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The role of trajectory fluctuations on the first and second moments obtained in the mean trajecto-
ry approximation for the proton and neutron distributions of the projectile-like fragments produced
in deep inelastic heavy ion collisions has been studied in the framework of stochastic transfer of sin-
gle nucleons. At each instant of time the neutron and proton numbers of the colliding nuclei are
considered to be given by dynamically evolving Gaussian distributions generating trajectory fluctua-
tions. The first moments calculated in this method differ considerably from those obtained in the
mean trajectory approximation for the systems with strong gradient in the driving force around the
point of injection. The second moments, however, do not change appreciably for all the systems

studied.

The model of stochastic transfer of single nucleons be-
tween two colliding heavy ions' has been found to be very
successful in explaining varied experimental data on
strongly damped collisions like inclusive and exclusive
charge and mass distributions of the projectile-like frag-
ments, energy and angular momentum loss from relative
motion into intrinsic excitations,>® misalignment of an-
gular momentum,*® etc. All these calculations have been
performed in the mean trajectory approximation (MTA).
Recent analyses of experimental data for highly asym-
metric target-projectile combinations amply show® ™8 that
the MTA is inadequate to explain the evolution of aver-
age neutron and proton numbers of the projectile-like
fragments with energy loss when the driving force (to be
more precise, the gradient of the driving force) is relative-
ly strong around the injection point in the N-Z plane.

This naturally raises the question of the validity of the
MTA. The work of Brosa et al.’ has shown that a global
moment approach is not appropriate to deep inelastic
collisions and that the use of a local moment approach is
a better approximation. In this Brief Report we study in
a simple way the effect of the trajectory fluctuations gen-
erated through the finite widths of the instantaneous nu-
cleon distributions within the interacting nuclei on the
quantities related to the proton and the neutron distribu-
tions of the projectile-like fragments produced in strongly
damped collisions. The basic formalism employed for
this purpose is the same as in Ref. 10. However, it is
well known that the large energy loss observed for rela-
tively central collisions cannot be explained unless the ap-
propriate shape degrees of freedom are included in the
calculations. For this purpose we have considered the
neck degree of freedom, the treatment being the same as
in Ref. 11. For the sake of completeness, only the basic
equations employed in our calculations are given in the
following; the details may be found in Refs. 10 and 11.
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The collective degrees of freedom whose time evolu-
tions have been studied are R, 6, 6p, 01, C, N, and Z,
which represent the distance between the ion centers, the
angle made by the line joining the ion centers with the
beam direction, the orientations of the projectile and the
target, the neck radius, and the neutron and proton num-
ber of the projectile, respectively. The random exchange
of nucleons between the two colliding ions occurs when
they come in proximity and the transfer of a single nu-
cleon induces a hole excitation AE, in the donor nucleus
and particle excitation AE, in the recipient nucleus,
which are given by

AE,=Ep— 1MV}, (1
AE,=iM(V;+V ) —(Er—o) . @)

Here M is the nucleon mass, Ej is the Fermi energy, V
is the intrinsic velocity of the transferred nucleon in the
donor nucleus having the finite-temperature Fermi-Dirac
distribution, V, is the instantaneous relative velocity be-
tween the colliding nuclei, and the quantity o represents
the macroscopic driving force calculated in the liquid
drop model which corresponds to the change of the total
potential energy (including rotational energy) of the dinu-
clear complex for the transfer of a single nucleon.

The transfer of nucleons also induces rotational motion
in the donor and the recipient nuclei. The expressions for
the transfer-induced angular momenta may be found in
Ref. 12. The intrinsic excitations generated through par-
ticle transfer will damp the kinetic energies associated
with the coordinates R and 6 which are calculated in a
self-consistent way, the result being close to that of aver-
age proximity friction.”> The neck motion is damped
through the one-body wall dissipation as given in Ref. 11.
The total one-way particle current from nucleus 4 to B
under the MTA is given by
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Here the integrations are over the neck area A and the intrinsic velocities of the nucleons in the donor nucleus. This in-
tegral is evaluated by employing the Monte Carlo simulation technique. The size and position of the neck are taken to
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be the same as in Ref. 11; they are changing dynamically. The quantities € , and €y are the energies of the transferred
nucleon in nucleus 4 and B, respectively, f(¢€,T) is the Fermi occupancy of the single-particle state for energy € and
temperature T, NV(|V],) is the particle flux with x along the instantaneous dinuclear axis, and 7 is the barrier (Coulomb
plus nuclear) penetration factor which is operative beyond the neck region. The particle current in the direction B to 4
(Np,) can be evaluated in a similar way. The proton and neutron currents are obtained with the use of the appropriate
flux M. Then N 45(Z)— N (Z) gives us the proton drift under the MTA.

The particle current depends on the instantaneous charge number Z and the neutron number N of the projectile
(those for the target are automatically fixed from the total number of neutrons and protons), and Eq. (3) is evaluated at
Z=Z(t), N=N(t) where the average proton number Z and the neutron number N at time ¢ are obtained by averaging
over many trajectories for each relevant impact parameter. In reality one should consider a dynamical distribution for
N and Z, and the proton drift then reads as
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FIG. 1. Average charge number Z and neutron number N vs energy. loss for the reactions induced by (a) **Ca, (b) °Ca, (c) *Ni,
and (d) *®Ni on 2°®U. The dashed lines correspond to the MTA and the solid lines refer to calculations including the fluctuations.



392 BRIEF REPORTS 41

i;%:f[NAB(Z)——NBA(Z)]P(N,Z,t)deZ :

where for the distribution function P(N,Z,t) we have used a bivariate distribution given by'*
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where C is the normalization constant. The last term in
the argument of the exponential introduces correlation in
the neutron-proton by forcing N towards SZ where S is
given'* as the ratio of the total number of neutrons to
protons of the dinuclear complex. The correlation
coefficient p can be expressed'* in terms of the parameters
a and B and the variances. It is clear that for a=0 one
has p=0 and a= o corresponds to p=1. The proton
diffusion coefficient is given by

2
%’7=f[NAB(z)+NBA(Z)]P(N,z,t)dez . 6)

It may be pointed out that for the fully correlated (p=1)
neutron and proton exchanges, the correlation inducing
term in Eq. (5) reduces to a one-dimensional integral. In-
tegrating Eqgs. (4) and (6) and their counterparts for neu-
trons, one gets the first and second moments for proton
and neutron distributions of the projectile-like fragments.
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The calculations of average values for proton and neu-
tron numbers and their variances have been performed
for the reactions *®Ni and ®Ni at 8.5 MeV/nucleon (Ref.
7, “Ca at 8.5 MeV/nucleon (Ref. 6), and “*Ca at
E,, =425 MeV,? on 2¥U. It is well known that the
correlation coeflicient generally increases from the value
zero to the value unity with the increase of the energy
loss. We have considered these two extreme limits p=0
and 1 and found that our results are insensitive to the
value of p. So we present in the following results pertain-
ing to the uncorrelated case. The results for Z and N as a
function of energy loss are displayed in Fig. 1. We ob-
serve that barring the reaction induced by “*Ca, in all
other cases the drift in neutron and proton numbers is
very poorly reproduced in the MTA and the numerical
values of the calculated drift coefficients are significantly
smaller for proton drift and larger for neutron drift than
those of the measured values (neutron corrected for eva-
poration), particularly for higher energy losses. The driv-
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FIG. 2. Proton and neutron variances as a function of energy loss for the reactions induced by (a) **Ni and (b) *Ni on »**U. The
open and the filled circles correspond to experimental data with and without evaporation corrections, respectively. The solid lines
refer to calculations with the MTA, and the results including the fluctuations are indistinguishable from it.
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ing force as well as its gradient in the N-Z plane are negli-
gible for the “®Ca+%*U system around the injection
point,® whereas those are rather appreciable® for the rest
of the systems considered. This clearly demonstrates that
the MTA is not adequate to explain the observed drifts
for systems having large values of driving forces at the in-
jection point. The calculated drifts with the inclusion of
the effect of fluctuations as given by Eq. (4) are also
shown in the figure, and we note that the agreement with
the experimental data is fairly good. The increasing
differences with energy loss of the MTA drifts and those
calculated with the fluctuations may be understood due
to large values of variances at higher energy losses and
relatively long reaction times. It is also observed that at
low energy losses, the percentage error between the pre-
dicted values of N and Z with the data is not negligible.
This may be attributed to (a) the structure effect and (b)
the memory effect.!®

In Fig. 2 we have plotted proton variances (0%) and
neutron variances (o) versus energy loss for *Ni- and
®Ni-induced reactions. The measured neutron variances
corrected for evaporation are also displayed. It has been
found that the calculated 0% and 0% with and without
fluctuations are very close, and both of them are

represented by the solid lines in Fig. 2. The particle
current in the absence of a driving force is practically the
same in either direction, and hence the drift is sensitive to
the driving force. On the other hand, the diffusion is
mainly controlled by the total particle flux, and therefore
the fluctuations have little role to play. We find that the
calculated proton variances are also in good agreement
with the measured values (evaporation has a small effect
on proton variances). However, it may be noted that the
calculated neutron variances at high E, , somewhat un-
derestimate the deduced primary values, and we are un-
able to explain any definite reason for this.

In summary, we have shown that for systems having a
large gradient in driving forces around the injection
points, the MTA is inadequate to explain the drift of neu-
trons and protons at considerable energy loss. The in-
clusion of the trajectory fluctuations improves the results
significantly. The variances are found to be insensitive to
the fluctuations for all the systems studied.
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