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The influence of nuclear rotation on pairing correlations is discussed using a simple solvable two-
level model. Exact solutions are compared to approximate ones obtained with the generator coordi-
nate method both with and without particle-number projection. The collective subspace associated
with the generator coordinates used has a finite dimension and it can be exactly separated from the
full Hilbert space of the generating functions. Analytical formulas for the norm matrix and Hamil-
tonian kernels are obtained. It is shown that the generator coordinate method improves consider-
ably the calculations based on the random-phase-approximation approach, in particular near the

critical frequency where the pairing gap collapses.

I. INTRODUCTION

Understanding the mechanism of the rapid changes
occurring in the nuclear structure has always been one of
the most fascinating challenges in nuclear physics. It
often happens that a well established and relatively well
investigated nuclear coupling scheme tends to change
suddenly under some external conditions in favor of an
entirely different picture. This is sometimes referred
(correctly or incorrectly) to as phase transition. Al-
though the initial and final states of such a transition are
relatively well understood the theoretical treatment that
follows closely the full transition process is, in general,
difficult to carry on and thus remains rather obscure.

It is, therefore, important to search for such an ap-
proach that remains valid not only before and after the
transition but is also able to carry on all the way through
the whole process of the change in the coupling scheme.
We intend to investigate to what extent the method of a
generator coordinate is able to play such a role. In par-
ticular, the often discussed but—in our opinion—not yet
fully understood process of the disappearance of the pair-
ing superfluid correlations in a fast rotating nucleus may
become a favorable test case. It has been established (see,
e.g., Refs. 1 and 2) that at low rotational frequencies w
the short-range pairing force is strong enough to produce
a coupling scheme which characterizes the existence of
static-type superfluid correlations between the nucleons
(also referred to sometimes as the Cooper-paris conden-
sate). In the well known BCS approximation such a cou-
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pling scheme is represented as a nonvanishing value of
the energy-gap parameter A. Furthermore, the lowest ex-
cited 0" states can be interpreted in many cases as some
mixtures of shape and pairing vibrations in the superfluid
system. They are successfully described by the random
phase approximation (RPA).

On the other hand, at very high rotational frequencies
o the static-pairing coupling scheme seems to be des-
troyed (A =0) due to the Coriolis and centrifugal interac-
tions.® Nevertheless, one may attempt to describe some
of the low lying excitations of the system as dynamical
pairing vibrations* ¢ possibly modified by the influence
of the long-range component of the nucleon-nucleon
force. Again, the RPA method may present itself as a
good description of the resulting coupling scheme.

At some—perhaps narrow—region of the rotational
frequency o we expect the static pairing coupling scheme
to disappear in favor of the rotating mean field with par-
ticle rather than quasiparticle elementary excitations.
Unfortunately, it turns out that in the transition region
the RPA formalism becomes entirely helpless in giving
account of what is going on in the actual nuclear system
(cf. for example Refs. 7 and 8). There have been some at-
tempts made to overcome this difficulty and to under-
stand the nuclear structure in this transition region. For
example, in the calculations of Ref. 9 the transition re-
gion has been analyzed in terms of the boson-expansion
technique. The approaches of this type brought rather
satisfactory results in the framework of a simplified nu-
clear model. Nevertheless, they may become rather
difficult when going over to a more realistic description
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of the nucleus. Recently, an extensive analysis'® of the
possible disappearance of pairing correlations has been
performed in terms of the fluctuations in the pairing field
induced by a fast rotation. An updated list of relevant
works on this subject can be found therein and in Ref. 11.

The pathologies of the mean field approach around the
pairing collapse region can be cured by means of projec-
tion techniques. The particle-number projection method
before variation (PNP) has been used for many years for
description of pairing correlations at high spins (see, e.g.,
Refs. 10-12 and references quoted therein).

Another possible way for treating the pairing problem
is offered by the generator coordinate method (GCM). In
this case the most important fluctuations are treated fully
quantum mechanically without restriction to small ampli-
tudes, like the RPA method. In the absence of rotation
the GCM was proven to give a good description of the
lowest pairing excitations.!3 ™2

The aim of this paper is to investigate the GCM as a
candidate for a formalism that is able to replace the RPA
and carry on the adequate description all the way
through the transition region. We intend to lead our
analysis in the framework of a solvable two-level nuclear
model** 26 where both the mean field [Hartree-Fock-
Bogolyubov (HFB) plus RPA] and the exact solutions can
be easily found and employed. Having at our disposal the
simple model with easily ac-cessible exact solutions we
thus hope to be able to estimate to what degree is the
GCM capable to provide the adequate description of the
process involving rapid changes in nuclear structure.

Within the model considered in this article the GCM
can be performed explicitly which is rather unique case.
The collective subspace has a finite dimension and the in-
tegral kernels have very simple analytical forms. Because
all the steps of the GCM can be clearly show in the sim-
ple model, we think that it contains a big dose of didac-
tics. For this reason we discuss it in a rather detailed
way.

In Sec. II the GCM formalism is shortly reviewed.
Section III presents the different variants of the model
and the related numerical results are given in Sec. IV. Fi-
nally, the conclusions are contained in Sec. V.

II. THE GENERATOR COORDINATE METHOD

In this section a short sketch of the GCM is given.
Our presentation and notation follows mostly that of Ref.
12.

The GCM trial wave function W is based on the super-
position of the wave functions ®(a) (generating func-
tions) depending parametrically on a set of continuous
parameters (generator coordinates) a:

v= [ daf(@o@). (1)

The weight function f (@) can be determined from the
Ritz variational principle, which leads to the integral
equation,

[da f@H(a,a)=E [daf@N@aa), )

known as the Griffin-Hill-Wheeler equation (GHW).?728

Here H(a,a') and N(a,a’) denote the integral kernels of
the Hamiltonian and the norm matrix, respectively. The
linear dependence of the generating functions requires
the orthogonalization of the ®(a) set which can be per-
formed using the so-called symmetric orthogonalization
method. In this method one has to solve the eigenvalue
problem for the norm matrix

[da'N@,aw, @) =nu @), 3)

where the eigenfuntions u; (@) form a complete orthogo-
nal set of functions in the space of the weight functions
f(@). By means of the eigenfunctions u,(@) having
nonzero eigenvalues (n; >0) one can construct the so-
called “natural states”,

1
|k )=—~— [ dau,(@)®(a), 4)
\/nk f g

spanning the collective subspace. The diagonalization of
the Hamiltonian projected onto the collective subspace
leads to the eigenvalue problem

2<k|H|k1>gk'=Ekgk ’ (5)
x
with
1
(k|H|k')=——= [ da [ da'u}(@)H(@,a u,(@’) .
ot il
(6)
The weight functions are finally given by
8k
f@a=3 —ula). @)
k \/nk ,

The formalism presented above can be solved analyti-
cally only for the simplest physical models. Therefore,
numerical methods have been developed!*?! to solve the
GHW equation. We apply here the method of the
discretization of the integrals. It resolves itself into the
formal replacement of the integrals by the sums over
whole set of mesh points, changing the integral equations
into the matrix equations. The diagonalization of the
norm matrix (3) allows us to construct the collective sub-
space spanned by eigenfunctions u, (@) having eigenval-
ues n; greater than given small positive number. This
procedure has to be repeated, taking more and more
mesh points for discretization, to obtain the convergence
in the eigenvalues E, (see also a recent paper®).

III. APPLICATION TO THE
SOLVABLE NUCLEAR MODELS

A. Description of the model

In this section we intend to apply the GCM to the solu-
tion of a simple two-level model. Our model consists of a
j =2 multiplet embedded in a prolate-deformed mean
field which produces a splitting of the multiplet into two
levels with m =+3 (upper level, energy +¢€) and m =+

(lower level, energy —e). The whole multiplet is repeated
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Q times. The number of particles filling these level is as-
sumed to be equal 2(} thus corresponding to the one-half
of all the available 4() states. As the residual interaction
we introduce a short-range monopole pairing force of a
strength G and a long-range quadrupole-quadrupole in-
teraction of a strength y that corresponds to the Y,, mul-
tipole component i.e., the one associated with the axially
symmetric 3 vibrations. In the present study two ver-
sions of the model have been employed. In the simpler
version (Sec. III B) rotation is neglected. In the second
version (Sec. III C) the familiar cranking term —wj, has
also been added. This term corresponds to the rotation
of the whole system with the constant angular velocity w
about a fixed axis in space (here: x axis). Finally, in Sec.
IIID the particle-number symmetry conserving formal-
ism is presented. The model employed in the present pa-
per becomes thus the SO(5) version of the model de-
scribed in Refs. 24 and 30 as applied to the cranking
model instead of that of a particle plus rotor. The same
version of the model has been used in Refs. 6 and 26 al-
though in the present case the Q-Q forces have also been
allowed [cf. Ref. 31 where also the Q-Q force has been
used, however, without rotation thus leading to the SO(4)
symmetry].

The model can be solved exactly by means of the group
theory and we shall take advantage of this by comparing
the exact solutions with those derived in the various ver-
sion obtained within the framework of GCM.

B. A simple version of the model (0 =0)

Let us begin our discussion with the case of a nonrotat-
ing system. This seems to form a good pedagogical intro-
duction to the more complex case discussed subsequently
in Sec. III C. In this case the only interesting feature of
the model is related to the competition between the pair-
ing force and the mean field as represented by a tendency
to locate the particles in the lowest possible energy levels.

First of all let us define the relevant ingredients of the
two-level model in this version. The matrix elements of
the pairing force are given by

with
91792~ 7433~ —qu=—4 . (10)

The above two-body matrix elements have now to be
completed by the one-body field. The single-particle ma-
trix elements of the two-level model are

€=€6=—6=—€,=€. (11)

In this variant, the two-level model is reduced to the
Lipkin model discussed in detail in Sec. 10.3 of Ref. 12.
In the case of the particle-hole-like interaction the Lipkin
model can be solved exactly using the GCM with the trial
wave function parametrized by only one generator coor-
dinate!? . In the case of pairing interaction one could
try to introduce the pairing gap as a generator coordi-
nate. However, it is more convenient to introduce
another parameter, an angle @, for this purpose. Indeed,
for the half-filled shells, the (u,v) coefficients of the BCS
wave function,

|®) = [T (u;+viefehlo) , (12)

obey the relations

12 (13)

where E =(e’+A%)'"2.
Thus, guided by the above relations it seems reasonable
to introduce the angle ¢ as

vlow=uup=cos32)—, uk,w=vup=sin%i , (14)
instead of Eq. (13). In the BCS approximation the angle
@ has a well defined value given by

A . A
tang i or sinp=-"-o" . (15)

In the next step one can calculate the integral kernels
N(@,¢') and H(¢,¢’). It turns out that in the case of the
two-level model the calculations can be performed explic-
itly and they lead to simple closed form expressions
analogous to those from'?

(16)

cos@ cos@’ 1

Timpq = —G sgn(l) sgn(p)5.8 - (8)
where M  denotes time reversed state m
[sgn(m )= — sgn(m)]. The antisymmetrized matrix ele-
ment of the Q-Q force writes

U (Igp;Q)z —X(qlpqmq “9149mp ), 9)

I
RRE
N(gp,¢')= |cos 52-?%
Hp,@") _ _ Q cos[(p+¢')/2] | _ 1
N(p,@') cos[(@p—¢')/2] 2 GQ 120

cos[(p+¢')/2] ?

—xq*Q20—1
Xq 2= o= /2]

2
sin[(@p+¢') /2] 4
cos[(p—¢’) /2] {

cos[(p—¢@')/2]1}%  {cos[(p—¢')/2]}?

(17)

The eigenfunctions of the overlap matrix (16) can be easily found as plane waves:
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1 .
&, = o explike) ,

with the eigenvalues

2Q
Q+k

=2
= 220

’

(19)

where k =—Q,—Q+1,...,Q. The collective subspace has, therefore, a finite dimension of 2Q+ 1. Consequently, the
matrix elements of the Hamiltonian (6) can be found in a closed form,

Hyo=—€fid 1t f 18 kri1)

G
_m{[40(Qz—k2)+2(392~Q—k2)]6k,k’—(29_ DU Sk +18k k=2 f i f —k +18k1+2))
—IXqH2AQP =KDy o+ (fifk 18k —2 xS =k 18k k42 (20)
I .
where component characterized by the correct number of parti-
les (N =2Q).
=0 Q+k+10Q—K)]". en °F

Diagonalizing the energy matrix (20) we obtain the
20+ 1 eigenenergies of our problem in the GCM approx-
imation. They should, in principle, be compared with the
eigenvalues of the exact solution. However, in the exact
solution of the two-level model we would like to identify
the collective subspace as corresponding to the states
characterized by the (Q+1) dimensional symmetric rep-
resentation of the corresponding SO(4) group (see, e.g.,
Ref. 31). In order to solve this discrepancy let us observe
that the GCM apart from the usual symmetry (following
from the hermiticity of the Hamiltonian),

H(p,¢')=H(¢',p) , (22)

obeys an additional symmetry. This symmetry is
reflected by the following feature of the Hamiltonian ker-
nels:

H(p,¢')=H(—¢@,—¢') . (23)

Thus instead of eigenstates (18) one can employ their
symmetric and antisymmetric combinations,

1

\I/(S)=———_—((D +P_,), 24)
Va0 te, ¢k

w‘,:’=—\/172(<1>,(—<1>_k) . (25)

It follows from the additional symmetry (23) that the
matrix H, ;. becomes block diagonal when transformed
to the new representation, i.e., the (21 + 1) representation
space of the GCM breaks down into two distinct sub-
spaces of the symmetric and antisymmetric states, respec-
tively, according to the schematic decomposition

2a+D=Q+1)a(Q) . (26)

It seems natural to keep only the symmetric part of
this space as its dimensions corresponds to that of the ex-
act solution of the model. Indeed, a closer examination
of the antisymmetric states of Eq. (25) exhibits their un-
physical picture: They do not contain the wave function

C. The full version of the model (070)

Let us now discuss the more general version of the
two-level model including, in addition to the previous
variant discussed above, the cranking term —wj,. The
corresponding Hamiltonian in the rotating frame
(Routhian) reads

H=H,, +H g +Hpp—0j, . 27

pair

In this case, the GCM becomes more complicated. We
shall employ the formalism of a transformation from the
one given HFB picture of quasiparticles characterized by
the creation and annihilation operators (aJr,a) to another
HFB picture characterized by the operators @,a).
This transformation is known as the Onishi formula
(Refs. 12 and 32). The quasiparticle representations
(@',a) and (@'f,a") correspond to the two different Bogo-
lyubov transformations,

o' AT BT |t 58
al= Bt 4 , (28)
and
Tt AIT BIT C+
o« |= |Bt o4 e | (29)

derive from the same picture of particle operators (c "o
Thus the transformation from one picture given by (28)
to another (29) can be accomplished by

+

a v vl|la'

vV U

) (30

a a’
where the transformation matrix

uv
vV U

can be obtained from the original Bogolyubov matrices as

U=4'4'+B'B",
(31)
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Vv=BTA'+ATB .

Having found the matrices U and V the straightforward
formulas for the overlap matrix and the integral kernels
of the Hamiltonian can be given:

(®'|d)=(detU)"*=[det(AT4’'+BB")]'?, (32)

< (I()(lr,ll:{lq,l()l:)) = Tr(eP(IO))+_21_Tr] Tr](P‘ lO)D-p(]O))
+ 1 Tr, Try(k*5x!1?) | (33)
where the three matrices p''%, x!°", and «''® are defined

as!?

p(lo)___B*( UT)—IBIT ,
KO =—4UN)7B'T, (34)
K(10)=B*(UT)—IA'T X

The meaning of the three terms occuring in (33) is usual:

Tr(ep''?)=3 epqp;",o’ , (35)
Pq
Tr,Tr,(p“o’Up“O))= 2 p(rrlt?)vlqmppﬁazlm , (36)
pglm
TrzTrz(K(Ol)*D-K(IO))= E K(If)n”‘vlmqu(p;m . 37

Impq

Here e denotes the one-body part of H” (i.e., the H, , as
well as the cranking term) while 7 denotes the residual
two-body interaction (the sum of pairing and quadrupole
forces).

Now, we have to specify the generator coordinates
relevant to a rotating system. The Bogolyubov transfor-
mation matrices corresponding to the Hartree-Fock-
Bogolyubov-cranking (HFBC) [or rather RBCS (rotating
BCS)] states have been given explicitly for the two-level
model in Ref. 6. It is seen that for the rotating system
one generator coordinate ¢ [corresponding roughly to the
pairing gap A, cf. Eq. (15)] is not sufficient since one also
has to deal with a nuclear rotation (characterized by the
angular velocity w). Thus we introduce now the two gen-
erator coordinates, angles @ and ¢ that define the Bogo-
lyubov matrices 4 and B. Using the abbreviated nota-
tion

—cos? F=cos? s=sin? s=sint
¢=cos%t, T=cos s=sint, §=sin} ,
2 2’ 2 2
we introduce the following parametrization of the ma-
trices 4 and B:

(38)

¢c —cO0 O
4 = 1 0 0 ¢ —¢C
Vim vy |l—-s =50 0|’
0 0 s 7§
(39)
0 0 s —7%
1 —s § 0 O
B,=—= -
7 v2 10 0 ¢ ©
co

Here, the first index v in both the matrices 4 and B runs
over the four values v=1,2,3,4 (2=1,4=3) characteriz-
ing the original states of the two-level model while the
second index j runs over the four solutions of the RBCS
equations, i.e., j = 1,2,1,2 in the notation of Ref. 6.

For the other Bogolyubov transformation the matrices
A' and B’ are built in the same way from the angles ¢’
and ¢’ instead of ¢ and . In the particular case of
RBCS and y =0 the new parameters @ and ¥ can be relat-
edﬁto the dynamical parameters of the two-level model
by

_Q_ 1 € 172
cOoS 2 =T/7 II+E s
sin£=L— Ato

2 V2 [E (E,+e)]?

v 1 12 (40)

€
= — +____ ,
sy =5 |1 EL
ol _ A-w

2 V2 [E_(E_+e)]"?

with

E,=[€+(Atw)])'?.

In the RBCS approximation the angles ¢ and ¢ have well
defined values given by the pairing gap and the angular
momentum equations:

tang+ tany= %, tanp— tam/:=—g—€(9— . (41)

Note that for ¢=1v Eq. (41) reduces itself to Eq. (15).
Now, in order to take into account the rotation one has
to add the cranking term (cf. Refs. 24 and 30) —wj,
where the operator j, couples only the states v=1 to
v=3 and v=2 to v=4 (observe that in this way we
neglect the signature splitting term which would couple
v=3 to v=4). The matrix representation of j, thus be-
comes

0 0 1 0
110 0 0 —1

Udw=511 0 0 o 42)
0 —-10 0

Relations (11) and (42) define the single-particle matrix
element e entering Eq. (35). More explicitly,

€pg = €50 —0(jx )pg - (43)

With all these data we are now ready to calculate both
the overlap matrix N(¢',¢¥';@,¥) and the energy matrix
H(¢',¢¥';9,¢). Below, only the final results are given:
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N(¢",¢¥';@,¥)= |cos cos

, (44)

¢
2

p—
2

H(¢, ¢, 0) —_
N ¥, @, %)

cos[(¢p+q>)/4 cos[(Yp+y')/2]
cos[(@p—¢') /2] cos[(t/J—l/)')/Z]

sin[(¢+<p')/ﬂ+ sin[(y+¢')/2] i
cos[(p—@’')/2]  cos[(yp—4')/2]

4 cosg cosg’ 4 cosy cosy’ +2 cos[(g—v) /2] cos[(¢'—¥') /2]
cos(p—¢') /2]  cos?[(y—y')/2] ~ cosl(@—@")/2]cos[(¥y—¢')/2]

cos[(@+¢')/2] 4 cos[(¢p+¢')/2]
cos[(p—¢@') /2]  cos[(p—1')/2]

sin[(p+¢')/2] _ sin[(¢+¢')/2]
cos[(@g—¢@') /2] cos[(¢y—9')/2]

1
4Gﬂ Q

I
2)(q Q[Q

+i sing sing’ 4 siny siny’ — sin[(@g—v)/2]sin[(¢'—9") /2]
cos?[(p—¢') /2]  cos’[(y—y')/2] = cos[(p—g')/2]cos[(Yp—4')/2]

_3 cos[(p+14')/2]

4 cos[(y—1')/2]

)
1 cos[(@—4") /2] cos[(p—9") /2]

2 cos[(@—¢@') /2] cos[(Yy—4') /2]
Now, similarly as in the case of nonrotating system one may observe that the overlap matrix can be diagonalized
analytically. The eigenfunctions become now the double plane waves with respect to the both parameters ¢ and -

cos[(p+¢')/2] 2+
cos[(p—¢")/2]

(45)

Q@)= ——-exp[t(k<p+l¢)] (46)
with
e, 0 0, Q
2_k_z, 2_1_2 , 47)

and the corresponding eigenvalues of the overlap matrix are

_@m) 8 o (48)
KT 0T ((Q/2)+k | [(Qr2)+]
One can now calculate the matrix elements Hy .. , of H(¢',¢';@,v) in the basis (46):
Hypy=—(et+io)gedy 18,1 +8 18,1 +10kx)
—(€—iw) (g — 1Ok i +18;, 1 +80; 1 18k k)
+HG —2xq )8k +18k 8k k2811 + 81 +1818, 1~ 28k k' T8k — 18k — 28k k281, + 81— 181281 1+ 20 &
+2(8x 810k k181, —1 T8k —181 - 18k k' +181,1r+1)]
G(Q+1)+2 Q)
[ g (8181 -1k k' —181, 1+ 18k 1818k k' +101 1 —1)
1 2 22 4kl
—4' (G +2Xq Y2k +2I°— Q%)+ G Q ——3Q Sk,k'sl,l' ’ 49)
[
where model which is now governed by the Lie algebra of the
Q Q 172 group SO(5) with the dimension +(Q+1)(Q+2) charac-
&= {—2—+k +1 —2——k (50)  terizing the symmetric representation. This discrepancy

can be solved again like in the simpler case of the nonro-
The dimension of the collective subspace is now (1+1)?;  tating system by searching for the additional symmetry in
see Eq. (47). This again exceeds the dimension of the cor-  the GCM energy matrix. Indeed, such a symmetry exists
responding space of the exact version of the two-level and is expressed by
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H(¢ . ¥;@,0)=H(—y',—¢"; —¢, —¢) . (51)

Owing to this symmetry one can split the representation
space into two parts, a symmetric one

1
\l/(s)_:
V20018, )
X[¢k,[(¢’¢)+¢)AI,Ak(¢’¢] ’ (52)

and the antisymmetric part spanned by the eigenfunc-
tions

1
Vi =5 [Pale )=, (el (53)

Again, as in the previous case of the nonrotating system
the symmetric subspace has the correct physical meaning
and its dimension 3(Q+1)(Q2+2) turns out to overlap
precisely with that of the exact solution. The antisym-
metric part can be neglected because W’} does not have a
component with the correct number of particles.

D. Particle-number symmetry conserving GCM

It is well known'? that the fluctuations coming from
the Goldstone modes (connected with the particle-
number nonconservation) can be taken into account ex-
actly after performing the particle-number projection

(PNP) before variation. The fact that the PNP method
takes care of the bulk part of dynamic pairing correla-
tions arises from the similarity between the RPA-like and
the PNP-like wave functions (see, e.g. Ref. 10). In the
case of the SO(5) model the PNP procedure can be per-
formed analytically’® and the corresponding result has
turned out to be very close to the exact solution of the
model.%?¢ In the GCM the superiority of the PNP gen-
erating functions over the standard HFB-like Slater
determinants has been noticed long ago.'*”!¢ However,
only very recently the particle-number conserving GCM
has been employed to the case of nuclear rotation.’> In
the calculations of Ref. 33 the order parameter A has
been used as a collective coordinate together with the
projected HFBC generating functions. Unfortunately,
because of the rather complex form of generating func-
tions the solution of the GHW equations cannot be car-
ried out analytically and the discretization method has to
be used. The simple SO(5) model can be, therefore, a
very good tool to investigate the usefulness of the discret-
ization method as the kernels of the norm matrix and the
Hamiltonian can be calculated analytically, as shown
below.

The particle-number projection of the HFBC-type
function can be performed by a simple multiplication of
the Bogolyubov coefficients B by a factor exp(—2i§) and
the integration over the gauge angle £, '?

N :L m 7 — .
PM®(4,B)) =~ [ T dEexp(iNE)|D( 4, exp(—2i€)B)) . (54)

Therefore, to calculate the overlap matrix,

N(A',B'; A,B)=(®(A',B')|P"|®P(A4,B))

_._1__ 2m : ’ ' —";
=5 J T dEexpNE(D( A", B')|D( 4, exp( —2i§)B)) (55)

and the Hamiltonian kernels,

H(A',B'; A,B)={®(A',B')|PYHPY|®( A4,B))

_L 27 . P A
=5 fo dEexp(iNE)(D(A',B")|H|D( A, exp(—2iE)B)) , (56)

one can use the same formalism as given in Sec. IIIC. Moreover, the same symmetry properties for the Hamiltonian
kernel hold here. After some lengthy calculations the kernels N (¢’,¢';,¥) and H (¢’,¢';@,¥) can be found. The over-

lap kernel is given by

N(g,¥';0,9)=F§(a,B)=(VaB)Py(z2)

where P, is the Legendre polynomial of the order of { and

a=cos(p_2‘p cos¢_2¢ , B‘—‘cos%gcos—‘@g—ﬂ, z

2k
m

2(p —k)
p—m+d

1
22p+1

p
k

Fi(x,y)=

4 k
2 2
k=0 m=0

The Hamiltonian kernel reads

(57)
_ la—8l
WVaB (58)
2p —k)
p—m—d||(TD" e (59)
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Hig,¥0.4) _ _ qp0-1(q,pla,—0QF ' (a,B)a
N(‘P',1/1'§¢,'/’) 0 ’ 1 0 ’ 2
—1GQYF§ Ya,B)a;+a,)+F{ Ha,Blas;—a,)]

— LGQ[FY %(a,B)as+ag+2a;)
+F 2(a,BNas+ag—2a,)+2F 2(a,B)as—ag)]
—1xq*Q*F§ X a,Blal — Lxq*Q[F] *(a,B)ag+ay+2a?)
+F$ %(a,Bag+ay—2a2)+2F Y Xa,B)az—ay)]
— 2xq*Q[F{ *a,Bap—ay ) +FY *(a,B)ay+ay)],
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(60)

where

a =a(@,¢;9,¥')= cos 2

Jb——;—@ cosi—%ﬂ-*— cos g cos Y+e

N (61)

a,=a,(@,@; Y= cos—‘w——z—ﬂ sin-qﬂz——lk—k cos—‘w—;—ﬂ sin?—;'ﬂ , (62)

a3=a%(¢7’¢;¢7”¢')’ a4=a§(¢»¢'§ —‘dj’ _d},) ’

2
as=as(@, @9, ¢ )= cos—‘d% cosg cosg’ +

COS‘L—Z—'ﬂ

(63)
2

’

cos cosy)’

+2005Lb_2¢ cos £=¢ cos‘p—d} cos‘p_l/}, ag=as(@,—v¥5¢9,—¢'), (64)

2 2

a7=as—2cos‘p_‘p cos y—¢ singo_d, sin¢_¢

2 2 2 2
PP ¥V Y G etY

2

ag=ag(@,@;¥,¥')=a?—2cos 5 cosT—

’ L) 1T
ay=a,(@ ¢, ¢¥')=—ai+as |- —

’

m m m
',__ ;——.— 7_+ !
) Py Ty ey Y

2 ag=ag(—9¢,—@;¢",¢¥'), (66)

+2 cos <P—2<,‘0 cos '/};dj

ap=—a,(—¢, —@;@",¢’) .

In the RBCS limit (40) the above formulas are consistent
with the PNP expressions of Ref. 26. The Griffin-Hill-
Wheeler equation (2) is then solved by discretization.

IV. SOME EXAMPLES
OF NUMERICALS RESULTS

In this section the main features of the GCM solutions
of different versions of the two-level model are discussed.
The first example illustrates the variant described in Sec.
IIIB, i.e., fio=0 case. The ground state energy in the
case of 1=2, y=0, is plotted in Fig. 1 as a function of
the pairing strength, G. The BCS solution and the result
of the RPA calculations® are also shown for comparison.
It is seen that the unprojected GCM energy behaves
smoothly around the critical region of G, defined as

_ €
crit _6 ’
whereas the RPA curve shows a singularity at this point.
At large values of pairing strength, however, the RPA

G (69)

-4.0 [~

-5.0 -

-6.0 -

=7.0 -

0.0 02 04 06 08 1.0

G

FIG. 1. The ground state energy of the two-level model as a
function of G. The remaining parameters are =2, e=1, »=0,
x=0. The solid line indicates the exact solution while the
GCM result (Sec. III) is indicated by a long-dashed line. The
BCS energy and the BCS+ RPA solutions are indicated by dot-
ted and short-dashed curves, respectively.
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solution lies closer to the exact one than the GCM solu-
tion. This result is by no means surprising. In the RPA
method the spurious made associated with the particle-
number violation has been removed® while in the GCM
case it gives an additional contribution to the energy
which increases with G (see, e.g., Ref. 15).

In order to illustrate the structure of the GCM func-
tion let us consider the generating function for Q=2:

|®,0=2)= sinzi;i+ coszglpffjw + VLE singP ]
X coszgl+ sinz%PI;-i—T/%sincpPIp o),
(70)
where
to_ 1 & ot to L&t
Plow_T/_'i_ECSICAi’ Pup——\/—i‘zclicﬁ 71)
i=1 i=1

are the pair creator operators for the lower and the upper
level, respectively. The component with the good parti-
cle number (N =4) reads

|D,0=2,N =4)= sin‘*gipﬁi, + cos“%P,ﬁw

1 .
+ 5 sm2<pPlTowPIp

o), (72)

while the remaining part of the wave function (70) with
N =0,2,6,8 particles is proportional to sin(g).

In the limit of small G the weight function f(¢) is
peaked around ¢ =0, see Fig. 2, which corresponds to the
almost full occupation of the lower level and the spurious
component practically disappears. However, if G >>G ;,

08 —
0.6 —
{3\ L

Lo §
S04 F -
i = -
02 —
0.0 —

| 1 | | |

- 0 m

¥

FIG. 2. The weight functions f(¢) of the GCM ground state
of the simple model for different values of G. The correspond-
ing BCS values of @ (@pcs) given by Eq. (15) are also given in the
cases of small (ppcs=0) and large (ppcs~0.427) pairing.

the BCS theory gives a very similar occupation of both
levels, thus @=m/2. In this limit the spurious com-
ponent enters the wave function with a maximal weight
and, consequently, the difference between the GCM solu-
tion and the exact solution increases. The G =2 curve of
Fig. 2 represents the case of a strong pairing. The max-
imum of the weight is very close to the BCS limit of
@=0.427 given by Eq. (15). The transition point be-
tween these two regimes of pairing takes place at G ~1.1,
see Fig. 2, which is much larger than G_;, =0.5.

In the second example shown in Fig. 3 the influence of
rotation is illustrated using the GCM variant discussed in
Sec. IIIC. Here =2, G =0.65, and y=0. Like in the
previous case the RPA solution collapses around the crit-
ical frequency of the two-level model given by
2/3 172

G | | | (73)

G

9] €

crit — ]
crit

while the GCM gives a fairly good approximation to the
exact energy. It is worth noting that even the anharmon-
ic corrections to the RPA solutions obtained by means of
the nuclear field theory® (denoted as NFT in Fig. 3) do
not yield a better result as compared to GCM.

The two-parameter weight function is shown in Fig. 4
for =2, y=0, and G =2 (strong pairing at ®=0). The
diagram is symmetric with respect to the ¢ = —1 line as
a result of the Hamiltonian symmetry (51). At «=0 the
two symmetric maxima lie on the diagonal ¢=1. They
can be associated with the static pairing gap A, ;. #0.

At high frequency #iw =2.4 only one maximum is seen
on the @=—¢ line which can be associated with
Agic=0. In this case the reflection symmetry with
respect to the diagonal ¢ =1, related to the time reversal
invariance, is broken. The corresponding RBCS values
of generator coordinates [Eq. (41)] are indicated by the

L EXAC'E'\\\\\ i

3
] -6.0 —
-85 -

=2 £=1 G=0.65 x=0
/I I I T

0.0 02 04 06 08 1.0
how

FIG. 3. The lowest Routhians for the GCM, RPA, RBCS,
and exact solutions of the model versus rotational frequency w.
The parameters are =2, G =0.65, e=1, y=0. The curve in-
dicated as NFT contains anharmonic corrections to the ground
state RPA energy.
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T T T T T
Q=2, ¢=1, x=0, G=2, w=0
L h A

FIG. 4. The weight function f(g,¥) of the GCM ground
state of the two-level model. The left diagram corresponds to
©=0 while the case of a very fast rotation is presented in the
right portion. The stars indicate the corresponding RBCS
values of generator coordinates given by Eq. (41).

stars. They are quite close to the maxima of the weight
function.

The last example deals with the full version of the
model (Sec. III C). A special emphasis is put on the two
lowest excited states calculated relatively to the ground
state in the rotating frame. The energy values obtained
within the GCM are compared to the exact solutions of
the model and to the results of the RPA.>* Figure 5 gives
the variation of the energies as a function of rotational
frequency w for the following parameter set:

e=1, G=02, y=0.02, ¢g=1, Q=10. (74)

The variation of the pairing gap A vs w is also shown in

I[lllllll|l'llll]ll)l|l
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6.0 |- A —

. i
[ 40 [ —— -
RO - s Q=10
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00 of v X .
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FIG. 5. The first and the second excited state of the two-level
model as a function of #iw. The parameters are =10, G =0.2,
€=1, g =1, x=0.02. The RPA solutions (dotted lines) and the
GCM solution (dashed line) are compared to the exact result
(solid line). The corresponding RBCS pairing gap is shown in
the inset as a function of #iw. For more details see text.

the inset of Fig. 5. The present case corresponds to a situ-
ation of a “strong pairing”:?* the curve A= A(w) exhibits
a two-valued dependence in the narrow region of o
(w. <w<w,). The existence of such a region is related to
the peculiar choice of the parameter set (74). As seen
from the figure, the exact solution for the first excited
state presents the minimum in the neighborhood of ..
The RPA approach overestimates the energy of the
lowest excitation for low values of w. Furthermore, the
RPA energy, w,,, goes to zero for a value wg, slightly
greater than .. We may add here that there exist also
two gapless RPA solutions. A first one, 2A, corresponds
to the tow phonon state containing one addition and one
removal phonon. It starts at o, and rises very quickly
with o finally approaching the second excited state of the
exact version of the model. The second one, S exists for
all values of the rotational frequency. It gets a physical
meaning only for o >, and it corresponds to the quad-
rupole S vibrations depending essentially on the strength
x of the Q-Q force. Consequently, the RPA approach
does not provide us with a continuous description of the
physical situation through the region where the pairing
collapses. On the other hand, the GCM solution (dashed
line) appears as much better approximation. The varia-
tion of the GCM solution follows that of the exact ver-
sion and for the small and large values of ® the GCM
solution is also very close to the exact curve. The same is
also true for the next excited state. Through the whole
region the GCM improves the description as compared
to RPA. This appears to be a general property as we
shall see in the forthcoming paper.*® If the particle-
number projection procedure is employed the GCM solu-
tion discussed in Sec. III D overlaps with the exact solu-
tions of the model not only for the ground state
configuration but also for the all excited states.

V. SUMMARY AND CONCLUSIONS

We employed the GCM to the rotating two-level model
to discuss the behavior of pair correlations at high spins.
The main conclusions can be summarized as follows:

(i) The GCM reproduces fairly well the excitation spec-
trum of the two-level model. Unlike the RPA approach
which breaks down in the region of the pairing collapse
the GCM offers a smooth transition between the region
of a static pairing (pairing rotation) and the vibrational
region where the dynamical fluctuations dominate.

(i) The RBCS-like generating wave function
parametrized by means of the two generator coordinates
gives a satisfactory description of the lowest K =0 collec-
tive excitations of the model which can be related to the
pairing and quadrupole vibrations.

(iii) The dimension of the Hilbert space associated with
the symmetric representation of the exact solution of the
simple model is exactly the same as the dimension of the
symmetric collective subspace of GCM. The collective
GCM subspace spanned on the asymmetric wave func-
tions seems to be unphysical as it does not contain the
component with the proper number of particles.

(iv) The energy spectrum of the SO(5) model obtained
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with the particle-number symmetry conserving GCM
overlaps with that of the exact solution, if the sufficient
number of the grid points in the discretization method is
used. The detailed discussion of the convergence prob-
lem will be given in a forthcoming article.>
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