( JO~ jOj'0)A "(s,j,y„)A "(s,j',y„)

where

= +9„(s,J,s„)PJ(cos8'),
J

(3)

%„(s,J,s„)=g (JO~jOj'0) fdp(y„)5(s„—s„( y))A "(sj y„)A "(s j',y„)

= g ( JO~ jOj'0)(A "5(s„—s„(y„)),A ")(s,j,j') . (4)

( JO~ jOj 0) is a SU(2) Clebsch-Gordan coefficient and s„(y„)means the invariant mass of the X cluster as a function of
the y„variables. The partial-wave inner product, discussed in the Appendix, is given by

(A ",A ")(s,j,j')= fdp(y„)A "(s,j',y„)A "(s,j,y„) . (5)

The partial-wave scattering amplitude A " is in general not known; but if some model partial-wave amplitude,
A,d, ~

(or its associated amplitude A ~,~
) is given, then using Eqs. (1}and (3}the multiplicity and single-particle distri-

bution functions can be calculated. But generally mode1 amplitudes wi11 not satisfy unitarity requirements, so with
channels opening and closing as the beam energy of the reacting particles is increased, there is little hope that model
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amplitudes will adequately fit multiplicity or single-particle distribution data.
The point of this paper is to show how model multiparticle amplitudes can be made unitary. The starting point is to

introduce the strongly interacting scattering operator, S, which satisfies the unitarity condition SS =S S =I on the ap-
propriate Fock space. Denoting the a +b two-particle system by "2," we want to evaluate (2'IS SI2) = (2'I2), from
which unitarity conditions on the multiparticle partial-wave amplitudes can be extracted. This is most easily done us-

ing "partial-wave" variables, in which p„pb ~P, &s, and j,o, where P is the total momentum and j,o are the angular
momentum and spin projection of the two-particle system. From relativistic invariance it follows that the 2~2
partial-wave amplitude can depend only on s and j.

The Appendix shows that the unitarity condition for partial-wave amplitudes can be written as

n (g)

q'(sj)+ g f "dv's„W&s„—~s)IIA'-"ll'(s„, j)=1;
g=3 It

(6)

g is the 2~2 inelasticity parameter, nm, „(s)denotes the maximum channel number allowed relative to the beam energy
&s, and m(„) =m) + . . +m„. Equation (6) says that the squared lengths of the partial-wave amplitudes must sum to
one. Such a condition can be satisfied by imagining an infinite-dimensional sphere, in which each dimension is a new
channel. Then the various lengths can be parametrized by

n(s j)=l«sa3ll«sa4l '' = H l«saki
k=3

'II(s j)= Isina311«sa41 ' ' = l»na3l g lcosak
k=4

"Il(s,j)= l»na. Il«sa. +) I

= 1»na. I

k=n+1

where the angles a3, a4 . . are functions of s and j, of the
form

a„=8( &s —m („)) X functions of s and j,
with 8(x) the step function.

Thus, if &s is above the two-body threshold, but below
the three-body threshold, then a3=a4= =0 and
rl = 1, IIA "II =0 for all n =3,4, . . . Betw. een the
three- and four-body thresholds a3=a3(s, j)40, but
a4=a&= =0. Then ri= Icosa3(s, j)l and IIA= Isina3(s, j)l. Continuing in this way it is seen that the
unitarity condition, Eq. (6), is automatically satisfied for
all &s ~ m ) +m z.

To determine the dependence of ak on s and j, we re-
turn to the fact that in general Am, d",) will not satisfy the
unitarity condition, Eq. (6). However, since the 2~n
partial-wave amplitude has a norm associated with it, it is
possible to define a unit length 2~n partial-wave ampli-
tude by

By construction A„„,t" will automatically satisfy the uni-

tary condition, Eq. (6).
We assume that A,d"„has the correct threshold be-

havior as the 2~n channel is opening up. The threshold
behavior of A„„;," will differ from that of A,d"„because
of the length factor IIA, d",)II. If a„ is chosen to be

a (s j)=e(+s —m(. )IIAtmoae)ll(s») (10)

then near threshold, where sinu„ is approximately e„,
the unitary partial-wave amplitude A„„;," will agree with

A, d",). But as soon as &s is well above threshold, A „„;,"
will differ from A,d",) (in its length dependence, but not
in its "directional" dependence).

Notice that in this formulation, the inelasticity param-
eter ri= gk 3lcosai, is not determined by Am, d„, but

by IIA,ddll. However, the phase shift for the 2~2 reac-
tion is still determined by A ~~&,&.

From the 2~n unitary partial-wave amplitudes, the
multiplicity can be calculated [from Eq. (I)] to be

now set

mult„(s)= g IIA„„;,"II (s,j)
J

2

A "—= IIA "IIA

where

H
k=n+1

sina„g cosak (s,j),
j k=n+1

and in a similar, though more complicated fashion, the
single-particle distribution function can be determined
through the dependence of X„(s,J,s„)defined in Eq. (4):
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g„(s,J,s„)= g (A„„;,",A„„;,")(sjj's„)(JOl jOj 0)

(sj ')
2 (sj)(A d",15(s„—s„(y„)),A, d",1(sjj 's„)(JOl jOj'0),2-. 2 .

j,j' model model
(12)

where llA "ll(s,j) is given by Eq. (7).

III. MODEL MULTIPARTICLE
PARTIAL-WAVE AMPLITUDES

The previous section has shown that if arbitrary ele-
ments from each n-particle partial-wave Hilbert space are
chosen as the 2~n partial-wave amplitudes, then there is
a procedure for unitarizing these elements for all values
of &s above threshold. The question to be addressed in
this section is how one might choose model 2~ n

partial-wave amplitudes.
An obvious way of generating 2~n partial-wave am-

plitudes is to take production Feynman diagrams or reso-
nance models and calculate their partial-wave ampli-
tudes. For example, if particles a and b react to produce
particle c plus a resonance R, which subsequently decays
into particles 2 and 3, the partial-wave amplitude can be
written as

+JR
A' '( jy, )= g A'„'( j „)d„'(8„)& ( „) .

k= —jR

(13}

A z (sjsji ) is the Partial-wave amPlitude for the
a+b~c+R reaction and the variables y3 are 8,2, the
angle between particles c and 2 in the rest frame of the
resonance (p2+p2 ) sR (p2+p3), and Mji and j„,
the mass and spin of the resonance, respectively. A&
can be approximated by a one-particle exchange diagram,
in which case it will be related to Qj type functions with
somewhat complicated kinematic arguments. Also, if
some of the particles (say c and 3) are identical, the
partial-wave amplitudes must be suitably symrnetrized,
which can also be done with the aid of rotations in the
partial-wave spaces. In any event it is clear that Feyn-
man diagrams can be used to obtain multiparticle
partial-wave amplitudes; the problem is that partial-wave
amplitudes of even simple Feynrnan diagrams are quite
complicated, and in particular, computing their lengths
probably cannot be done analytically.

For the purpose of this paper, which is to present a for-
malism that allows one to fit multiplicity and distribution
data, the partial-wave amplitudes need only depend on s,
j, and s„. If we imagine a and b reacting to produce c
and a new "particle" of mass Qs, (it should also have
spin j and spin projection a, but internal spin variables
are ignored in these two papers), then there will be a
model partial-wave amplitude for a +b ~c +X, in which
only the desired variables appear. Then the length of
A "(s,j,s„), using the measure derived in the Appen-
dix, 1S

(v's —m, )2 p*
ds„R„,(s, }lA "(s,j,s„)l

. (14)
m

p* is the momentum for the initial system, given implicit-
ly by

[(p
4 )2 +m 2 ]1 /2 + [(p

III )2 + m 2 ]
1 /2

while p,
* is the momentum of c,

s =[(p*}+m ]' +[(p") +s„]
A simple model 2~n partial-wave amplitude, deter-

mined mostly by the threshold behavior, is
1/2E*

C

(
e )j+1/2

C
A "(»j,s„)= R„,(s„)

such a partial-wave amplitude is certainly not unitary.
Its length is given by

1 fds„E"(p*)2j+2
p

—2 s
d e( e)2j+3
pc pc

p
gj+2(s m 2 m 2)

(16)
(21 +4)p '(2&s )

the factors [E; /R„, (s„)]' have been chosen solely so
the length integration can be done explicitly. R„,(s„) is
a phase space factor defined after Eq. (Ag) in the Appen-
dix, A,(s, m„m„) is the triangle function, A, =(s+m,
—m„) —4sm, , and m„ is the sum of the masses of the
particles in the X cluster; it should be noted that m is
the only variable that distinguishes between the various
n-particle final states.

Once the length of the 2~n partial-wave amplitude is
known, the factors that modify the length to make the
partial-wave amplitudes unitary can be calculated from
Eq. (10):

IV. CONCLUSION

There is a great deal of multiparticle data available,
particularly multiplicity and single-particle distribution
data, for systems such as the m. —X and E —X systems.
Because of the multiparticle nature of the final states,

a„(s,j}=0(&s—(m, +m„))
(21+4)p'(2v/s ) j+

(17}
More generally, by broadening the class of functions it
should be possible to fit multiplicity and single-particle
distribution functions.
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these data cannot be analyzed with a generalized phase-
shift analysis, even though the single-particle distribution
data are very similar to 2~2 reaction data. It is almost
hopeless to try to look for model independent ways of
presenting multiparticle data, because of the many vari-
ables of a multiparticle amplitude and because of the
complicated correlation experiments that are required to
do a complete multiparticle experiment.

In such a situation it seems best to take model mul-
tiparticle amplitudes and use them to make predictions
concerning multiplicity and single-particle distribution
data. However, model multiparticle amplitudes do not
generally satisfy unitarity requirements, and hence can-
not be used to fit even the simplest multiparticle data.

What we have shown in this paper is how to unitarize
model multiparticle amplitudes. Given a model mul-
tiparticle amplitude there is an associated multiparticle
partial-wave amplitude that can be viewed as an element
of a multiparticle "partial-wave" Hilbert space, labeled
by the invariant mass v's and angular momentum j of
the multiparticle system. This means that multiparticle
partial-wave amplitudes have a length which depends on
s and j. Unitarity then forces the partial-wave amplitude
to have a length between 0 and 1 for all values of s above
threshold and j.

If partial-wave amplitudes are given for all the open
channels, then unitarity states that the sum of all the
lengths squared plus the square of the inelasticity param-
eter must equal one. By choosing a convenient parame-
trization for the lengths of partial-wave amplitudes, mod-
el partial-wave amplitudes that are not unitary can be
made unitary. In the succeeding paper we will show that
this parametrization also appears in exactly solvable
models of production amplitudes.

With unitarized multiparticle partial-wave amplitudes,
it is possible to confront experimental data. Roughly
speaking the multiplicity data is related to the lengths of
the partial-wave amplitudes, while the single-particle dis-
tribution data is related to the "direction" of the mul-
tiparticle partial-wave amplitudes, as seen in Eq. (12).

Model multiparticle partial-wave amplitudes need not
come from perturbative field theory. From the point of
view of this paper, they are elements of a partial-wave
Hilbert space with length less than one. In fact, Sec. III
showed that as far as fitting data is concerned, it is prob-
ably better to choose elements of partial-wave spaces that
depend only on those variables that ignore the internal
structure of the X cluster. Thus, our generalization of a
phase-shift analysis to multiparticle reactions not only in-
corporates exact inelastic unitarity, but uses those vari-
ables describing the final-state configurations that corre-
spond to experimentally relevant variables.

d p11411'=f E ly(p}I'& ~, E=+(I'+m')'"; (Al)

then &p'lp) =E5 (p' —p). An n-particle wave function
P„,has a norm given by

114"II'= f
with

d Pn

E„ lk. (pi, . , P. }'&~ (A2)

&P', , P'. IP P, &= fI E;5'(P' —P;) .

The measure for two-particle variables is given by

d pi d p2 d p] d pf ~ ~ =f ~ ~ d'p5'(p pi —p2)—
1 2 1 2

4 dpi' dpi' 4 &s

fd4 p

dpi'

&s

~ 2j+ I fd4 p'
4

(A3)

, 2.p' 2j+1 (A4)

The inelasticity parameter and phase shift are defined
by

=5 (p' —p) 5, ,5 ~ g(sj)ep' 2j+1
Similarly, the A partial-wave amplitude is

(A5)

&p'j'~'I Tlpj~ &

=5 (p' —p) . 5' 5 ~' '(sj};
v's 4m

e 2j+] JJ (A6)

Here p,.
' are the four-momentum vectors of particles

i=1,2 in their center-of-mass frame (we follow the nota-
tion of Perl, Ref. 2 who denotes all center-of-mass quanti-
ties with an asterisk}; p

' is the unit vector direction of
particle 1 and p' is its magnitude. p

' is related to &s by

&s =(p' +m )' +(p" +m )'

With "partial-wave" variables pjo, two-particle states
are normalized to

This work was supported in part by the U.S. Depart-
rnent of Energy.

since in partial-wave variables all the delta functions are
written explicitly, T and S are related by S =I—i T, so
that

APPENDIX: PHASE SPACE MEASURES
AND PARTIAL-WA VE AMPLITUDES

e 2i5 ) i~ 2~2 (A7)

If P(p) is a momentum space wave function, its norm is
defined by

For multiparticle states the invariant volumes can be
written as
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f d P&
d p

d3 III

Pn 54
'v's '

O Z, PL
n i=1

JO' Jtl sn+p
(A8)

where Jdp, (y„) is an integral (sum) over the remaining 3n —6 variables. For example, for the model discussed in Sec.
III, where only the variables s,j,s appear in the partial-wave amplitude, the phase space integration becomes

f dpi
E1

pn d p1 d p2
d4p

E„
d Pn 4

'v's'
(}5

n

p& +pi
1=2

2'+1 — d= fd pdP",
" R„,(s„)=g fd+s„ f . . .f ds„R„,(s„),

(s„+p )'

so that

fdp(y„)= f ' ds„R„,(s„),P1

where R„&(s„)is the phase space integral

f d pp

E
d pntl

n 1=2

with p =s„; p1 is the momentum of particle 1 in the
overall center of mass for the n-particle system and is
given by

/s(p lll2+ 2)I/2+(p'02+s)1/2

where d p, (y„)=p, (y„) " dy„.
This change of variables from individual rnomenta to

"partial-wave" variables can be used to define n-particle
partial-wave Hilbert spaces &'„~, with an inner product
given by

(u, u')(s, j)= f dp(y„)u (sjy„)u'(sjy„); (A9)

it is this definition which is used to define the lengths of
partial-wave amplitudes.

The 2~n partial-wave amplitude is defined by

&nl TI2& =5 (p' —p) . 5 .5 .~ "(sjy„)

with s„=(p,+ +p„) .
With these conventions the normalization of n-particle

states becomes
&p'J'~'v.'Ipj~v. &

21+1 LJ Vn

and has a norm

ll~' "ll'(»j)= f dL (v. )l~' "(sjy. )I'& ~ .

Then & n ISI 2 &
= 1 & n

I
T—

I 2 &.

Using the unitarity condition S S =I gives

(A 10)

(Al 1)

nmax(s)

&2"I2'&=&2"IS SI2'&= g f &2"IS ln &&nlSI2'&
n =2

max=f &2lsl2" &'&2lsl2'&+ y f &nlsl2" &'&nlsl2'& . (A12)

Now the left-hand side of (A12) is given, for partial-wave variables, by Eq. (A4). The right-hand side has contributions
from two-particle and n & 2 particle intermediate states:

f &2lsl2" &*&2ISI2'&=~'5'( "—
p ), , '„,5,„,,5.„. ,

f & nlSI2" &'& nlSI2'& = fd p —g f dp(y„)& nI TI2" &*&nI TI2'&

=5 (p"—p'), , 5 -,'5 f d+s„5(+s„—s )IIA "II (s„j),

from which follows that

x( )

vp+ g f d+s„5(+s„—v s )IIA "II (s„,j)=1,
n ——3

which is the starting point for Eq. (6).
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