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The simple nuclear Ramsauer model is extended to include explicitly the isovector potential.
This model predicts large differences between proton and neutron total nuclear cross sections.
When this model is applied to isotope/isotone total neutron cross section differences, it gives a good
description of the measured data in the mass 140 region. Non-isospin-dependent differences in the
isotopic imaginary potential are observed which totally obscure the contribution from the isovector
imaginary potential. Additional measurements further from closed nuclear shells may yield useful

information on the isovector imaginary potential.

I. INTRODUCTION

Over 35 years ago Lawson' interpreted maxima and
minima as a function of energy in total neutron cross sec-
tions in terms of a very simple model and further exam-
ination of the details of this model has been carried out
by Peterson and McVoy. Peterson used the term nu-
clear Ramsauer effect to describe a single "average"
phase-shift approximation which had the same form as
the well-known low-energy electron scattering interfer-
ence phenomena known as the Ramsauer-Townsend
effect. The interference properties of the nuclear Ram-
sauer effect have been used recently by Gould et al. to
elucidate the differences between the real and imaginary
parts of the two-body spin-dependent force. It was
Gould's work which motivated the extension of this sim-
ple model to include isospin.

We begin by briefly describing the nuclear Rarnsauer
model. We then apply it to the high-precision total
cross-section data set of Camarda et al. to assess the
phenornenological utility of the model. We next explore
a logical extension of the model to include isospin. The
effect of the isovector potential on precision isotopic total
cross section is then estimated and compared to experi-
ment.

Before proceeding with our discussion it is important
to note that optical-model calculations give a reasonable
account of all the data presented here. The optical-model
calculations generally involve many partial waves and are
so complex that it is not easy to get a simple interpreta-
tion or intuitive picture of the basic processes involved in
these interactions. It is our intent, in adding isospin to
this simple Ramsauer model, to gain a more intuitive un-
derstanding of these processes. This model does not re-
rnove the need for doing optical-model calculations, but
can be used effectively to guide choices of targets and en-
ergy regions of analysis for most eScient use of resources.
We point out that certain energy regions for specific tar-
gets are much less useful than others in determining iso-
vector optical potentials.

II. NUCLEAR RAMSAUER MODEL

The basic picture of the nuclear Ramsauer effect, as
used by Peterson to describe neutron total cross sections,

is shown in Fig. 1. A neutron wave is incident on a nu-
cleus represented by a potential we11 of radius R. In-
terference between that part of the wave which has
traversed the nucleus and that part which has gone
around causes oscillations in the total cross section.

To be more precise we write the usual scattering ampli-
tude at zero degrees as

f (0')=ik(R+K) (1—ae'~)/2, (2)

where we have replaced e2™by ae'~ and where we have
taken the maximum value of l to be L =kR. Since the to-
tal cross section is related to the imaginary part of the
zero-degree scattering amplitude by

4n
o r = Imf (0'),

k

we obtain

o T
=2m.(R + 7 )~(1 —a cosP) . (4)

The average behavior of the total cross section is de-
scribed by crT=2tr(R+K) (the black nucleus approxi-
mation) and the effect of the coherent nuclear Ramsauer
effect is reflected in the (1—a cosp) term. The argument
of the periodic term, p, can be understood in terms of the
change in phase of a wave scattered at the nuclear surface
and passing through a medium with an index of refrac-
tion, i.e.,

P= 4nR (k;„—k,„,)

when —', R is the average chord length of a neutron passing
through the nucleus, n is an index of refraction, k,„, is
the wave number outside the nucleus, and k;„ is the wave
number inside the nucleus. The coef5cient a represents
the absorption of the incident wave and in this crude
model is given by

—W'R+2m /fi'tr E+ V
7

f (0')= g (21+1)(1—e ') .
2k, o

In our simple model of Fig. 1, if we take nt independent
of l we can easily sum over l to obtain
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FIG. 1. Schematic representation of the Ramsauer process.

A neutron wave is incident on the nucleus represented by a

square-we11 potential of radius R. Interference between that

part of the wave going through the nucleus and that part which

has gone around causes oscillations in the neutron total cross

section.
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where W is the average absorption (imaginary) potential,
R is an appropriate nuclear dimension, and V is the real
potential.

At first glance our assumption that gI is independent of
I seems unrealistic. However, McVoy found, via
optical-model calculations, that the peak in the total neu-
tron cross section was due to many partial waves passing
downward through 90' at approximately the same neu-
tron energy, i.e., at least at the peak of the total cross sec-
tion several partial waves do have approximately the
same phase. Secondly, if we assumed an amplitude
dependence of a on l this would be subsumed in our
empirical model by adding an additional energy depen-
dence to a. Also, assuming the nucleus is "black" out to
some arbitrary radius, and then applying our model,
yields a renormalization of a but the form should still be
correct. Thus, we conclude that although the assump-
tions used to derive our simple model are not well met,
the empirical form of the total cross section is rather
robust against reasonable variations in parameters.

FIG. 2. The quantity aT/2m. (R+K) is plotted versus the
square root of the neutron bombarding energy. R is taken from
Ref. 3 as 1.35A' '. The data are from Ref. 7. Our phenomeno-
logical fit is shown as the solid curve.

12

III. FITTING TO PRECISION DATA

For ' Ce, Carnarda et al. have measured the total
neutron cross section over the energy range of 2 —60 MeV
with a relative error of between —,

' ——,
'

%%uo and with an abso-
lute uncertainty of 1.5 —2%%uo. We first divide the mea-
sured cross sections by 2n.(R+K), where R is taken
from Peterson as 1.35A' fm. We then plot this nor-
malized cross section versus &E in Fig. 2. We choose
&E as the abscissa since this should be the primary vari-
able causing the phase change /3. From Fig. 2 we can
quite accurately determine both the zero crossings and
the peak positions. These are plotted in Fig. 3. The ab-
solute value of p can be calculated approximately by Eq.
(5) or absolutely by counting the number of maxima in
Ref. 3. We then generate p(&E ) via two linear least-
squares fits jointed at E„=9.7 MeV. For comparison we
also include a calculation of /3 using the normal energy
dependence of the real optical potential taken from Ca-
marda et al. To make a realistic comparison between
our fit to P and optical-model calculations, we would
need to use an optical potential for which dispersion

P 10—

5
0 2 3 4 5 6

~ E„(M.V-~

F$G. 3. The plotted values of p with their associated errors
are determined from the location of zero crossings, maxima, and
minima shown in Fig. 2. The solid lines are two first-order
least-squares fits joined at p=11.0. The smooth curve is ob-
tained from using a smooth optical potential derived from Ref.
7 and normalized at P= 11.0.
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corrections have been made, e.g. , the Fermi surface
anomaly. ' Since such corrections are not available to us,
we simply note that they are of the right sign and magni-
tude to account for the deviation between our fit and the
optical-model calculations.

By inspection it appears a=0.15 is a good approxima-
tion below E„-25MeV. Our fit to the data is shown as a
solid curve in Fig. 2. If we reduce the measured data by
1% (well within the absolute uncertainty of 1.5 —2%) or
if we increase the radius by —,'%%uo, the model fit to the data
is excellent. At first glance it may seem obvious that a
polynomial expansion (or any smooth function) for p
would produce a good At to the data. However,
remembering that the actual cross section is a sum over
contributions from many partial waves with different
phases and with slightly different energy dependence it is
not clear that even the form of Eq. (4) would be applic-
able at low energies. It is therefore somewhat surprising
and perhaps fortuitous that this model gives such an ex-
cellent description of the neutron total cross section at
such a high level of precision. Since our model is at least
phenomenologically useful we proceed to extend the
model to include isospin.

IV. EXTENSION TO INCLUDE ISOSPIN

In Gould et al. the spin-spin (ss) cross section is
defined as

o„=(o~—o, )/2, (7)

where o (cr, ) is the total neutron cross section for neu-

tron and target spins parallel (antiparallel). In analogy to
Ref. 4, we define an isospin-isospin cross section o;, as

o,,=(err err )/2, —

for, i.e., the effect of the imaginary isovector potential
varies as cosp while the effect due to the real part is con-
tained in the coeScient of sinp.

In order to illustrate the magnitude and energy depen-
dence of our isospin transfer cross section o;„we use the
Lane' form of the isospin dependent optical potential
and normalize the potential values to the neutron param-
eters taken from Camarda et al. Our potentials are
given by

1V —Z Vi
V =V + —0.3E

4 A

where Vo is the isospin independent potential, V, is our
real isovector potential, and N —Z is the neutron excess.
Similar equations hold for the corresponding imaginary
potentials. Assuming a constant value of V, =100 MeV,
we obtain Vo =51.3 MeV such that V = V„=47—0.3E„. The value of p„calculated using this potential
was shown plotted in Fig. 3. For the proton potential,
which we have assumed equal to V, we obtain
V~

= 55.6—0.3E~. We use this potential to calculate p~.
We use our empirical value of a„used in fitting the
Ce neutron total cross sections together with

Camarda's imaginary potential to determine an effective
path length for absorption inside the nucleus, i.e., R from
Eq. (6}. The value of R is only about 60% of the nuclear
radius which is quite consistent with the Camarda et al.
use of an imaginary potential peaked at the nuclear sur-
face. We then assume 8'& =50 MeV and finally obtain
a =0.08. Note the values of V& and 8', used here are
essentially equal to the Becchetti-Greenlees values. '

The results are shown in Fig. 4 where we have plotted
the quantity [cr;,/2m(R + K) ] ver. sus QE„. It is easy to
qualitatively understand these results. For V&=0 we

where ) and ( refer to isospin parallel (To+ —,') and an-

tiparallel ( To —
—,') projections. The cr r is our neutron to-

tal cross section and for large (E Z), cr sh—ould be fair-

ly accurately represented by the proton nuclear total
cross section, i.e., excluding Coulomb scattering.

If we assume that there are small changes in the real
and imaginary optical potentials due to an isovector po-
tential of the form I /A X t T( V, +i IV, ), then these small
changes in the real and imaginary potentials yield out of
phase contributions in the change in the total cross sec-
tion. A measurement of o.;„which is performed at an en-

ergy where a change in 8'has no effect on o.;„is sensitive
only to the real isovector potential and vice versa.

To show this explicitly we proceed as follows. Equa-
tion (4) can be written as

0.30
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o;,=n(R+K) a. ( —. 5cosP +eP sinP') . (9)

Thus, we explicitly obtain the sensitivity we were looking

o.T =2m(R + K } (1—a cosP } .

If we also assume V, and W, are small" compared to V
and 8' so we can express p =p (1+e), where e is the
change in p due to V, and likewise a =a ( 1+5) where
5 is a small change in absorption due to 8', , we obtain
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FIG. 4. Twice the normalized isospin transfer cross sections,
o.;,/n. (R+K), is plotted as a function of the square root of the
bombarding energy (in MeV). The dotted curve is for V, = IOO

MeV and W& =0, the solid curve is for V, =0 and Wl =50
MeV, and the dashed curve is for V, =100 MeV and W, =50
MeV.
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simply have two total cross sections with the same
periodic behavior (p„=p ) but with difFerent amplitudes
subtracted from each other. For 8', =0, we have total
cross sections of the same amplitude (a„=a&) but with a
phase difference, due to V, , subtracted from each other.
The magnitude of the total cross-section differences are
large, reaching values close to a barn at QE„=1.8 and
3.0 MeV' . Even though these differences are large, the
constructing of a nuclear total cross section sans
Coulomb from proton scattering data may require
significant corrections which will obscure the interpreta-
tion of the data and hence the extraction of new informa-
tion on the isovector potential. Data sets for energy-
dependent proton scattering cross sections do not appear
to be adequate to warrant further comparisons at this
time.

V. PRECISION NEUTRON CROSS SECTIONS
FOR ISOTOPIC TARGETS

Since one of our motives for extending the Ramsauer
model to include isospin was in looking for sensitivity to
the real and imaginary components of the isovector po-
tential, we now explore the sensitivity of total neutron
cross sections to the isovector potential. If we go back to
our original neutron total cross-section equation (4) and
differentiate with respect to a change in neutron number
we obtain

N+1~
&r ar 2dR

(1—a cosP}—da cosP+adP sinP .
2~(R+ X)' R+ ~

We again have an expression where the second and third

terms on the right-hand side have different periodic
dependences on p and we have the additional first term
which just has an A dependence. The derivatives of a
and p are now inore complicated in that they now have a
contribution due to the change in A as well as a contribu-
tion due to the change in X, which for a fixed Z, gives us
our isospin dependent term. Using Eq. (5) for p, assum-

ing the index of refraction is relatively constant, and in-

cluding only V& in addition to the real central potential

Vo, we obtain approximately

VI
dP= P 1 —3/8

(/V +E)(/V +E v~E—)

(12)

The first term is from the change in A due to the addition
of a neutron and the second term is due to our change in
(N Z). F—or V, of the order of 100 MeV, the second
term is roughly unity in our energy region, so isotopic
cross sections, i.e., differences between ' Ce and ' Ce,
have little sensitivity to the real part of the isovector po-
tential. Although this result is extremely discouraging, it
is equally obvious that if we fix X, e.g., the %=82 isotone,
and can vary Z, and hence A, by one unit, these two
terms which almost canceled will now be additive and the
change due to the real isovector potential should be com-
parable to that caused by our change in radius due to the
change in A. Fortunately Camarda et al. precisely mea-
sured the isotopes we need for such a comparison, i.e.,

nd "'Pr —"oC
Rather than fitting the measured total cross sections,

we will calculate the various contributions using our sim-
ple model and try to obtain a qualitative understanding of
the importance of the various terms. First we more pre-
cisely define the coefiicient in Eq. (11):

P5A 3 V, 5(N —Z) N —Z 5AdP= 1 —— 1—
3 A 8 (Q Vo+E )(Q Vo+E v'E )— A 5(N —Z)

(13)
a lna 3dQ= 5A 1 ——

3A 8 x—z ~i
8 A 8'o

5(N —Z) N —Z 5A1—
5A A 5(N —Z)

where we have assumed R =roA' . This leads to a
change in cross section due to the radius change given by

do
2m(R+P )

6A 2R
3A (R+K)

+aPsinP+alnacosP . (14)

We plot this expression in Fig. 5 as well as each of its
components. Since p in our energy regime is much larger
than Ina, there is little sensitivity to the cosp term.

In Fig. 6 we have plotted the measured total cross-
section difference for ' Ce —' La versus the square root
of the neutron bombarding energy. Also shown as a dot-

line is our calculation with reasonably standard parame-
ters, i.e., V& =100 MeV, VO=51.3 MeV, O'I =14 MeV.
We see the agreement is quite poor. We repeat the calcu-
lation increasing the real part of the isovector potential
by 50% and increasing the effective change in radius by
50%. Doubling the imaginary isovector potential
changes the phase by only a few degrees and produces a
slightly worse fit and is not shown. The 50% increase in
the change in radius produces a very reasonable fit over
the whole energy region except around 6 MeV. We will
return to this point later. Increasing the real isovector po-
tential by 50% produces a significant discrepancy around
9 MeV. However, if we shift the calculated curve by 10
mb (compared to an absolute uncertainty in the data of 8
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FIG. 5. The difference in total neutron cross sections for ad-
jacent isotopes (A ~ A + 1) due to a radius change proportional
to A ' ' is plotted versus the square root of the bombarding en-

ergy (in MeV). The dashed curve corresponds to the first term
in Eq. (11), the dot-dashed curve is the periodic term propor-
tional to sinP, the dotted curve is proportional to cosP, and the
solid curve is the sum of the three components.

mb), we find that it produces an adequate fit to the data.
From other considerations the 50% increase in radial
change is quite reasonable but the absolute uncertainties
in the data would allow V, values ranging from 100 to
150 MeV if there were no external constraints on the ra-
dial change.

In Fig. 7 we have plotted the ' 'Pr —' Ce total cross-
section difference shifted lower by 15 mb. The fact that
the unshifted data did not go below zero at about 9 MeV
would have implied that the real part of the isovector po-
tential is zero. On the other hand, with this displacement
of the data by 15 mb (compared to an absolute uncertain-
ty in the data of -8 rnb), we obtain fair agreement with
our best fit curve from Fig. 6. This also comes close to
satisfying the requirement that the two curves should be
identical.

In Fig. 8 we show the comparison on the ' Ce—' Ce
difference with this model. As we noted when discussing
Eq. (12), the isovector terms, real and imaginary, tend to
cancel the sinP and cosP terms from the radius change.
Therefore, the average cross-section difference is sensitive
only to the first term in Eq. (11) and effectively deter-
mines the radius change as —1.5 times that of a liquid
drop. The shape, however, is obviously incorrect. It is
quite clear that, in order to fit the data, we need to re-
verse the sign of W& and increase its magnitude by a fac-
tor of 5. At this point it should be clear that our assump-
tion that 8'0 is constant over these isotopes is not correct
and what we are observing is a variation in 8'0 in going
from ' Ce to ' Ce which is large compared to our irnagi-
nary isovector potential. This same effect is also visible
as a difFerence between the ' La —' Ce and ' 'Pr —' Ce
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FIG. 6. The difference in total neutron cross sections for
Ce —' La is plotted versus the square root of bombarding en-

ergy (in MeV). The dotted curve is calculated for standard pa-
rarneters. The dot-dashed curve corresponds to a change in ra-

dius increased by 50 Jo. The square boxes correspond to an in-

crease in the real isovector potential by 50% and an absolute

displacernent adjustment of 10 mb. The data are from Ref. 7.
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FIG. 7. Same as Fig. 6 for ' 'Pr —' Ce. The data from Ref.
7 have been displaced by minus 15 mb.
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FIG. 8. Same as Fig. 6 for ' 2Ce —'~Ce. The dot-dashed
curve corresponds to a 50% increase in the radius change. The
dotted curve corresponds to a change in the imaginary potential
five times as large as our standard isovector imaginary potential
and of the opposite sign. The data are from Ref. 7.

curves around 6 MeV. The measured difference is oppo-
site from what would be caused by a reasonable 8', and
is compatible with the level structure of the La and Pr
isotopes. The changes in radii required by our mode1 are
very similar to those extracted by Camarda et al. in
their optical-model analysis of these data. In Fig. 9 we
show the optical calculations for the ' Ce —' La total
neutron cross-section differences compared to our simple
model. The most significant difference between the opti-
cal calculations and our simple model is in the 6-8-MeV
energy region. This is largely accounted for by the al-
most factor of 2 larger imaginary isovector potential used
in the optical-model calculations. Note this larger poten-
tial produces poorer agreement with the data and also in-
dicates the sign of the imaginary potential change needed
to fit the data is opposite of that associated with the iso-
vector potential.

For the real central and isovector potentials, which
have volume Woods-Saxon form factors, it seems plausi-
ble to compare optical calculations with our Ramsauer
model using the same parameters. From Fig. 3, where we
used n=1.32 in Eq. 5, we see that our empirically deter-
mined P differs from the values using optical-model pa-
rameters only below 9 MeV (&E =3 MeV' ). In Fig. 9
this would move our calculated lowest-energy maximum
from v E =1.8 to 1.5 MeV'~ with the position of subse-
quent maximum and minimum above +E =3 MeV'~
remaining unchanged. Using the same isovector poten-
tial as for the solid curve, the extremes in the oscillations
in the dotted curve would be reduced by about 10%. No
similar argument for a simple correspondence between
parameters can be made for the imaginary potential be-
cause it varies from a pure surface peaked form factor at
low energies to a pure volume form factor at high ener-
gies. We conclude that although our model may give
semiquantitative agreement with some aspects of the
data, optical-model calculations should be used for quan-
titative comparisons.
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FIG. 9. Same as Fig. 7. The solid curve is the optical-model
calculation from Ref. 7, Fig. 7 I,'solid curve).

VI. CONCLUSIONS

The simple Ramsauer model fits the ' Ce total cross-
section data quite well. In the neutron energy range of
3-30 MeV the model reproduces the measured data with
a relative precision of —1% and within the absolute
quoted accuracy of 1.5-2%. Previous applications of
this model have produced semiqualitative agreement with
data. Our agreement is far better than anticipated, given
that we have used only four free parameters.

Having fit the precision total cross-section data, we ex-
tended the model to include isospin. The anticipated
phase sensitivity of the isospin transfer cross section was
demonstrated for small values of the isovector potential.
However, for realistic isospin potentials (V, —100 MeV
and 8', -50 MeV), even though the predicted cross-
section difference was almost 2 orders of magnitude
greater than the corresponding spin-spin case, there ap-
pears to be little sensitivity to the imaginary part of the
isovector potential. This coupled with the uncertainties
introduced when we include the Coulomb potential
renders this line of research as speculative.
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Using this same approach to analyze precision isotopic
total cross sections, we obtain a value for the real isovec-
tor potential which is consistent with other measure-
ments. However, the dominant effect observed is due to
changes in the nuclear radius and changes in the isoscalar
imaginary potential around the shell closure at N=82.
Both of these effects should be less important for data
measured on neighboring isotopes farther from closed
shells. Although difficult to perform, these measure-
ments ~ould be quite useful.

A seemingly surprising result, which is obvious in the
present analysis but is also found in the earlier analysis,
is the large change in Wo between neighboring isotopes at
a bombarding energy of 9 MeV. This is an energy at
which most global analyses have reached their asymptot-
ic region and show minimum shell effects. However, the
analysis of Grimes, ' which involved microscopic calcula-
tion of 2p-1h states, found significant shell effects persist-
ing at energies as high as 6 MeV. Extrapolation of these
results to higher energies seems to be consistent with our
current results.

This means we can examine changes in 8'o by analyz-
ing cross-section differences near closed shells, and that
to extract imaginary isovector strengths, we must stay far
from closed shells.

Two other conclusions follow from the simple analysis
here. As has been pointed out by McVoy, Ramsauer
modulations are due almost entirely to energy variations
in the elastic scattering cross section. Much smaller

modulations in the absorption cross section are attributed
to single-particle resonances, rather than the echoes
(passing through ~/2 in the negative direction) which
cause the Ramsauer peaks. From this, it seems immedi-
ately clear that analyses of elastic scattering on adjacent
isotopes will show minimal sensitivity to V&, because the
changes in elastic scattering caused by V, and those pro-
duced by variations in R will tend to cancel. On the oth-
er hand, corresponding analyses for proton elastic
scattering should show enhanced sensitivity, but will re-
quire the changes in radius to be well determined (by
electron scattering, for example) before unambiguous re-
sults for V, can emerge. Comparison of the neutron elas-
tic cross sections for isotones (equal 1V) would show
enhanced sensitivity to V& and the corresponding cross
sections for protons reduced sensitivity, again because of
cancellation effects.

The present analysis con6rms the conclusions reached
by Camarda et al. Considerable information about the
optical model is available from neutron total cross sec-
tions. Use of simple Ramsauer based analysis can help
identify limits on sensitivity, reactions, and energy re-
gions.
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