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An approximate restoration of the particle number symmetry, in the manner of Lipkin-Nogami,
is numerically investigated in the context of constrained Hartree-Fock plus BCS calculations. Its
effect is assessed in a variety of physical situations like potential energy landscapes in transitional
nuclei, shape isomerism at low spin, and fission barriers of actinide nuclei.

I. INTRODUCTION

Following the suggestion of Bohr, Mottelson, and
Pines' and Belyaev,? it has become customary to use the
BCS ansatz’ to approximately account for pairing corre-
lations in atomic nuclei. As is well known however, this
approximation breaks the particle number (N) symmetry
of the Hamiltonian. Whereas for large fermion number,
the resulting fluctuations in N are negligible, this is not at
all the case for the relatively small number of particles in-
teracting in the nucleus. Bayman* has shown that the
BCS wave function could be derived from a fixed
particle-number solution as a saddle point approximation
under conditions that are not met, in general, in actual
nuclei. It is then clear that the description of any observ-
able as expectation values in such BCS states may be im-
paired by this artificial symmetry breaking. To restore
the symmetry, one has currently used either the projec-
tion formalism (projection after’ or better before® varia-
tion) or a removal of number-dispersion spurious effects
in a random-phase approximation (RPA) type of ap-
proach.” For the study of ground-state wave functions,
the projection method has been the most widely used and
many approximation schemes for it have been devised as
(i) a renormalization of pairing matrix elements,® (ii) a
discretization of the Fowler-Darwin-type integrals enter-
ing an expression of the projected energy’ from which
practical calculations have been performed,'® (iii) the
Gaussian overlap approximation,!! (iv) a Taylor expan-
sion of the BCS energy as a function of the number of
particles around the BCS expectation value of the
particle-number operator,'? (v) the limit of weak symme-
try violation,’*~'* (vi) a method initiated in a broader
context by Lipkin'® and specifically proposed'® and fur-
ther developed!’~2° by Nogami and collaborators for the
BCS wave-function problem.

In this paper, we focus on the latter approximate for-
mulation of the broken symmetry restoration, which is
usually referred to and used?! as the Lipkin-Nogami ap-
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proach. Within this formalism, we assess the importance
of correctly handling the particle-number symmetry for
the microscopic evaluation of potential energy surfaces.
In Sec. II, we review the general concepts and notation
that are involved in this approach and generalize them to
our constrained variational problem. The results of self-
consistent calculations performed in different regions of
nuclei are discussed in Sec. III, whereas our main con-
clusions are drawn in Sec. IV.

II. GENERAL OUTLINE OF THE METHOD

A. The original Lipkin-Nogami approach

Independent particle many-body descriptions meet
with the general problem of correlations necessarily
brought in by the conservation laws arising from dynami-
cal symmetries. Lipkin has proposed in Ref. 15, to inter-
pret uncorrelated wave functions as eigensolutions of a
modified Hamiltonian H derived from the original one H
by substracting the characteristic energy H, associated
with the conserved quantity. He took as examples of H,
the translational energy of a localized system of bound
particles, the plasmon energy of a free electron gas, the
rotational energy of a deformed quantal object, and final-
ly the energy associated with a change in the number of
particles for a BCS wave function. In the latter case, Lip-
kin defines H as

H=H—f(N), 2.1

where the characteristic energy H, is here a function f of
the particle number operator N. Assuming the latter to
be a smoothly varying function of N, one can Taylor-
expand it. At first order, one gets the Lagrange multi-
plier variational method in use in ordinary BCS treat-
ments. Lipkin'® questioned the validity of dropping the
next terms in the expansion, and Nogami'® further
developed the approach by explicitly considering the
second-order term.
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For that, let us consider a normalized BCS wave func-
tion |9, ) for which the expectation value of N is denoted
n (hence the subscript). We may project ¢, ) on normal-
ized eigenstates |¢,, ) of the operator N with the eigen-
value m:

19,)=3 Com|bm) - 2.2)

Given an operator @ commuting with N, we define by
g (m) its expectation values on the |¢,, ) projected states.
At this point, we make the assumption formulated by
Lipkin, stating that g (m) is an analytical function of m:

q(m)=(4,101¢,,)=qo+q,m+q,m*+ - -+, (2.3)

where the g, coefficients are real, given the hermiticity of
Q and hereby defining a Hermitian operator g (N) as

q(N)=q0+q1N+q2N2+ . (2.4)

It should be made clear now that g (m) and ¢ (N) depend
on the initial BCS wave function |4, ).

It follows from the definition (2.4) of g (N) that the di-
agonal matrix elements of Q —q (N) between |, ) states
are vanishing. Its nondiagonal matrix elements are equal
to zero as well, if we define the ¢’s as common eigenvec-
tors of the commuting Q and N operators. From the
preceding, we trivially infer that

(¥,1(Q —q(N)N%,)=0 (2.5)

for any non-negative integer a.

We now make a second assumption, which consists in
truncating up to second order the expansions (2.3) and
(2.4). It therefore results from Eq. (2.5) that

90={9,|0—q,N—q,N?|¢,) . (2.6)

In what follows we will denote as Q the corrected opera-
tor Q —q;N —gq,N2. As a consequence of Eq. (2.6), one
is able to express, upon assuming a practical knowledge
of g, and gq,, the expectation values of the true operator

Q in projected states |¢, ) in terms of expectation values
of Q in the (unprojected) BCS wave function |¢,, ):

<¢n|Ql¢n )=<¢nié|¢n>+q1n+q2n2 .

To completely solve our problem, we need therefore to
provide satisfactory requirements about the determina-
tion of ¢, and g,. At this step, the inherent arbitrariness
is manifested as a choice to be made among an infinity of
relations that these coefficients should fulfill in an exact
(not truncated) expansion of g(m). The criterion for
such a guess consists in a reproduction of exact results in
some model case situations, as well as possible for all re-
gimes of pairing correlations, singularly in the weak pair-
ing strength critical case. In previous versions of the
Lipkin-Nogami method!®~!® a prescription has been pro-
posed that was later proven'®~?° to be advantageously re-
placed as defined in the following. Indeed, Goodfellow
and Nogami'® have determined g, and g, through

(¢..|ON|¢,)=(4,ION*4,)=0,

2.7

(2.8)

which is clearly fulfilled in the exact case [see Eq. (2.5)]
and is merely postulated in the present case.

B. Variational ground state solutions

In what follows, we will restrict ourselves to the partic-
ular case where Q is the microscopic Hamiltonian H (in-
cluding a kinetic energy T and a two-body interaction V)
and only the component |$, ) of the BCS wave function
|, ) (i.e., only the |¢,, ) with m =n) is considered. The
projected energy E, is thus given in this case, through
Eq. (2.7), as

E,=($,|H|¢,)=(¢,|H|p,) +An+A,n?, (2.9

where the expansion coefficients of the expectation value
of H between projected states are noted, as is customary,
by A, and A,.

Now, in the context of a projection before variation ap-
proach, one must minimize E, with respect to all possible
BCS wave functions |y, ), i.e. (assuming A, and A, to be
known),

8(E,)=8({y,|H|¢,))=0.

The present variational problem assumes therefore the
form discussed by Lipkin,'> where symmetry-breaking
solutions are to be interpreted as eigensolutions of an
effective (i.e., corrected) energy operator.

For a BCS wave function |4, ) built on the so-called
canonical basis {i,j,. .. } (made of the eigenstates of the
one-body reduced density matrix p with eigenvalues v?),
one has

(Yo lHIY,) =3 Uizti"'% b Uizvszij"'% > uujvv;Gy;
i ij ij

(2.10)

(2.11)
where with the usual notation one defines
ur=1—v2 t,=(i|Tli),
v,;=(ijIVlij), Gij=<i’7|V1]7) .
Upon varying
E, = (4, | H¥,) = A9, IN 19, ) —Ay( 9, IN?I9,)

with respect to the single particle states |i ) and the occu-
pation probabilities v?, one gets Hartree-Fock-type equa-
tions and BCS-type equations, respectively. The latter is
written as

“iz - Uiz

e,—A —A—2Ay(n +ul—v})=0, (2.12)

P 2up;
where
e,=t;+ vV, A=—13Gup;, n=3v.
i j i
Equation (2.12) can be cast into the standard BCS for-
mal framework by defining
€, =e;+4\v} ,

A=A +2M,(n +1)

(2.13)
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to yield the variational equations

uz—v,~2
€—A—A; =0, (2.14)
2u,v;
whose solutions are
|2
pr=L =&
o2 E, ’
(2.15)

E;=[(e;—A)+A2]'"2 .

From now on, we will make the standard seniority
force ansatz

vi,j; (ilVljj)=-6G, (2.16)
and consequently
. __ G
Vi; A,-———z-Eujuj . (2.17)

J
The next problem consists in determining A, and A,
through Egs. (2.8) for H. The first one is equivalent to

the variational equation (2.12), whereas the other leads
after lengthy but straightforward calculations'®?? to

G [2'u,3v,-][2uv ] S u v}
4 [ va]— utv} ’

where, throughout this paper, the 3’ over i runs only
over half the single-particle states i. As in usual BCS cal-
culations, the Lagrange multiplier A (and therefore A,
since A, is known) is fixed by the particle number conser-
vation.

(2.18)

= 'ufoX(Q—q1—2q;w)=0

2'u2v2w(Q, q:—2q,w;)— 4q2“2: 22] S u 44]

The energy difference between the approximate pro-
jected energy and the BCS (unprojected) energy is thus
given as

AE=An+2A (¢, IN?y,) , (2.19)
which leads to
AE=—4), 3 'ulv? . (2.20)

C. The case of one-body operators

Even though the Lipkin-Nogami projection method is
a priori designed for the correction of the energy expecta-
tion value in a variational approach, one may try to use
the BCS wave function resulting from the approximate
projection process to compute expectation values of
operators other than the energy. The basic motivation
for that is to yield in cases where ordinary BCS ap-
proaches yield zero gap trivial solutions an educated
guess of the influence of pairing correlations that would
emerge from a more sophisticated pairing treatment.
There are cases where this would be clearly useless when
for instance one considers the particle number variance.
One expects, however, that for one-body operators, the
Lipkin-Nogami BCS wave function might be of interest.

Let us therefore consider a one-body operator Q (thus
commuting with N) assuming further its even character
under time reversal. We may consider it as the Q opera-
tor of Sec. IT A.

Defining Q as previously, ¢, and g, are given by the
solution of two linear equations stemming from Egs.
(2.8):

(2.21)

(2.22)

From Egs. (2.21) and (2.22) one gets ¢, and g,. For instance the latter is given by

9= 5

1 [2 ‘Qik}? ] [2 kfw; ] - [E 'k} ] [2 'Qiklw, ]

where

w,=ul—vi+n,

kr=ul?

(2.24)
Q,=(ilQli) .

The effect of the projection onto good particle number
states is given by

AQ = —4q2 2 ’k,‘z .

This will be applied below to the case where Q is the
axial quadrupole operator, in the context of constrained
Hartree-Fock calculations. Indeed, in adiabatic time-

(2.25)

[zwe] - e R 5w 5%

(2.23)

dependent Hartree-Fock descriptions of large amplitude
collective motion, one computes the deformation energy
surface through constrained Hartree-Fock calculations,
where the constraining field defines the collective variable
by its expectation value.”> For the matter under discus-
sion here, one is thus led to replace in the variational ap-
proach H with H —uQ, or H with H —uQ. Consequently
the BCS-type variational equations are formally un-
changed upon replacing A, with X, =2, —pug, and A, with
X;=A,—uq,. As aresult, one then obtains a deformation
energy surface where both the energy and the collective
variables are corrected for particle-number spurious fluc-
tuations.

In another case of interest, one could focus on the
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particle-number fluctuation corrections related with the
expectation value of a one-body operator Q in a given
single-particle state (as for instance the occupation of a
particular Hartree-Fock single-particle state ig). One
readily reduces the previous equations for g, by noting
J

that
0= Si,ioQio )

leading to

—2Q, k! [2”‘:’2] [Z'kizwi_wioz'kf]

T e [z [z [z ][ (2] - 34

The above result?? has recently been used by the au-
thors of Ref. 24 to study the depletion of the 3s, ,, proton
state in nuclei near 2°°Pb.

III. SOME CALCULATIONAL DETAILS

We have performed constrained Hartree-Fock plus
BCS calculations using the Skyrme SIII effective interac-
tion.”> The constraining operator was the axial quadru-
pole moment. It is important to note that no inert core
has been used. Pairing correlations have been approxi-
mately taken into account with a seniority force whose
strength has been adjusted so as to reproduce the bulk
variation of odd-even binding energy differences.
Throughout this work axial symmetry has been assumed.
The solution of the Hartree-Fock-type variational equa-
tions has been performed by projecting the single-particle
states onto axially symmetrical harmonic oscillator states
using a so-called deformed truncation scheme.?® In Table
1, some specific details about our calculations are report-
ed: namely, the number N of oscillator major shells in
the spherical case together with the pairing strength G,
and G, (for proton and neutron, respectively) corre-
sponding to a BCS variational space defined by a cutoff
energy located at an energy e, above the chemical poten-
tial.

The basis size is sufficient to ensure a good stability of
the relative energies provided that the optimized two axi-
al harmonic oscillator parameters have been chosen such
as to yield a minimal total energy. In principle, one
should optimize for the projected energy (i.e., Lipkin-
Nogami corrected in our case). In practice, it turns out
that optimizing for unprojected BCS solutions corre-
sponds to a minimal energy also for the projected solu-
tion. This is exemplified on Fig. 1 for a deformed solu-

TABLE 1. Numerical details of our CHF + BCS calculations:
the number of major shells N, the e, pairing cutoff constant (in
MeV) and the G, , constant pairing strengths (in MeV).

Nuclei N e, G, G,
40Ca 7 10 15.5 15.5
106Cd 11 10 13.0 13.0

92-1027, 11 5 16.5 13.5

Os-Pt 11 10 12.5 12.5

240py 13 10 12.9 12.9

(2.26)

=

tion of the !°°Pt nucleus, with a basis size corresponding
in the spherical case to 11 major shells.

The simultaneous solution of the Hartree-Fock-type
and BCS-type variational equations is performed itera-
tively. After each Hartree-Fock iteration, a system of
three equations is solved: (a) the gap equation (2.17), (b)
the particle number conservation equation n =3 ;v7, and
(c) the equation (2.18) yielding A,.

In order to achieve a convergence, in such an iterative
process, one should first guess a A, value and solve the
nonlinear equations (a) and (b) to get A and A,, from
which through equation (c) a new A, value is determined
and so forth. Knowing X, and 7»2, one evaluates through
the corresponding u,’s and v;’s, the ¢, and g, quantities
according to Egs. (2.21) and (2.22). From the latter one
deduces—the Lagrange multiplier u being known—A,
and A, by proper substraction from A, and X,. In prac-
tice it turns out that g, and ug, are significantly smaller
than A, and X,, and therefore A, ~A, as well as X,~A,.
Finally, one computes the corrected energy and the
corrected quadrupole moment from Egs. (2.20) and
(2.25).

The matrix elements of Q,, involved in the computa-
tion of Q, and Q, have been calculated analytically in the

E(MeV) 2 196F>t

Q=4200tm

-15295 |

-1530.0

-1531.0 | N |
\\\\_////
-1531.5 ; , ,
0.48 0.49 0.50 0.51 0.52
b(tm')

FIG. 1. Convergence of the total HF plus BCS energy E in
MeV as a function of the usual monopole basis parameter b in
fm~!. The solid (dashed) line corresponds to unprojected (pro-
jected) calculations for a given value of the mass quadrupole
moment Q (namely, Q =42 b).
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deformed harmonic oscillator basis according to the
method of Ref. 27. Incidentally the validity of the evalu-
ation of expectation values of one-body operators in the
BCS wave function by numerical integration over the
density function through a Gauss-Hermite and Gauss-
Legendre method (which is current practice in such
Skyrme Hartree-Fock calculations on a deformed oscilla-
tor basis) has been checked. Indeed, comparing the result
of such an approximate integration and the trace, in our
basis, of the product of the density matrix by the Q,,
operator yields equivalent results.

IV. RESULTS

A. An illustrative example: the “°Ca nucleus

The doubly magical “°Ca nucleus is well known to have
a spherical equilibrium solution. It corresponds to a
trivial BCS solution—i.e., with A, =A, =0—upon using
realistic G values.?®?® Figure 2 shows the neutron and
proton gaps obtained when taking into account the
Lipkin-Nogami corrective terms. For the spherical equi-
librium solution, the approximate projection has had the
effect of switching on the pairing correlations. Indeed,
we have then obtained for Q =0 nonzero neutron and
proton gaps (dashed lines), whereas the usual BCS treat-
ment (solid lines) leads to the trivial solution. Out of
equilibrium, the change is not so important: the project-
ed and unprojected gaps are of the same order of magni-

2 1 T v L) v
40
Ca
Y ————
g 2 .-,_____-___.“__' __________ ,-~~\:
Q
<9
14
oi 2 A A A
-1 o 1 2 3 4
Q(b)

FIG. 2. Neutron A, and proton A, gap energies in MeV as a
function of the mass quadrupole moment Q (in b) for the “°Ca
nucleus. Solid lines show the standard CHF plus BCS results
while the dotted lines correspond to calculations including the
Lipkin-Nogami corrections.

tude, except for large prolate shapes near Q =4 b, where
they differ by a factor of 2. If now we consider the
potential-energy curve E (Q) with and without projection
(see Fig. 3), we notice as expected that projected energies
are lower than unprojected ones by 0.5-1.5 MeV. As a
result the trend of both projected and unprojected
potential-energy curves are found to be rather similar.?’

B. Transitional nuclei

Transitional nuclei are, by definition, very soft against
B deformation. A correct treatment of pairing correla-
tions appears quite mandatory. Nuclei in three different
regions have been investigated: (i) a typically soft and
weakly deformed nucleus, the '%Cd isotope; (ii) the sharp
transition from spherical to prolate shape in Zr isotopes;
and (iii) the well-known Os-Pt-Hg transitional region
with a particular study of the energy differences between
oblate and prolate minima (the so-called V,, energies).

1. A typical transitional weakly deformed nucleus:
the '9Cd isotope

We have calculated the complete axial energy potential
curve for the '%Cd nucleus known as a weakly deformed
nucleus close to the spherical *®!%192Cq jsotopes.*® Fig-
ure 4 shows the results without and with the Lipkin-
Nogami (LN) correcting terms. Without LN corrections
the equilibrium shape is prolate while an oblate secon-
dary minimum exists. The V,, energy is equal to 0.77
MeV. The spherical barrier height H (the difference be-
tween the energies of the spherical solution and the abso-
lute minimum) is found to be 1.3 MeV. Upon including
LN corrections, the equilibrium solution remains prolate
shaped (with Q =419 fm? instead of 435 fm?), but the en-
ergy difference between the two local minima decreases
by about 500 keV, now yielding ¥,,=0.27 MeV and
Hg=0.9 MeV. The two local minima become therefore
quasidegenerate and the !°Cd nucleus appears globally
more soft.

-3351

Q(b)

FIG. 3. Deformation potential energy curve in MeV as a
function of the intrinsic quadrupole moment Q (in b) for the
“Ca nucleus. The solid line shows the results for the standard
CHF plus BCS calculations while the dotted line corresponds to
calculations including the Lipkin-Nogami corrections.
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- 892

E(MeV)

-894

-896

-10

Q(b)

FIG. 4. Same as Fig. 3 for the '°Cd nucleus.

2. The shape phase transition in Zr isotopes

In HF plus (ordinary) BCS calculations, the isotopes of
Sr and Zr exhibit a sharp transition from spherical to
prolate shape below N =60, while the isotopes of Mo,
Ru, and Pd present rather a smooth transition.?! Arima
and Sugita’? have suggested that the particle-number pro-
jection could be important to explain this difference in
the behavior of such a phase transition (sharp versus
smooth).

Figure 5 displays the equilibriuth proton deformation
obtained in projected and unprojected axial HF plus BCS
calculations for the '02100:98,96.94.927 jsotopes. As a re-
sult of our calculations (see Table II), the fluctuations due

Bp Zr
0.4 | / 4
/
0.3 | 2 ]
0.2 | 1
e
0.1 L ]
0.0 . . P A
92 94 96 98 100 102 104

A

FIG. 5. Equilibrium proton quadrupole deformation parame-
ter B, as a function of the nucleon number A4 near the shape
transition for Zr isotopes. Solid circles (horizontal marks) cor-
respond to unprojected (projected) equilibrium solutions. The
solid (dashed) lines are only drawn to give the trend of the shape
transition in unprojected (projected) axial calculations. The pa-
rameters corresponding to the **Zr nucleus need not be included
in this systematical representation, since it is known that its
equilibrium solution breaks axial symmetry (as found in Ref.
3.

TABLE II. Effect of LN corrections on the proton axial
quadrupole deformation parameter 3, for the Zr isotopes under
study. The last column gives the variation in percent. The **Zr
isotope has a triaxial equilibrium shape in the calculations of
Ref. 31 while the present approach deals only with axial shapes.

A Without LN With LN Variation
100 0.375 0.381 1.6

98 0.323 0.319 1.3

96 0.209 0.208 0.4

94 0.142 0.139 29

92 0.0 0.0 0.0

to the particle number are rather small. Indeed, on the
usual B, quadrupole deformation parameter they never
induce a change higher than 3%. We are therefore led to
a conclusion at variance with what was suggested in Ref.
32.

3. The Os-Pt-Hg transitional region

This region has been extensively studied both experi-
mentally and theoretically (see, e.g., Refs. 33-35). Axial
calculations using the same force as here have been in
particular performed by Sauvage et al.,** where some nu-
clei (such as the '*®Pt isotope) present locally trivial equi-
librium solutions where one of the pairing gaps is vanish-
ing. We have searched for the possible effects of the pro-
Jection on ¥, energy differences.

Including LN corrections, V,, values generally de-
crease. They do it for instance by 350 keV in the !%6Pt
case, as shown in Fig. 6. These corrections, however,

Vpo ]
Z=78 Pt
10
0.5 2
0.0 i A A 4 A 1A
)
-05) i
2.04{. i
Z=768 Os
=

o ]

0.0 4 A 'l A1

-

-10L

FIG. 6. Energy differences V), in MeV between the prolate
and oblate local minima versus the nucleon number 4 for Os
and Pt isotopes. Open circles display the result of standard
CHF plus BCS calculations whereas solid circles correspond to
calculations including Lipkin-Nogami corrections.
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E (MeV)
-1530

-15835

\\ 4 /
\\ ST~ Q(b)
1 \‘1/ A A i 1 1
-20 -10 o 10 20 30 40 50

FIG. 7. Axial deformation potential energy E (in MeV) as a
function of the intrinsic quadrupole moment Q (in b) for the
9Pt nucleus. The dotted line shows the results of standard
CHF plus BCS calculations while the solid line corresponds to
calculations including Lipkin-Nogami corrections.

remain weak and do not exceed 500 keV. Nevertheless,
in such soft nuclei, the two local axial minima are almost
degenerate and such a projection on the particle number
may appear quite necessary for an accurate static descrip-
tion.

C. Superdeformation at low spin

1. Nonfissile nuclei

Recent calculations have predicted superdeformed
shapes in nonfissile nuclei at zero spin in the Os-Pt-Hg re-
gion.3 "3 Experimental evidence for a corresponding su-
perdeformed rotational band in *'Hg (Ref. 39) at low
spin (4#) has recently been brought up. It is therefore
important to check the stability of this shape isomerism
against the particle-number projection in CHF plus BCS
calculations.

We have performed projected self-consistent calcula-
tions imposing axial symmetry to one nonfissile candidate
for shape isomerism at zero spin,” i.e., the Pt nucleus.
Indeed, a large number of even-even Pt isotopes from
190pt to 219Pt exhibit a secondary prolate minimum at
Q ~4.5 b and lies at a few MeV above the absolute equi-
librium minimum. The depth of this secondary minimum

TABLE III. Effect of the LN correction on the properties of
the superdeformed isomeric state in the Pt nucleus. All ener-
gies are expressed in MeV.

196pt isomer Without LN With LN
Voo 0.4 0.5
Excitation energy 11.3 11.0
Second well depth 14 1.2

E(MeV)

240p,,

-1793

-1797

-1801 |

-1805

(¢} 50 100 150 200
Q(b)

FIG. 8. Same as Fig. 7 for the fission barrier of the ?*°Pu nu-
cleus.

depends strongly on the isotopic mass. In the !°°Pt case,
the second well is calculated rather deep (its depth is ap-
proximately 1.25 MeV). This is why this nucleus was
chosen as an interesting test case to see whether or not
the LN correction energies would be able to destroy such
a secondary well. Numerical results of our calculations
are summarized in Table III. As shown also in Fig. 7, the
second well subsists at the same prolate deformation and
with quite the same depth. We may therefore infer with
some confidence that the shape isomerism in nonfissile
nuclei at no spin found without LN corrections should
survive when including a proper particle-number projec-
tion.

2. The fission barrier of >*°Pu

In many calculations,”*”*? the fission barrier of the

240py nucleus has constituted a useful testing ground for
HF plus BCS calculations using Skyrme forces. As is
also well known, the Sk M * force,*? yields the best agree-
ment with experimental fission barrier heights. We have
therefore calculated the fission barrier of this nucleus
with this force in order to provide at such extreme defor-
mations, some results of our approximate projection
method. As for the %Pt nonfissile nucleus, the second
minimum takes place along the elongation axis at the
same deformation (see Fig. 8) without or with LN correc-
tions. The same conclusions hold for the whole fission
barrier: projected and unprojected energy curves are
found very similar indeed.

V. DISCUSSION AND CONCLUSION

The approximate Lipkin-Nogami projection method
developed in this paper for the microscopic total energy
in self-consistent HF plus BCS calculations has proven
very easy to handle. As shown here a rather arbitrary ex-
tension of its physical foundation can be made to yield
projection effects on expectation values of one-body
operators. As a result, however, these effects (evaluated
in this tentative fashion) are very small indeed for collec-
tive one-body operators as the quadrupole operator and
could be as well neglected. It would be desirable to com-



348 P. QUENTIN, N. REDON, J. MEYER, AND M. MEYER 41

pare the results of our approach with exact projection ap-
proaches. It should be stressed that it is of course an
essential fact that such projections should be made before
variation. If not there would be of course no way
through which a trivial solution would be corrected into
a more physical one. This remark applies a fortiori to
the approximate projection after variation approaches as
performed in Ref. 11, for instance.

The physical problem under study can be summarized
as follows. When evaluating, through HF plus BCS cal-
culations, an adiabatic path for a large amplitude collec-
tive motion, there are intervals for the collective parame-
ter where no other solutions than zero gap ones are
found. Therefore one is entitled to seek how a more
physical treatment of pairing correlations would affect
the conclusion drawn from such static calculations.

It is well known that the Lipkin-Nogami prescription
reproduces very well, even in the low-level density re-
gime, exact pairing calculations in restricted model
cases.?’ Even though the relevance of the latter for real-
istic nuclear systems is of course questionable a priori,
such a result provides, however, a reasonable theoretical
justification for the present investigation.

Practical calculations have been performed here per-
taining to three interesting phenomena: shape transition,
shape coexistence, and shape isomerism. In all three
cases, we have found that the location of extrema in the
potential-energy curves was almost not affected by the in-
clusion of projection effects. It is undoubtedly due to the
fact, which is the second finding of our calculations, that
relative energies are not affected much by these effects.
Yet, in some cases (as when studying shape coexistence) a
near degeneracy appears. There, tiny energy differences

might entail sizeable consequences for the (collective)
properties of the nucleus (e.g., for the sign of the intrinsic
quadrupole moment of its ground state).

A correct description of nuclear collective motion
should contain, of necessity, a consistent dynamical part.
The next step of this study should therefore be an assess-
ment of the effect of such an improved treatment of pair-
ing correlations on the solutions of the time-odd adiabat-
ic TDHFB equations of motion which are known*? to be
the dynamical counterparts of the CHF plus BCS
description of low-energy collective excitations. Indeed,
it is known (see, e.g., Ref. 42) that pairing correlations
play a very important role to determine the adiabatic
masses. One might therefore expect that the consequence
of such projection on these masses should be quite size-
able near spurious normal superfluid phase transition.
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