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Distorted-wave impulse approximation formalism in rnomenturn:. pace including the averaging
over nucleon Fermi motion is presented for the case of nuclear pion photoproduction. Representa-
tive examples of the partial transitions on the '"8, "C, "C, ' N, and "N nuclei at several photon en-

ergies are compared with the data and discussed. This has enabled us to focus clearly on the
successes and limitations in the present understanding of the nuclear photoproduction field.

I. INTRODUCTION

The experimental data of good quality for the pion
photoproduction oA'light nuc1ei ', from He up to the oxy-
gen isotopes) that have appeared in the last five years'
strongly stimulated interest in the many-sided physics of
this process. Specifically, one expects that the reaction
with a well-defined nuclear final (bound) state, being free
of the uncertainties of the nuclear continuum calcula-
tions, may provide a way to understanding the photopro-
duction mechanism.

Comparing v ith the data the results of the recent cal-
culations one can see that several theoret&cal groups have
met similar serious difficulties (e.g. , strong and systematic
underestimation of the differential cross sections for the
' N(y, sr+ )

' C reaction at E ~ 250 MeV) in spite of
differences in the theoretical tools used such as the ele-
mentary photoproduction amplitude, treatment of the
633 isobar, pion distortion, etc. It seems to us that it is
important to surnrnarize for typical examples the points
of agreement, and,. maybe even more important, the
points where all calculations disagree with the experi-
mental data. We assume that such an analysis should be-
come a starting point for the forthcoming search of the
new physics still missing in our attempts to understand
the ( y, tr )reactions. —

To make our position clear, we should indeed present
some details of our calculations. We work in the momen-
tum representation. In this approach it is computa-
tionally easier to control several features of the calcula-
tion, such as the full momentum dependence and oA-shell
continuation of the elementary photoproduction ampli-
tude, the nucleon Fermi motion, etc. Our own early for-
mulation of distorted-wave impulse approximation
(DWIA) in the momentum space has received important
extensions. In our original version we have treated the
Fermi motion in the factorization approximation: in-

stead of averaging over the nucleonic motion we have
used the eff'ective values of the nucleon momenta. In the
present paper it is shown that the factorization is indeed
an excellent approximation valid in many cases with an
accuracy better than 1 —2%. There are, however, exam-
ples, where the genuine averaging cannot be avoided.

The important pion distortion eA'ects are now incor-
porated via th" momentum-space pion-nucleus optical
potential developed in Refs. 10 and 11. There the micro-
scopic first-order potential has been supplemented by a
phenomenological term depending on the nuclear density
squared. Such a potential is universal with respect to the
atomic mass number 4 ~ 3 ~ 40 and with respect to the
pion charge.

Finally we wish to mention that the K-matrix approxi-
mation used in Ref. 5 is now avoided and the nuclear
photoproduction amplitude is constructed with the off-
mass-shell extrapolation included.

In Sec. II we present the formalism of our calculation.
Section III contains an analysis of the representative ex-
amples of the partial (y, tr-) transitions in the p-shell nu-
clei. Conclusions and an outlook of the future work are
given in Sec. IV.

II. DISTORTED-WAVE IME'ULSE APPROXIMATION
IN THE MOMENTUM SPACE

A. Effects of the pion-nucleus interaction

The general m, omentum-space formulation of the nu-
clear pion photoproduction as given in Ref. 5 allows us to
take into accoun' not only the single-particle photopro-
duction mechanism but also via channel coupling the
multiparticle eftects due to the two-step processes such as
the virtual excitation and charge-exchange scattering.

Here we shall limit ourselves to a simpler version of the
theory. The D&'IA is constructed with the assumption
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that the dominant distortion e8'ects are due to the
coherent scattering of the pion in the spherically sym-
metric part of the pion-nuclear optical potential
("coherent approximation").

We shall use the version of DWIA based on the
Kerman-McManus-Thaler (KMT, Ref. 12) formulation
of the multiple-scattering theory. The pion photoproduc-
tion matrix T is

TI'r(qo, kk, )= UI' (qo, kk)

T'(q, qo) U/'r(q, kA, )+, (1)
(277)' 4 f (q p )—ef (q) +i 6

'

where U y is the plane-wave photoproduction amplitude
and BI(q)=E (q)+E„(q) is the total energy of the
pion-nucleus system. As it is usual in KMT, we have in-
troduced an auxiliary matrix T, which is connected with
the true scattering matrix T via the relation

3 —1T'(q qp) = T(q, qp) (2)

The method of solution and the construction of the opti-
cal potential

U.„(q,q. ) = U."',(q, q, )+ U.",I(q, q„B„Co)

+ ~c..l(q —
qo R)

are described in Ref. 11. The potential U,"„', is microscop-
ic and corresponds to the free pion-nucleon t matrix. The
potential U,' ', is proportional via phenomenological pa-
rameters Bp and Cp to the Fourier transform of the nu-
clear density squared. In Ref. 11 it has been demonstrat-
ed that universal (though energy-dependent) parameters
Bo and Co can be found such that they allow us to repro-
duce, with very good accuracy, all available total and
elastic (differential and integral) cross sections for the sr+

scattering off light (4~ A 40) nuclei. The Coulomb in-
teraction in the momentum space is treated as suggested

The factor (A —1)/A eliminates double counting of the
pion-nucleon interaction acts included in the matrix U„.
The T' matrix is in practice constructed as a solution of
the Lippmann-Schwinger equation

U,~, (q, q')T'(q qo)T (q qo) = Uo (q qo)+ (2')3 qp
— q' +is

by Vincent and Phatak;' in Ref. 13 one can also find the
construction of the potential Vc,„,.

B. Nuclear photoproduction amplitude

In the basic photoproduction amplitude Uf' that
enters into Eq. (1) one disregards the distortion of the
pionic waves. The amplitude Ufy can be expanded over
the single-nucleon states a = (n—lj ) as

UI' (q, kX)= g (f~c,+c ~i )(q, a'~t a, kA, ),
where ~i ) ( ~f ) ) is the nuclear initial (final) state, q is the
pion momentum and k (A, ) is the photon momentum (po-
larization). The matrix element of the pion photoproduc-
tion operator is

(q, a'~t ~a, ki, ) = Jd p 4'.(p')t„r(q, kX, p)P (p),

where p(p') is the nucleon momentum in the initial (final)
state. The spin-isospin structure of t

y is written in
terms of cyclic components of the Pauli matrices cr and v

as

"t „(q,kk, , p)=(G, o''+AG2o'p+G30' p+G4)7 +—
,

where

+= +(r„—+ivy )/2=r+, /&2 .

The bound-nucleon wave function P in the momentum
space is

& 'p'= X ~ ~ ~ Rnl(p)Yim, (p)X~, km,
I s J

s I

where [ . ] is the Clebsch-Gordan coefficient and y
(g ) stands for the nucleon spin (isospin) wave function.

7

The other notation should be self-explanatory. The
coefficients Gti(1~P~4) define the specific features of
the elementary N(y, v)N' amplitude.

Collecting together formulas (5)—(8) one can see that
the decomposition

J,. J Jf T; 1 Tf
MMM NNN

l f i f

&& UJM f, (q —k)

defines new amplitudes

L 1 J
QJ'(t'i)'I ILtit (n'l', nl)+6LJ6M vtitjJ(LoI'iI&M (n'l', nl)

nln 'I'L P= 1
L P

(10)

where J=&2J+1,v, =k, v&=0, v3= —A, , and f, (Q)=exp( —,'Q~b2/A),

ItM (n'l', nl)=( —)™fd p R„ t (p')G&(q, kl. ,p)R„I(p)[ Yt(p)I33 Yt (p )]L, —M
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2 2

J J I' I

J /Jr(a', a),
I.

(12)

The nuclear structure information is fully contained in
I I

the coefficients QJ(ts) r which are easily connected with
the spin- and isospin-reduced matrix elements as

1F'(q, qo) = — Qfktf(q)&f(qo)T'(q, qo),2'
where the relativistic reduced mass

JM, (k) =kE„'(k)/6', (k)

fJNf(q) =E (q)E~f (q)/@f(q)]

(15)

where

All the results presented in this paper were obtained
with the Blomqvist-Laget (BL) photoproduction ampli-
tude. ' Being constructed in an arbitrary frame of refer-
ence this amplitude is very well suited for the nuclear
photoproduction calculations: the otherwise cumber-
some transformation between the pion-nucleon and
pion-nucleus center-of-mass systems is fully avoided.
One should note that the BL amplitude' that we use is
only partly unitarized. Namely, the most important 5-
isobar component of the amplitude is unitary by con-
struction, at the same time the corresponding Born terms
are left real. Criticism of this point has appeared in the
literature, see, e.g. , Ref. 9 and the references therein. The
corresponding correction term

of the y-nucleus [m-nucleus] system has been introduced.
The pion energy is

E (q)=(m„+q )'f~,

and the energy of the nuclear initial (final) state is

Ei(f) (Mii f) + 2)1/2
A A

with M„" ' for the nucleus rest mass.
We shall work with the partial pion-nucleus ampli-

tudes FI defined by the decomposition

F'(q qo)=4' g Vt. (q qo)Yc'. M (qo)Yt M (q) . (16)
L M

The on-mass-shell pion-scattering amplitude V't (qo, qo)
can be connected with the pion-nucleus scattering phase
shifts 5L as

)7

g [exp(i5J ) —1]tt),
J

1 A —1
(qo qo)= (e —1) .

2iqo A
(17)

where tz are the nonresonance amplitudes for multipoles
J, is, however, small for the transitions dominated by the
Kroll-Ruderman term since there even the dominant
phase shift 5o(10' for E &300 MeV. The opposite is,
indeed, true for the partial transition ' N~' C, con-
sidered in Ref. 9: the Kroll-Ruderman term is heavily
suppressed there and the importance of the correction
terms grows. With this reservation we consider the part-
ly unitarized BL amplitude' as an acceptable approxima-
tion. The explicit expressions of G&(1 ~ P ~ 4) for this
amplitude are given in Appendix A.

Taking the z axis of the coordinate system along the
direction of the vector k we can write for the photopro-
duction amplitude F~& the decomposition

F (qo k)( ) = g Vt (qo, kA) Yt* M (qo), (18)
L„M

where Pft' is the photoproduction partial amplitude. An

expansion of Vf', , fully analogous to Eq. (18) defines the
plane-wave photoproduction partial amplitude
Vt' (q, k)(. ). By substituting the three expansions into

rr

Eq. (1) one finds

C. Partial wave decomposition

(13)

For the numerical work we shall introduce the ampli-
tudes F, V, and F', which are connected with the
matrices T ~, U ~, and T' via the relations

QAf, (k)Jkf(qo)Tf„' (qo, k)(.),
2m

Vft' (qo, kk)=Vft' (qo, kA, )

Pt (q, qo)Vft' (q, kA, )

1T 0 JRf ( q ) 6f ( q 0 )
—8f ( q ) +i 6

(19)

Vf'r(q, kl, )= — +JR;(k)JNf(q)Vf (q, kA, ),1

2K
(14)

The amplitude Vft' is obtained from Eq. (14) as

Vft' (q, k)(, )=f dQ Yt I (q)Vf„'r(q, k)(. )

Mf +M, M, +))(,

Af, (k)JMf(q)

2m f 1

dx PL M (x)U '
(q, x,cp„=0,kk. ),—]

(20)

where x =cosO is an argument of the adjoint Legendre polynomial PLM(x). The x integration in Eq. (20) is performed
numerically by using the Gauss-Legendre quadrature. The treatment of the singularity that appears in Eq. (19) is de-
scribed in Appendix B.
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Finally, for the photoproduction differential cross section we have

de fi qp 2

g Ct.(qo R)Vft (qo kA)YL. ))t (qo)
MM A, Li f m

(21)

where M =M;+A. —Mf. The Coulomb factor
CL (qo, R) is obtained such that it assures the smooth

matching at the point r =R of the calculated (according
to the procedure by Vincent and Phatak' ) pionic wave
function with the known Coulomb function that de-
scribes the pion motion in the asymptotic region. It
should be noted that the factor CL (qo, R) indeed also

guarantees the correct threshold form of the differential
cross section as obtained for the case of two (short-range
plus long-range) potentials, e.g., in the monograph by
Taylor. ' In particular, for the s-wave component one
can write

order (m /mN), where m (m)v) is the pion (nucleon)
mass.

In this paper we shall display results for the nuclear
pion photoproduction cross sections calculated by nu-
merical integration of (11) performed without further
physical approximations and compare them, where ap-
propriate, with those obtained via the factorization ap-
proximation. Details of our numerical procedure are
given in Appendix C.

K. Comparison of the present method with other
pion photoproduction calculations

2&K
C()(q(), R) ~

0 e 277K

where a is the Sommerfeld parameter.

D. Averaging the nucleonic Fermi motion

(22)
Most traditionally' the DWIA calculations are per-

formed in the coordinate space. The pionic plane-wave
implicitly present in our Eq. (6} is there substituted by an
outgoing distorted wave yq( '(r) and instead of Eq. (6)

qo

one writes

W = Wf =[E (q)+E)v(p'}] —(q+p') (23)

Earlier, in Ref. 5, for example, we have treated the nu-
cleonic Fermi motion approximately. The method ("fac-
torization approximation" } suggested in Ref. 16 consists
in the substitution

k 3 —1

2„ (24)

and allows an evaluation of I(M in the form (1»P» 4)

I(M (n'i', nl)=&4m. YL'~ (Q)iL
L I.

X G&( q, k A, , p, (t)

X J R„&.(r)jL(Qr)R„&(r)r dr, (25)
0

where Q=k —q is the transferred momentum and jL(Qr)
is the spherical Bessel function. The error of the factori-
zation approximation has been estimated' as being of the

In Eq. (11) we have reached the computationally most
difficult point: after inserting Eq. (11) into Eq. (1) we face
the six-dimensional integration d q d p. Frequently, in
the analysis of purely nucleonic reactions, such integrals
are approximated by the expansion

t(p)=t(0)+(()t/()p)l p+O(p /m )

with the subsequent substitution p~ —i V„where the
operator V„acts on the wave function of the initial nu-
cleus. This is impractical here since the photoproduction
operator t z as a function of p has a resonance character.
This is due to the 6-isobar contribution to t of the
form ( W —M a +iM&I ) ', where

where q)' '(q, qo) is the Fourier transform of the function
'(r). Instead of our Eq. (27) one writes

q
' '*(q qo) =q ' "(q qo} . (29)

Now it is easy to see the connection of the DULIA
defined in Eq. (28) with the method we described. Trivi-
ally, for the plane wave solution q)( '(q, qo)~5(q —qo),

(qo, a'l"t, la, kA, )

=f d r g(r)q)' "(r)t(q, kk, , p)e'"'(t (r) . (26)

The operators q=iV and p= i ()7, act o—n the pionic
function q+

' and the initial nucleon wave function, re-

spectively. Technically, an ingoing solution q)(+)(r) is

usually constructed by solving the Klein-Gordon equa-
tion with some phenomenological optical potential and
then the relation

+(
—)e(r) —+(+. ) (r)

qo -qo

is used. The difticulties of such an approach are well
known: the inclusion of the nucleonic Fermi motion is
rather problematic, and, maybe even more important, the
momentum dependence of the t matrix appearing, e.g.,
in the form [(k —q) +m ] ', is diflicult to treat proper-
ly.

To avoid the mentioned problems, Tiator and %right
have calculated the matrix element (26) in the momentum
space as

(q(), a'lt. , la, k~ &

= fd'qd'I (().*(p')q' "(q q )t.,(q k~ p)0.(p»

(28)
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Eq. (28) becomes Eq. (16). For the distorted waves
represented as

T(q, qo)e'+'(q qo) =@q—qo)+
(2m) [@(qo)—C(q)+is]

(30)

E =E (q) (pl 2 +q2)1/2 (31)

and in the 6-resonance propagator the total energy 8'of
the m-nucleus system is chosen as W = Wf [see Eq. (23)].
At the same time Tiator and Wright use

one observes that an expression similar to Eq. (1) is ob-
tained from Eq. (28). They differ, however, by the factor
( A —1)/A, which eliminates certain double countings as
discussed in connection with Eq. (1).

Another, numerically more important difference be-
tween the two approaches is due to a different choice of
kinematic quantities. In the present calculation, we have
taken the pion energy as

W =W,:—t[E +E~(p)] —(lt+p) I' (33)

III. RESULTS

in the 5-isobar propagator. As for the comparison of the
two models, we wish to quote the detailed analysis of the
neutral pion photoproduction by Chumbalov and
Kamalov. ' They point towards an important priority of
the choice W= Wf(q, p) and E =(m +q )', where
the pion energy is not constant but rather it is systemati-
cally expressed via the integration variable q, the local
pion momentum.

Finally, we would like to mention that the Coulomb in-
teraction ignored in Ref. 6 finds an appropriate treatment
in our calculation, as explained in Sec. II C. From the re-
sults it is obvious that, though unimportant at the reso-
nance energies, the Coulomb interaction cannot be
neglected in the near threshold pion photoproduction.

ETW (~ 2 +q2)1/2 (32)
A. ' B(y,~+) ' Beg,

where qo is the on-shell (asymptotic) pion momentum.
Also they take

Here we have a 3+0~0+1(J,T, ~JfTf) transition,
this is a M3 multipole with the dominant [cr Y2]3 opera-
tor. Such a clean structure leads to the assumption that

20P

100

B(f e') ~tg

E( =183MeV

(a)

300

B(f,% ) Bp(g.s. )

200
EL~ - 260HeV

100

E p-
Cf

6
O 230M'

yX

t/t

r

Q

100

320Hz'

100 100

1 . . 1 . , I

30' 60' 90' 120' 8
I s a I

30' 60' 120' ec.m.

FIG. 1. DULIA pion angular distributions for the ' B(3+0) (y, m+ )' Be(0+1}reaction calculated with the Cohen and Kurath (Ref.
20) transition density at (a) E~ =180, 200, and 230 MeV; and {b) 260 and 320 MeV using the complete BL amplitude (Ref. 14). Nu-
cleonic Fermi motion is numerically averaged {full line), treated within the factorization approximation (lines marked with X's, see
the text), and disregarded (dashed line). Dash-dotted line corresponds to the results obtained without the 5-isobar component of the
BL amplitude. The experimental data are from Ref. 4 (triangles) and Ref. 21 (open circles).
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the corresponding electron-scattering data may provide
us with the necessary nuclear structure information in a
broad interval of the transferred momenta. The high
multipolarity of this transition suggests that the nuclear
interior should not strongly influence the results. In oth-
er words the behavior of the pionic wave function inside
the nucleus should not be important for our purpose.

The nuclear transversal density has been obtained from
the Cohen-Kurath wave functions, which in this case
describe the experimental form factor correctly. The
density is determined by the coefficient [see Eq. (12)]

, =0.582 and the oscillator parameter is b=1.66
F, both values are taken from Ref. 18.

The calculated photoproduction differential cross sec-
tions are displayed in Fig. 1. There are three types of cal-
culations: (i) nucleonic Fermi-motion disregarded, (ii)
factorization approximation [Eq. (24)], and (iii) averaging
over the nucleonic Fermi motion performed numerically.

Fully disregarding the Fermi motion (p= —k/A,
p' =p+ k —

q ) one obtains results considerably different
from those of the full calculation, as in (iii). The
disagreement grows with the pion energy. This is obvi-
ously connected with the growing role at higher energies
of the 6-resonance mechanism: the 5-isobar propagator
with its strong momentum dependence shows up in the
Fermi averaging. On the other hand one can see that the
factorization approximation (the curve marked with X's,
to be compared with the solid lines) provides differential
cross sections that differ at most by 1-2% from those
obtained by the numerical Fermi averaging.

Let us now compare the theoretical results with the
data. For the pion energies above the (3,3) resonance the
calculated differential cross section is in an agreement
with the recent MIT data. ' We miss, however, an un-
derstanding of the photoproduction mechanisms at lower
energies: the experimental data at E & 200 MeV learly
prefer the calculations with the 6-resonance term omit-
ted. A possible reason for it can be connected with some
suppression of the 5-resonance mechanism in the nuclear
medium. Similar suppression effects can be seen in the
calculations performed within the isobar-doorway mod-
el and delta-hole model for the coherent production of

mesons. A final answer to this problem can possibly
be found in a unified analysis (coupled channels) of the
neutral and charged pion photoproduction.

Another possible explanation of the observed suppres-
sion of the do /d fl at Er ~ 200 MeV could be connected
with the pion-propagator modification in the t-channel
exchange pion diagram, which is indeed specific for the
charged pion photoproduction.

As for the comparison with the results of other calcula-
tions we wish to comment that, intrinsically, our DWIA
method requires the extrapolation of the elementary am-
plitude into the of-energy-shell region in the form
E„=(m +q )'~ (q is the local pion momentum). With
such a choice our results differ from those by Tiator at
most by 10% at E ~260 MeV, the difference being al-
most negligible (2—3%) at lower energies. Taking the
pion off-shell-energy extrapolation as E =(m +qo~)'~

(qo is the pion asymptotic momentum), which corre-
sponds to Tiator and Wright's version of DWIA, we
indeed found even a better agreement of the two theories:
the difference between their and our result does not
exceed 5% at Er ~ 260 MeV and 7% at Er =320 MeV.
Such a nice coincidence of two rather different calcula-
tions shows that the ' B~' Be, photoproduction tran-
sition is rather insensitive to the construction of the tran-
sition operator and to the particular form of the pionic
optical potential.

g»g(~ ~+ )»g

In this partial transition one should consider simul-
taneously two nuclear transition densities, namely those
with L=O and L=2. Unlike the case of ' B, here the
magnetic-type form factor calculated with the Cohen-
Kurath wave functions does not reproduce the experi-
mentally observed second maximum of the form factor at
Q=2 F ', which is due to the interference of the L=O
and 2 components of the transition density. Dubach and
Haxton have suggested that the failure is connected
with the absence of the 2%co components in the Cohen-
Kurath wave functions. To avoid the configuration mix-
ing calculations in an extended space, Dubach and Hax-

TABLE I. Coefficients fJt Lg) T=] [LS coupling, see Eq. (12)] and the values of the oscillator constant b used in the calculation of
the reduced density matrix elements. Spin, parity, and isospin on the nuclear initial and final states are given in the second row. The
final nucleus is always in its ground state.

0+0 1+1

1
—

1 1
—

1

2 2 2 2

TW H1

1 0 0+1

H2

15N 15Q

1
—

1 1
—

1

2 2 2 2

0.101
—0.258
—0.239

0.016

0.577
0.390
0.186

—0.158
0.0
0.343

0.578
—0.051

0.193
—0.159

0.0
0.585

0.339
—0.033

0.041
0.435

0.418
—0.042

0.0
0.395

—0.180
0.0

—0.009
—0.497

0.577
0.817

—0.437
0.179
0.0

—0.799

b (E) 1.76 1.73 1.73 1.70 1.70 1.70 1.67

Reference 26 18I,'b) 33 33 33 30
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ton keep the form of the M1 transition density the same
as it is obtained for the pure p-shell model and treat the
coefficients that define the density as phenomenological
parameters. Being obtained by a fit to the data the
coefficients QJ(Ls) T are supposed to have absorbed the
effects of the omitted 2A'~ configurations. The density is
denoted as DH here and the corresponding coefficients

PJ~ls~ T are listed in Table I. Earlier we calculated the
differential cross sections for the pion inelastic scattering
using both the Cohen-Kurath and DH models. The cal-
culation shows a clear preference to the DH density.

The results of our DWIA pion photoproduction calcu-
lations performed with the DH density are shown in Fig.
2. Again the factorization approximation provides the
photoproduction cross sections, which agree very well
with those obtained via the full Fermi integration.

The calculated cross sections for the low pion energies
at backward angles go substantially lower than the exper-
imental results. This discrepancy should partly be con-
nected with the large interference term of the L=O and 2
components of the nuclear transition density. This

Born
x

Born Q

C(l', Z) B(g s )

E&
—186MeV

01

Born
yx

JD

10
LQ

Born. s

'x

x

225HeV

(jx

30'

/
I I ),1 v

60o g0 0
ec.m

FIG. 2. DULIA pion angular distributions for the ' C(0 0)
(y, m. +) ' B(1+1) reaction calculated with the DH transition
densities (Ref. 26). The full line (lines marked with X's) corre-
sponds to the complete BL amplitude (Ref. 14) and numerical
Fermi motion averaging (factorization approximation), dashed
line is for BL amplitude without the 5-isobar component. The
experimental data are from Ref. 28 for E~ = 186 MeV and Ref.
29 for E" =225 MeV.

means that the photoproduction cross sections are very
sensitive to the details of the pion-nuclear optical poten-
tial. Later we shall observe an almost identical situa-
tion for the ' N~' C, transition.

The assumption about the importance of the interfer-
ence effects in M1-type transitions can be checked in the
1+0~0+1 transition in Li. That M1 transition is
indeed similar to the cases considered here (A=12 and
14 nuclei); however, it is almost insensitive to the in-
terference phenomena just discussed. This is so since due
to the specific properties of the Li wave function, the
L=2 component of the M1 density is very small in Li.
These relations have found a direct support in the calcu-
lation of the corresponding electromagnetic form factor
and (y, m+) cross sections. If calculated with the p-shell
model wave functions they agree reasonably well with
their experimental counterparts.

The role of the 6-isobar term is at low energies of
pions very similar to that observed for the ' B~' Be,
transition. Switching off the b-isobar term of the elemen-
tary photoproduction amplitude decreases the cross sec-
tions at larger (8„~50') angles and increases them for
the forward angles. Such a behavior is general for the
magnetic-type transitions in the ' 8, ' ' C, and ' N tar-
gets that we have considered and is connected with the
cos8 dependence of the dominant contribution of the 6-
isobar term.

We have calculated the ' C~' Bg, photoproduction
cross section also at E~ =197 MeV (not shown in Fig. 2),
which can be compared with that obtained by Singham
and Tabakin' who have used the same nuclear wave
functions (DH density). The two theoretical curves differ
by less than 10% for 0„&90', the difference reaches
about 30go at the extreme backward angles. This
difference can be connected with the variation of the pion
optical potentials used in the two calculations.

C. ' C(y m )' N, and ' N(y, m )' 0
It is convenient to discuss these two transitions togeth-

er since in both cases we observe a combination of the
magnetic-type Ml transition with the electric-type EO
transition. What is more important, the conventional
shell-model wisdom suggests that the two transitions
should show very similar features since in both cases the
initial and final nuclear states are isobar analogs. This
means that the net effect of the (y, n ) reaction consists
only in "shaking Up" the isospin variables. Actually the
calculations corroborate such a picture: the EO transition
densities are practically the same in the two cases, and
for the M1 densities one sees only minor difference con-
nected with different weights of the L=2 component in
the A = 13 and 15 nuclei (see Table I). In view of this it is
clear that the calculated photoproduction cross sections
should appear very similar for the two target nuclei. At
the same time the experimental cross sections show a
qualitatively different behavior.

In the calculations we have used the semiphenomeno-
logical transition densities taken from Refs. 6, 18b, and
30. The M1 transition density has been constructed in
the course of analysis of the electromagnetic form factor,
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the static properties of the initial and final nucleus, and
the beta decay rate. The TW density is also constrained
by the then available (y, n) data. The EO component is
that of Cohen and Kurath. The respective coefficients

QJ(Is) T are given in Table I.
The calculated differential cross sections are displayed

in Fig. 3 and 4. Again, the factorization approximation
appears to be fully valid and can be used for the quantita-
tive discussion.

As for the comparison with the data one observes for
' C(y, rr ) a serious disagreement in the forward hemi-
sphere (8 (90 ). A possible explanation may again as in
the case of the ' 8 nucleus be connected with the need for
suppression of the 4-isobar term of the photoproduction
amplitude. Actually after switching off the 6 term of the
BL amplitude one obtains the cross section, which agrees
nicely with the data.

The conclusion just drawn is, however, strongly con-
nected with the choice of the underlying transition densi-
ties. The TW densities used above has been obtained via
a fitting procedure that is not free of criticism.
Singham' ' ' has pointed out that there is no nuclear
wave function within the 1p shell that could possibly pro-

duce them.
Starting with the wave functions of ' C, and ' N,

Singham' ' ' has derived four sets of the transition densi-
ties free of the above criticism. We have repeated our
calculation with his set I. In Table I the corresponding
coefficients are given, and the dotted lines in Fig. 3 show
the calculated (y, n )-differential cross sections. The
latter are in a qualitative agreement with the coordinate-
space result shown in Ref. 18(b). We observe, however, a
substantial disagreement with the data, especially for the
backward angles. The difference between the two calcu-
lations is connected with the change of the weights of the
L=O and 2 components of the M1 densities derived in
Ref. 6 and Ref. 18(b). A similar situation has already
been observed in Ref. 27 for the M1 transition in ' C.

Turning now to the case of the ' N(y, n. ) reaction one
can see that the calculation underestimates the data at
the forward angles roughly twice. Switching off the 5-
isobar contribution, which has helped in the previous ex-
amples, further deteriorates the comparison with the data
for 8 &90'. For the backward angles one does not see
any serious discrepancy between theory and experiment
in either of the two cases. Very similar results for these
partial transitions have been obtained by Tiator et al.
They differ from those displayed here by less than ten per
cent.
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The analysis of the ' C~' N and ' N~' 0 photopro-
duction transitions is strongly hindered by the absence of
any independent check for the corresponding EO transi-
tion densities, which cannot be separated out from the
electron scattering experiments and I.=O and 2 com-
ponents in the M1 transition density. Additional in-

dependent information can, however, in principle be ob-
tained from the experimental and theoretical analysis of
the ' C, "N(~+,n. ) charge-exchange reaction at low en-
ergies and elastic pion scattering. In particular the polar-
ization characteristics of these reactions may throw light
on the EO-M1 interference effects.

Here we also wish to illustrate the role of the Coulomb
interaction in the pion photoproduction calculations. As
can be expected, the attractive Coulomb potential, e.g. , in
the ' N(y, 1r ) reaction modifies rather strongly (c.f. a
dotted line in Fig. 4) the photoproduction cross section at
low energies and backward angles. With the growing en-

ergy and in the forward hemisphere the importance of
the Coulomb interaction indeed drops.

14N( y ~+ ) 14C

The results are displayed in Fig. 5. There are three im-
portant contributions to this transition. The components
[O'C3I Yp]& and [cr Y&]) are large but interfere destruc-

tively. The third one connected with the operator
[ Y, 8 V], does not contribute in the factorization approx-
imation and provides a nonzero contribution only when
complete Fermi-averaging is performed. This situation
indeed explains the substantial difference between the re-
sults obtained within the factorization approximation and
in the full calculation in this case.

The above mentioned strongly destructive interference
of the dominant matrix elements in this transition actual-
ly explains its very specific behavior: the photoproduc-
tion cross sections are in this case strongly sensitive even
to small variations of the corresponding wave functions.
In such a situation one can hardly expect a quantitative
agreement between theory and data; still we think that
some qualitative features can be extracted from such a
comparison.

In Fig. 5(a) we show the photoproduction cross sec-
tions for the low pion energies where the interference
effects between L =0 and 2 components are particularly
strong. Three versions of the nuclear transition densities
are taken from Ref. 33. There an attempt has been made
to deduce the transition density from the electron scatter-
ing experiments and static properties of the A =14 nu-
clei. The comparison of our calculated photoproduction
cross sections at E~ =173 and 200 MeV with data shows
that the Hl and especially the H2 version of the shell-
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and 320 MeV. The H1 nuclear transition density (Ref. 33) has been used if not stated otherwise. Data are from Ref. 4 (dots) and
Refs. 2, 3, and 21 (open circles).
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model density provides results close to the experiment.
In their construction it has been assumed, that the well-
known low value of the beta-decay rate in ' C is due to
the destructive combination of the one-body terms with
the meson-exchange current contributions. The third
density denoted as HF2 is constructed under the assump-
tion that the Gamov-Teller operator (L =0) is fully
switched off P, t&» ~, =0. Such a density when used for the
photoproduction calculations leads to the results that
contradict the data.

If the low-energy data can be described at least with
one nuclear transition density, the situation at the ener-
gies near the 533 resonance is fully different. Our calcula-
tions independently of the choice of the transition density
underpredict the photoproduction data by a factor of 2 or
more. Precisely the same tendency has been found in
several earlier theoretical works. Most elaborated among
them apparently is the calculation by Tiator et al. Our
calculated differential cross sections differ from their
DWIA results by 20% at E =200 MeV; the difference
reaches, however, 80% at the higher energies of the in-
cident photon. Being closer to the experimental values,
the results of Ref. 8 nevertheless still underestimate
strongly the high energy data. The reason for such a
failure in all available calculations is not clear. Our cal-
culations provide the photoproduction cross sections that
are close to those obtained by Tiator et al. within the 6-
h model. At E =230 MeV the cross section in its max-
imum differs by less than 10% in the two calculations.
Unfortunately, a detailed comparison is difficult to per-
form since the effects due to the 5-propagator
modification (in the elementary photoproduction ampli-
tude) are in Ref. 8 obscured by the additional effects con-
nected with the difference between the pionic wave calcu-
lated with the SMC (Ref. 34) optical potential and that
pertaining to the 6-h model. We expect that the last
effect is the most important and the pion wave function
obtained within the 6-h model is close to ours.

As was discussed in Sec. II B, the transition
N ~ Cg may receive additional contributions if also

the Born amplitude is properly unitarized.

IV. CONCLUSIONS

In the present paper we have developed a new version
of the pion-photoproduction DWIA in the momentum
space. It differs from the traditional coordinate space
methods since it allows a straightforward consideration
of both the pion and nucleon nonlocalities in the pho-
toproduction operator. Unlike the momentum-space
DWIA of Refs. 6 and 7 our method is well suited for the
simultaneous description of the pion scattering and pho-
toproduction reactions. In addition, we describe both
processes in the momentum space and this allows a fully
consistent consideration of the corresponding nonlocali-
ties.

Using as examples several photoproduction partial
transitions in the p-shell nuclei we have seen that the fac-
torization approximation of Eq. (24) can be used as a
highly effective tool for calculating the (y, ~ ) cross sec-
tions. Being numerically extremely effective, it allows the

estimates that differ in the majority of examples by less
than 2 —3%%uo from the complete calculation including in-
tegration over nucleon momenta. The approximation is
effective and precise in all transitions dominated by the
cr e (Kroll-Rudermann) term, which is independent of
the nucleonic coordinates. If the higher terms depending
on the nucleon momenta become very important due to
the suppression of the Kroll-Ruderman term (e.g. , the
' N, ~' C, transition) the factorization approxima-
tion ceases to be useful and the complete machinery of
the Fermi averaging must be utilized if one needs quanti-
tatively correct results. These cases are, however, easy to
separate from the very beginning.

Our analysis of several 1p-shell photoproduction tran-
sitions at different energies has shown that the difficulties
already observed in earlier calculations' are general and
most probably inherent in the DWIA method in its
present formulations. Actually, one cannot achieve a
consistent description of the data. Especially severe are
problems at low photon energies, E ~200 MeV. In two
cases (the ' B~' Be and ' C~' N transitions) the agree-
ment with data can be obtained by switching off the 5-
isobar term of the elementary photoproduction ampli-
tude. It is tempting to speculate that this experience may
suggest existence of some mechanism suppressing the role
of the 6 isobar at low energies. The "model" does not
help to account for the problems arising with the pho-
toproduction transitions in ' C and "N.

For higher photon energies, E )230 MeV, which
come close to the 6-resonance region, we suffer from the
lack of experimental data. The only examples studied ex-
perimentally for the p-shell nuclei, the cases of the ' B
and ' N targets show a different behavior. The pion pho-
toproduction on ' B is at high photon energies correctly
described within DWIA. At the same time the
' N(y, m+) reaction is notoriously known ' to produce
more serious problems for theory: the calculated (y, n+).
cross sections at E.. ~ 260 MeV systematically turn out
much too low by a factor 2 —3.

A further work should apparently go beyond the
DWIA frame if a consistent picture of the charged pion
photoproduction is to be developed. The most important
effects to be studied now are, in our opinion, (i)
modification of the b, -isobar propagator, (ii) modification
of the pion propagator in the nuclear medium, and (iii)
inclusion of the two-step processes, namely, those con-
nected with the pion charge-exchange reaction. The for-
rnalism described in the present paper is well suited for
that task.

ACKNO% LEDGMENTS

We would like to thank Dr. R. Mach for fruitful colla-
boration on an early stage of this work and Dr. A. M.
Bernstein and Dr. I . Tiator for very useful discussions on
the subject.

APPENDIX A: UNITARIZED VERSION OF
THE BLOMQVIST-LAGET AMPLITUDE

The photon polarization vectors ez (A, =+1) are
defined by the unit vectors e and e as
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ez= ———-(e„+ice ) . (A 1)

To express the BL amplitude in form (7}, we shall ap-
ply the formula

A.B= A.e B.e*. + A e&B.e& + A kB.k

valid for arbitrary vectors A and B if k =e, is the unit
vector along k. Then, using the notation as in the paper
by Singham and Tabakin' we can write the coefficients
Gp as

G&=G&(Born)+6&(b, ), P=1,2, 3,4,
where, for the (y, n )reac—tion

3/2eg meE
6, (Born) = +1+ —M' 'q k

2m~ E,(p„+E„)

(A3)

2q'~xq'&x p.v '&xq'&a

(k —q) —m E„(p„E„)—
FIG. 6. Pion photoproduction kinematics.

2q ez(E —
q k)

Gz(Born) =A, M 'Erq eq+
2 32m~ r (k —q}2—m 3 nucleon energy W in their center-of-mass system. We

have

px'eA k

(po —E )

Rq(W)=C„CrC, C3e '(W —Mq+iMqI ) (A7)

(A4)

3/2eg q'&A'&x py'&A'&x
63 Born =

2m~ (k —q) —m E„(p„E„)—
where C C,, = + —,'3/2 for the m. -+ photoproduction, and

Mz =1225 MeV. The coupling constants are

64(Born) = —
A, M'+'E~q eq .2eg (+)

2mN

2. 18Mz+m~
C) =0.343/4m /137 C3=

m+ ' m+
(A8)

The factor M'—+ ', again using the notation of Ref. 18 is

The width 1 of the b, 33 resonance and the phase factor g,
are taken according to Eqs. (20) and (30) of Ref. 14.

Pw Pa
2E, (p, E, ) 2Eb(pb —Eb)—

The 6-isobar contributions are

{A5)

APPENDIX B: PRINCIPAL VALUE INTEGRAL
IN EQ. (19)

After separating the singular part of the Green func-
tion in Eq. (19) one can write the photoproduction partial
amplitude in the following form

Gi(~)= ~R~(Q~ K~ —Q~ e~K~ e~»

G~(b, )= —
—,AR~Q~ eqK~ k,

(A6)

Ff'(qo }=Vf'(qo)[1+iqoV(qo qo) 1

q
—

qo
(Bl)

63(~ }= IR ~Q~.e~K~.&~

64(h) = ', iR~Q~ K—~—Xe~, .

where Qz=q —E p, /Mz and

where we have omitted the indices L„,k, and k. The reg-
ularization of the integrand is easily achieved by adding a
zero to (Bl) in the form P f (q —qo) —'dq=0. Fur-
ther, we perform the substitution q =(1+z)/(1 —z),
zE[ —1, 1], i.e.,

K~=k —(M~ —m~)p/m~ .

The quantity Rz( Wj depends only on the total pion-

P Jdq -2J dz
-i (1—z)'

1

dz J(z) .—1

(B2)
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Using the N-point Gauss quadrature with the weights W (1 ~j ~ N) one finds

& J(z, )W, 2 N q,'J(z, }W,
P (qo)=V (qo)+lqoV (qo)P(qo qo) I+I'qo g z 2

+ g z z
V (qj )P(qj qo)

qo ~ =& q eo
(B3)

APPENDIX C: NUMERICAL INTEGRATION IN EQ. (11)

6&=Gp" +iAG&'sing, 1~P~4, (Cl)

where 6&" ' depend on q, cos8„,k,p, cosy, and sin8.

The integration to be performed below can be
simplified by the following choice of the coordinate sys-
tern (see Fig. 6}. The z axis of the coordinate system is
taken along the photon momentum k and the spherical
coordinates of the pion momentum q are chosen as y =0
and 8 (i.e., q lies in the (x,z) plane). The choice y =0 is
indeed equivalent to the general case and does not
influence the result. The azimuthal and polar angles of
the momenta p and p' are (y, 8}and (y', 8'), respectively.

Further, we introduce the decomposition

Introducing

ZLM=[ &(p)1'&(p )lLM (C3)

one observes that ReZLM as a function of y depends only
on cosy and ImZLM is proportional to sing. Since

f f (cosy)sinydy=0,
0

we have the result

(C4)

Since we consider only the p-shell transitions, the
harmonic-oscillator nucleon radial function is always

1/2

Ro|(p}= '
p exp( —

2i b2p2} . (C2)
3 1T

I(M =( —)™f

deaf

d(cos8) f p dp[ReZI I 6&"—
A, lmZL I 6&'sing]Ro, (p)Ro, (p') . (CS)

N

f f(cosy&)dtp= g f(t, ),
g j=l

where

(C6)

(2j —1)m
t =cos (C7}

(Chebyshev integration) and

The optimal quadrature formulas used for the numerical
work are

N

f e I' F(p)dp = g F(p )co
j=1

(Cg)

where p are zeros of the Laguerre polynomials and co

the corresponding weights. The Gaussian quadrature has
been used for the 6I integration. In all three integrations
we have taken ten integration points. Comparing the nu-
merical results with the analytic ones obtained for the
terms linear in p (and using p= i V ) one c—oncludes that
the integration error is of the order 10 or less.
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