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The original 8'-matrix approach, introduced recently by the Bonn group, represents the T matrix
by a rank-one separable term. The method is exactly half on shell, but a nonzero remainder R
occurs fully off shell. For potentials for which the scattering phase shift has a zero, the remainder
can be non-negligible, even for energies far from the zero. We present expressions for W and R in
terms of the scattering K matrix for the case that the potential is separable of finite rank. We show
that the rank of R is one less than the rank of the potential. Then, for a rank-two analytical S-wave
example of the potential, which is designed to produce a zero in the phase shift, we examine numeri-
cally the fully off-shell properties of the 8'method. We find pathologies at both negative and posi-
tive energies, in that the remainder R gives a significant off-shell contribution even far from the
singularity.

I. INTRODUCTION

In the description of the two-body system proposed re-
cently by Bartnik, Haberzettl, and Sandhas, ' and referred
to as the W-matrix approach, a single nonsingular inho-
mogeneous equation in momentum space gives the solu-
tion of the two-body problem for both the continuum and
the bound state regimes. The W matrix, that is the solu-
tion of this nonsingular equation, allows an exact repre-
sentation of the full-off-shell T matrix consisting of a se-
parable term of rank one plus a remainder that is a real
function vanishing both on and half on the energy shell.
Since the bound-state pole and the scattering cut infor-
mation are contained in the separable term, it was sug-
gested to neglect the remainder and to use this rank-one
term as a separable approximation of the transition ma-
trix in the Alt, Grassberger, and Sandhas (AGS) three-
body equations. This procedure indeed gave excellent re-
sults for three-body bound-state and continuum calcula-
tion using the Malfliet-Tjon (I—III) potential. However,
recent calculations by Gibson, Pearce, and Payne, while
confirming these results for a Malfliet-Tjon (I—III) poten-
tial, found one case where the neglect of the remainder
led to large errors in the three-body binding energy. This
controversial result has motivated us to study the proper-
ties of the 8'-matrix representation in a simple solvable
potential model. The aim of this paper is to study, within
the finite-rank potential model, the full-off-shell proper-
ties of the 8'-matrix representation with particular atten-
tion to the remainder term. In the next section we estab-
lish the various connections among 8'matrix, T matrix,
E matrix, and Jost function for the case where the input
potential is itself separable of rank N. These relations
have not yet been obtained previously, and they make
more transparent the nature of the approximation. The
analysis shows that with a separable interaction of rank

II. THEORETICAL CONSIDERATIONS

As given in Ref. 1, the 8' matrix is defined by the fol-
lowing inhomogeneous nonsingular integral equation in
momentum space:

Wt(P, P', E)= Vt(P, P')P'

v, (p, q)q
' v, (p,k)k-

+
F —

q

X Wt(q, p', E)q'+ dq . (2. la)

N, the 8'matrix remainder term is of rank N —1. In par-
ticular, for a rank-one potential, the remainder term is
identically zero everywhere. The treatment is devoted
only to those relations that are relevant for the discussion
of the fully analytical example given in Sec. III. This
consists in a very simple rank two, S-wave potential mod-
el which contains both an attractive and a repulsive term.
We compare the exact transition matrix, the 8' matrix
rank one approximation and the inhuence of the
remainder for both positive and negative energies. A
mean-square value of the remainder, calculated by a dou-
ble integration over the full-off-shell momenta is defined
for both positive and negative-energy regimes in order to
give some insight into the quality of the rank-one approx-
imation. Furthermore, it reveals the occurrence of un-
physical singularities in correspondence of zeros of the
on-shell reactance E matrix. These pathologies, connect-
ed to the Noyes-Kowalski representation of the T matrix,
were pointed a out long time ago in the literature, and
several authors proposed suitable modifications avoiding
these singularities by increasing the rank of the approxi-
mation. Within our model calculation, we show that the
method suggested in Ref. 1 is not free from these kinds of
divergencies. Conclusions and final comments are con-
tained in Sec. IV.
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In the following, we assume i(1 /2m =1 and the energy is
expressed in fm . For scattering states this means
k =E. For the sake of simplicity, we found it convenient
to define a reduced 8'matrix

~,~J,J;E)= w, (J,J ';E)p'. (2.1b)

Note that both W and m are real and not symmetric ma-
trices.

According to Ref. 1, the T matrix is decomposed into a
rank-one separable piece Ts, plus a remainder term R,
namely:

T((p,p', E+ ) = Ts((p, p', E+ )+R((p,p';E} . (2.2)

The quantity Ts is given in terms of m as follows:

w((p, k;E)w((p', k; E)
Ts((p, p', E+ ) =

w((k, k;E)F((E+ )

where

(2.3)

w((q, k;E)
FI(E+ ) =1-

E+ —q' dq (2.4)

is the Jost function. The remainder is obtained as the
difference between T and Ts, it is real, vanishes half on
shell, and is given by:

w((p, k; E)w((k,p'; E)
R((p,p', E)=w((p, p';E) — . (2.5)

w, (k, k;E)

We find it more convenient to deal with the reactance
matrix K instead of the transition matrix T. The (real}
matrix K is correspondingly decomposed into a rank-one
separable term j:s, and a remainder R:

singular, so as to cancel the singularity in Ks. This
pathology occurs when the scattering phase shift 5 goes
through zero, ' as can be seen from the relation

w((k, k; E)
tg5(= —k—K,(k, k;E)= —k—

2 ' ' '
2 Q(F((E+))

(2.1 1)

Now the idea is to assume as an ansatz that the input po-
tential is itself separable, namely:

N

V(p,p')= g u;(p)&;, u, (p') . (2. 12)

is a scalar, and [u (p) ) ( u (p') ] is a matrix whose elements
are u;(p)u((p'). Note that this is a rank-one matrix.
[P(E)] is a matrix whose elements are P; (E).

With this notation Eq. (2.12) may be written as follows:

V(P,P') = (M (P)][A,][Q (P') ) . (2.13)

Then the solutions of the integral equations of scattering
corresponding respectively to the T, E, and w matrices
are separable with the same rank, and they can be ex-
pressed in terms of the matrices M, P, and Y as follows:

T(p, p', E+ ) = ( u (p)][M(E+ )] '[u (p') ), (2.14}

From now on the angular momentum label l is not indi-
cated explicitly, unless necessary. In order to make equa-
tions more transparent, it is convenient to use shorthand
notations defined for example in Ref. 8, namely: [u (p) )
is a column vector whose elements are u, (p}, (u (p)] is a
row vector,

N

(u (p)][u (p') }= g u;(p)u;(p')

K((p p 'E)=Ks, (p,p', E)+R,(p,p', E), (2.6) K(p,p', E)=(u (p)][P(E)] '[Q (p')), (2.15)

where
w(p p' E)=(u(p))[Y«)l '[Q(p'» .

(2.7) Denoting by [t] the inverse of the matrix [A, ]
w((p, k 'E)w((p k'E)

Ks((p, p', E)=
w((k, k;E)AF((E+ )

[t]= [({1

one obtains the following relations:

[ (E )] [ ] J [ (q))( (q)]
E+ —q'

and where R is the same as in Eq. (2.2) [with JPF((E+)
we mean the real part of F((E+)].

The preceding expression involves the half-on-shell
values of w. By making use of the half-on-shell relations
between w and E, namely:

(2.16)

(2.17)

(2.18)

w((p, k;E)
K((p, k;E)=

&(F((E+) )
(2.8) [p(E)] [ ] y" [u (q) ) ( u (q)] 2d

E —
q

(2.19)

one obtains the full-off-shell expression for Ks:

K((p, k;E)K((k,p';E)
K((k, k; E)

and correspondingly;

(2.9) [Y(E}]=[t]—f0

[u (q)) —[u (k) }
k

E —
q

X(u(q)]q dq . (2.20)

Ts, (p,p', E)= Ks((p,p';E)

1+ik K((k, k E)— (2.10)
The matrices M, P, and Y are closely related to each

other, as will now be shown. The integrals in Eqs. (2.18}
and (2.20) may be written as follows

It should be noted that when the on-shell value of E
(and hence w) goes through zero, the expression of Ks ac-
quires a singularity. Since I( is finite, R also becomes

[M(E )]=[P(E)]+ik [u (k))(u (k)]—,
2

[ Y(E))=[P(E)]+[u(k}}(b(k)],

(2.21)

(2.22)
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where (b] is the Hilbert transform of ( u](q/k)', namely:
l

k
(u(q)]

(b(k)]= f ' '
q dq . (2.23)

It is worthwhile to note that the elements of the vector
(b (k)] may be rewritten as

b„i(k)= —k—u„i(k), (2.24a)

where u„i(k) is the representation in momentum space of
the potential form factor u„I(r) transformed with respect
to the irregular solution G&(kr) of the free Schrodinger
equation

1 00

u„&(p)= &—2/m f G&(pr)v„l(r)r dr, (2.25)

while in Eq. (2.12) u„i(k) is the momentum-space repre-
sentation of u„&(r) transformed with respect to the regular
solution FI ( kr )

1 00

u„&(p)= v2/n—f FI(pr)v„i(r)r dr . (2.26)

In order to prove Eq. (2.24a), which can be written more
explicitly as follows

'I

qdg

f FI(qr)u„i(r)r dr0 2 I 2 p

=—f GI(kr)u„i(r)r dr (2.24b)

one has to use the completeness property of the spherical
Bessel functions together with Eq. (27) of Ref. 1. As a
consequence of Eqs. (2.24} the matrix [Y(E)] is equal to

[Q(E)]=[P(E)]—k—[u (k) )(u(k)1,
2

which is the Fredholm matrix with regular boundary
condition [see Eqs. (3.9a) and (3.10a) of Ref. 8]. By con-
trast the matrix [M(E+)] corresponds to the physical
outgoing boundary condition, while [P(E)], real part of
[M(E+)], has stationary boundary conditions. The rela-
tions (2.14)—(16) suggest that R can be related to a matrix
[R, ] according to

plus a rank-one piece [x ) (y], the following identities
hold 8

, [&] '[x &(y][&l '

I+c(y][8] '[x )

det[A]=det[8](1+c(y][8] '[x)) .

(2.29b)

(2.29c)

By comparing Eq. (2.28} with (2.29a), and making use of
(2.29c), it follows that det[R, ) vanishes.

The fact that det[R, ] is equal to zero, implies that if V
(and consequently T and K) are rank-N operators, then
the remainder R is rank-(N —1} (at most). In particular
if V is rank one, then R =0, and the approximation is ex-
act full off shell. In other words in case of a rank-N po-
tential, the W-matrix approach separates T (or K) in two
parts: Ts (or Ks) of rank-one, and R of rank N —1, null
on and half on the energy shell.

By application of the rule (2.29b} to the expression
(2.21) we may calculate the determinant of [M], namely:

det[M (E+ ) ]=det[P (E)] 1+ik K(—k, k; E) . (2.30)

Since P and K are real, this implies that the imaginary
part of det[M] is proportional to K, and so the Eq. (2.11)
is consistent with the well-known relation

'Tdet[M (E+ ) ]
Adet[M (E+ ) ]

(2.31)

The case of negative energies will be discussed next. In
that case the singularity of the denominator of Eq. (2.1a)
disappears, and k can be chosen as an independent pa-
rameter. ' The transition and reactance matrices coincide
in the case of negative energies, and for a separable in-
teraction we may write:

K(p p', e)=(u(p)][P(e)] '[u(p')) . (2.32)

w(p, p';k, E)=(u(p)][Y(k, e)] '[u(p')),

with

(2.34)

Both M and P are now given by

[M( )]e=[P( )]e=[t]+f q dq . (2.33)
c+q

where c.=a = —E. The w matrix becomes now:

R (p,p';E) = (u (p)][R, ][u (p') ) . (2.27) [Y(k, E)] =[P(E)]+[u (k) ) (b (k, s)], (2.35)

By making use of Eqs. (2.6), (2.9), and (2.15) one obtains

[P(E)] '[u (k) ) (u (k)][P(E)]
(u (k)][P(E)] '[u (k) )

(2.28)

and with

(2.36)

It will now be demonstrated that the determinant of [R, ]
is equal to zero. This can be seen by noting that Eq.
(2.28) is of the form

Finally Eqs. (2.6), (2.9), and (2.10) are substituted by the
following:

[~1=[&1+c[x&&y] . (2.29a)

For this type of matrices, given by a nonsingular part [8]
K (p, k;e)K (k,p'; c)

K(k, k;E)
(2.37)
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K(p, k;E)1(.(kp ';E)
R (p,p';k, c, )=K(p,p', E)— E k, k;e

~ ~ ~
$

% \ e ~ ~ v
y

~ ~ v ~
I

w (p, k; k, e)w (k,p', k, e }

w(k, k;k, E)

(2.38)

III. A NUMERICAL EXAMPLE

In the following, we analyze the behavior of R in the
simple case of a rank two, S-wave potential. For the
form factors u in momentum space we assume the follow-
ing expressions:

1 22
u, (p) =&2/n z, u2(p) =&2/n . (3.1)Ã+p' (p'&+p')'

V)

z
cfz

4J

4J

We assume attractive and repulsive diagonal strengths 0.0 0.5 1.0 2.0 2.5 3.0

t„=—0. 1 (fm );
tz2=0. 05 (fm );

t)~=t~) =0 (fm ),
and the following range parameters:

p)=1; p2=0. 5 (fm ') .

In Eq. (3.1}u, (p) is the well-known Yamaguchi form fac-
tor, while uz(p) is a generalized Yamaguchi, as suggested
in Ref. 10. For positive energies the model gives the fol-

lowing analytical P-matrix elements:

P2 —k2

2P, (P +k )

5p2 —15p2k —5p2k —k

4P3(P2+ k 2)4

p)p2(p)+2p2) —k (p, +2p,p2+3p2) —k
12 t i2+ 2(P +k )(P +P ) (P +k )

(3.2a)

(3.2b)

FIG. 2. Real (line a) and imaginary (line b) parts of the phys-
ical outgoing Fredholm determinant versus momentum k. The
regular Fredholm determinant is shown by line c.

I
$

\ ~ \

l
~ I ~ 'I f ~

l
~ ~ ~

/
1 I ~ ~

(3.2c)

) I J I ) I

I-
U

Z Q
u) o
LLJ

X
CL

8-
I

LLI

M

0.0 0.5 1.0 1 ~ 5 2.0

k (fm-~)
2.5 3.0

0.2 0.4 0.6 0.8

k(fm ~)

I I I I I I I I I I I

1.0

FIG. 1. Scattering phase-shift versus momentum k for the
rank-two separable potential described in Sec. III.

FIG. 3. Mean-square remainder, defined in Eq. (3.4), for posi-
tive energies, as a function of the on-shell momentum k.
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u2(r)=e
—

P2 (3.3)

The coordinate space form factors v, which are related to
the momentum form factors u according to Eq. (2.26), are

1

—P r

u, (r}=

and negative energy regimes. The explicit expressions are
given in the Appendix.

For negative energies the same potential model gives
the following P-matrix elements:

To have an idea of the overall (on and off-energy-shell
agreement between K(p p'E) and E ( ', E),n s p,p; ), we calcu-
late the mean-square remainder, defined as follows:

E = R (p,p', E)dp dp' . (3.4)

Within our model calculation, this quantit b 1-
a e y means of analytic expressions for both positive

1

2P, (P, +a)
5p~+4p2a+ a

22
—t22+

4p2(p2+ a )

P, +2P~+a
, 2 =t,2+

(pI+a)(pI+p~} (p~+a)

(3.5a)

(3.5b)

CD

bl
10

~ T

(a) 0
r ~ ~ ~ r

~
~ x x

(b)

O
CL

CD

:.LX V= Po LA

CD

CD

'b. o 0.5 1.0 1.5 2.0

K matrix .
I x x x

I5 )90(r -9
't).o o.s 1.0 2.0

~ KS matrix.

1.5

x (frri') x (frri')

CD

C4

(c):

—0

LA

O

CD

2-
R matrix .

I x

'b. o 0.5 1.0 1.5 2.0

FIG. 4. Full-oft'-s- hell behavior of the reactance matrix K for t e rank-two analytical otential
. Th o -h 11 o t h th 1 k=0.7f '. Th Pue = . m . The x andy axes re resen

ill t t di th fi b th t i htli . Th ko
remainder R is shown in (c).

e s raig t ines. The rank-one approximation to K, given by Eq. (2.9), is illustrated in (b) The
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2e0 t
i

l

i.s l

LLI
t.0

6J
Ct

0.5

I
) ) ) t 1 1 f / f $ I I fm ') the phase shift goes through a resonance which is

due to the nonlocality of the potential model. Since we

nonl
are not interested here in discussin effect"e ec s arising rom
non ocality we will not analyze the behavior of the phase
s i t in this higher momentum region. These effects have

een widely discussed in the literature. " The Fig. 2
shows the real and imaginary part of det[M (E+ )] versus
k. The function det[ Y(E)] is also shown, and is non null
in the considered energy region. This excludes the possi-

m is due to non-bility that the pathology at k=0.450 f
oca ity effects. Observe that, according to E s. (2.11),
(2.31), 5 K(k k ;E), and 5'det[M(E+ )] go to zero at the

0 qs.

same point, while A(det[M(E+)]) is different from zero
at t is point.

Since we expect that R has a singularity at the zero of

s I I l I I i I I I I I I

2.0

CD

CO
~ ~

$
~

Parameter k(fm')
FIG. 5. The me an-square remainder for negative energies, as

efined in Eq. (3.6). The parameter k, on the abscissa is no7

longer related to the energy. The negative energies —c are indi-

cated in the figure.

CD

CV

The 1calculation of the mean-square remainder, defined as
in Eq. (2.41), namely

R ke=R k, e)= R (p,p';k, e)dp dp', (3.6)

is here more important in order to fix the free parameter

Figure 1 shows the phase shift 5 as a function of the in-
cident momentum k. One sees that it goes through zero

also zero at this point. At a higher momentum (k=6.312

CD

'b. o 2.0

S-mat
~ a I s ~

ri X.
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~ ~ 0 T
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~ ~ ~ ~ ~ 0 V I ~ ~
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0=
K matrix .

I 4 I

3.0
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0—
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1.0 2.0
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~ I ~ S ~ ~

3.0

FIG. 6. Full-off--shell behavior of the exact reactance matrix

4.
at a negative energy, c =1. The notation is the same as in F'n ig. to% a

FIG. 7. Full-off-shell behavior f th k-o e ran -one approximant
to (a) and the exact value of the remainder (b) for a negative
energy c= 1 and the parameter k =0.3 fm
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K, the average value of R will show a similar singularity.
This is illustrated in Fig. 3, where the divergence of R in
the point k=0.450 fm ', is clearly seen.

Figure 4 shows K,Ks, and R as functions of the mo-
menta p,p'. The physical momentum k has been chosen
to have the value of 0.7 fm ', where the mean square R
goes through a minimum. We are therefore not too close
to the singularity. Note that the contour lines for Ks and
R have a very different structure from those of K, and
that R is not everywhere negligible with respect to K.
According to Eq. (2.5), R (p,p';E) is zero when either p
or p' equal k. This is indeed observed to be the case in
Fig. 4(c), where for either p or p' equal to k=0.7 fm ', R
vanishes. On the other hand, the zero-value lines of
Ks(p, p';E) occur at the points where either p or p' are
equal to po, defined by the condition that

K(po, k;E)=K(k,po, E)=0 .

The value of po is found to be equal to 0.454 fm ', ac-
cording to Fig. 4(a). The values of po and k are thus seen
to play an important role in the behavior of Ks and R,
and hence they are indicated by heavy solid lines in Fig.
4(a). We have repeated the calculations choosing
the physical energy k very close to ko [defined by
K(ko, ko;Eo) =0]. In this case po approaches ko togeth-
er with k, and the values of both R and Ks increase with
opposite sign, and tend to cancel each other so that K can
remain finite. In the vicinity of the zero lines, the gra-
dients of R and Ks also become very large and opposite in
sign.

A similar type of difficulty also occurs at negative ener-
gies. The mean-square remainder, illustrated for three
values of c. in Fig. 5, becomes very large for values of the
parameter k in the interval from 0.5 to 1.2 fm '. Ac-
cording to Eq. (2.38) a singularity in R is expected to
occur when K (ko, ko', e) =0. Froin the plot of
K(p,p', e= 1), shown in Fig. 6, one can see that the value
of ko lies near 0.6 fm ', where indeed R (s =1) becomes
very large. The values of R go through a minimum in
the vicinity of k=0.3 fm . For this choice of the pa-
rameter k, a plot of the contour lines of Ks and R for
a= 1 are shown in Figs. 7(a) and 7(b), respectively. Again
it is seen that there are large regions in the momentum-
space plane where R is not negligible in comparison to K.

IV. CONCLUSIONS

In this paper we have examined the 8'-matrix method,
giving general expressions which relate 8'and R to T, K,
and the Jost function F. We have also extended these re-
sults to the case that the potential is of finite rank. In

this case interesting relations are derived among the
above-mentioned functions and the Fredholm matrices
defined relative to different boundary conditions. One
important result is that for the case of rank one potential
the remainder R vanishes identically, while for rank-N
potential R is an operator of rank (N —1). As Kowalski
and Osborn have already pointed out, this method runs
into a difficulty in the vicinity of a zero of the diagonal
values of the K matrix. We have illustrated this difficulty
for a rank-two separable potential. The difficulty found
by Gibson et al. appears to be of a different nature than
the one which occurs in the vicinity of a zero of the phase
shift. In that paper the singlet S Reid soft core potential
was modified by making the intermediate range part of
the potential slightly more attractive [by replacing—1650.6(e "Iz) by 1815.66(e "/z), where z =0.7r].
This modification increases the phase shifts and displaces
the zero of the phase shift to larger momenta (larger than
1.74 fm '). Gibson er al. conjecture that the problem
with the 8'-matrix method may be due to the presence of
the strong repulsive core.

Since this study was completed, an improved 8'-matrix
procedure was developed by Haberzettl, ' which provides
a separable representation of T of rank higher than one,
by an iterative procedure. It is very possible that the
difficulties encountered by the rank one 8'method are el-
iminated by this extension to higher ranks. This would
be a welcome feature since the 8'-matrix approach has
very nice on-shell and half-on-shell properties. However,
since the extension of the 8' method is no longer of rank
one, it becomes desirable to compare it with other kinds
of separable expansions of low rank, available in the
literature. In particular, the effect of the presence of
strongly repulsive cores should then also be examined.
These investigations are, however, beyond the scope of
this study.
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APPENDIX

In this appendix we give the explicit expressions of the
mean-square remainder R referring to the model of Sec.
III, for both scattering and bound-state regimes. We
start from Eqs. (2.20) and (2.21), which in the case of a
rank-two potential is given by

u 1(p)u 1(p )u 2(k)+u2(p)u2(p )u 1(k) u1(k)u2(k)[u 1(p) 2(pu) u2(p)u 1(p )l
R (p,p') =

u i (k)P22+ u 2(k)Pi i
—2u i (k)u2(k)Pi2

(Al)

Then, R becomes
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2

u, (k)f u2(p)dp+u2(k) f ut(p)dp +4ut(k)u2(k) f ui(p)u2(p)dp

[u t(k }P22+uz(k }P» —2u, (k)u2(k)P„]

4u, (k)uz(k)t u, (p)u2(p)dp f u, (p)dp+4u, (k)u2(k) f u, (p)u2(p)dp f u2(p)dp

[u, (k)P22+ u 2(k)P „2—u, (k)u 2(k)P, 2]

Finally, by using the form factors (4.1) we obtain the explicit expression of R:
'2

4P2 5 4(P, +2P2)+
2p3(p2+k2)4 4p5(p2+k2)2 p p (p +p )2(p2+k2)(p2+k2)2

2 P22 4P2Pit 4P2P t2+
(P +k ) (P +k ) (P +k )(P +k')

(A2)

(A3)

For scattering states R =R (E), since k =E and the P-matrix elements are given by Eqs. (3.2); for negative energies
R =R (k, e), since k has to be considered as a free parameter and the P-matrix elements are given by Eqs. (3.5).
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