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The separable potential equations that describe the hypertriton when AN-XN coupling and non-
central NN and YN forces are included, are formulated. Numerical solution of the equations for
various potential models shows that A-X conversion in the YN interaction plays a significant role,
even in the lightly bound ~H. When the XN channel is formally eliminated, the dispersive energy
dependence of the resulting AN effective interaction is repulsive, whereas the resulting ANN three-

body force is attractive. The contribution of the AN tensor force is shown to depend upon the in-

clusion of the NN tensor force and the relative sign of the 'S&-'D~ NN and AN tensor coupling.
Also, a model which supports a XN bound state in the continuum appears to severely overbind the

„H system, indicating that such a phenomenon is not present in the K d ~ANm reaction.

I. INTRODUCTION

The deuteron plays an important role in conventional,
nonstrange nuclear physics by constraining our models of
the nucleon-nucleon force. The precision with which we
can measure properties of a bound system far exceeds
that possible in measurements of the NN scattering am-
plitudes. Because neither the AN nor the XN (spin triplet
or spin singlet) interactions possess sufficient strength to
support a bound state, ' it is the hypertriton („H) that
plays the important role of the deuteron in hypernuclear
physics. It is the ground state of the ANN system
(J =

—,
'+, T=O) that must be used to constrain our mod-

els of the hyperon-nucleon (YN) force. The sparse data
base for AN and XN scattering and reactions is inade-
quate to fully determine the YN interaction. Evidence
for charge symmetry breaking in the ground state of the
~He-zH isodoublet and the existence of a spin-flip excit-
ed state in that A =4 system also provide important con-
straints on our modeling of the YN force. However, an
improvement in the precision of our knowledge of the ~H
binding energy would significantly improve our con-
straints on YN potential models.

Exact equation calculations have played an important
role in elucidating novel points of physics not readily ap-
parent from simple effective two-body formulations of
few-body problems. ' '" The binding energy of a two-
body system decreases as the effective range of the in-
teraction becomes smaller, whereas that of the corre-
sponding three-body and four-body systems increases.
[This was the essence of the variational argument made
by Thomas to show that the nuclear force must have a
finite (nonzero) range or the triton would collapse to a
point. ' ' ] It is this property of few-body equation cal-
culations that appears to permit us to reconcile the
charge symmetry breaking exhibited by the low energy

Ap and An scattering parameters (the scattering lengths
and effective ranges) and the A-separation energy
difference observed in the A =4 isodoublet ground
states, ' We explore here, within a separable potential
model framework, the importance of AN-XN coupling
(A-X conversion) and tensor force effects in the xH sys-
tem.

The hypertriton is loosely bound, having a A-
separation energy of only

Bt,(t,H)=B(t,H) 8( H) =0—. 13+0.05 MeV .

Thus, one expects this molecularlike system to be most
sensitive to the long range aspects of the AN interaction.
However, because the A (T=O) and N (T=1/2) cannot
exchange a T= 1 pion and conserve isospin, there is no
one-pion-exchange mechanism contributing in first order
to the AN interaction. The longest range components of
the potential are due to the exchange of two pions or one
kaon. The shorter range 1-exchange potential does ad-
mit a tensor force component. However, it is largely can-
celed by that of the K'-exchange potential. (In contrast,
the m-exchange and p-exchange tensor force contribu-
tions to the NN interaction do not cancel so completely,
because the tr and p masses are very different. ) There-
fore, tensor force effects in the AN interaction are antici-
pated to be somewhat smaller than those found in the NN
interaction. '

On the other hand, AN-XN coupling effects are expect-
ed to be much more important in hypernuclear physics
than are NN-NA coupling effects in nonstrange nuclear
physics. The m~ —mz mass difference is only some 75
MeV, and the width of the X is small compared to that of
the b, because the Xm channel lies below the K -p
threshold. Formally eliminating the X channel from the
problem leads to an energy dependence in the resulting
effective AN interaction and to ANN three-body forces.
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Both of these effects are also the subject of current in-
terest in the nonstrange sector. '

Few ~H calculations for models that include AN-XN
coupling have been published. The study of Schick and
Toepfer illustrated the binding enhancement that
occurs when channel coupling is included. Since the
work of Dabrowski and Fedorynska, based upon the
simple Wycech model, improved separable potential
representations of the YN interaction, which model the
meson theoretic one-boson-exchange potentials of the
Nijmegen group, ' have appeared. We are unaware of
any detailed studies of zH involving AN( S& D, ) -tensor
forces. We wish to report here results of new separable
potential three-body calculations that pertain to the fol-
lowing: (1) The dispersion (energy dependence) that re-
sults from embedding the AN-XN potential in a three-
body system and reduces the ~H binding energy; (2) the
three-body force effect that is due to coupling XNN states
to ANN states and increases the „H binding energy; (3)
the AN( S~ D~ ) ten-sor force effect, although expected to
be an order of magnitude smaller than that due to the
NN( S, - D, ) tensor force, has an overall contribution
that depends on the presence of the NN ( S&- D, ) tensor
interaction and the relative sign of the tensor coupling in
the NN and AN potentials. We also show how the bind-
ing energy of ~H can be utilized to constrain the sign of
the coupling in the AN-XN channels. Although we can
solve the zH equations when the AN-XN coupling poten-
tials contain tensor terms, no such separable potential ex-
ists in the literature, and our model results are incom-
plete in that sense.

In what follows we formulate the required three-body
equations, which are equivalent to those of Faddeev in
their separable potential formulation, in Sec. II. Details
of the kernel of the Faddeev equations are given in Ap-
pendix B while in Appendix A we consider the change in
kinematics due to the A, X mass difference. The
hyperon-nucleon interaction models employed and nu-

merical results for the ~H system are presented in Sec.
III. We summarize our results and conclusions in Sec.
IV.

II. FADDEEV EQUATIONS FOR THE YNN SYSTEM

We consider the problem of a three-body system in
which one or more of the particles has one or more ener-
gy or mass eigenstates. In particular, we want to write
the equations for the YNN system where Y=A, X. With
the resultant equations we will be able to examine the
role of the AN-XN coupling in the binding energy of the
hypertriton. In particular, we would like to examine the
questions raised in the Introduction regarding this cou-
pling between the AN and XN channels. Here we formu-
late the Faddeev equations for the YNN system in order
to illustrate how the effects are isolated and their contri-
butions determined.

A. The two-body interaction

To reduce the computational problem for this system,
we restrict our results to separable NN and YN interac-
tions. In this way, we reduce the dimensionality of the
integral equations after partial wave expansion from two
to one. This in turn allows us to include the tensor in-
teraction in both the NN and YN potentials, yet constrain
the computational complexity to a minimum.

We partial wave expand our two-body potentials in
momentum space, as

(p~ V~p') = g (p~lnm rn, ) V&t (p p')(m, m nl'~p'),
nil'

m m,

where n =
I Sjt j stands for the total spin S, the total an-

gular momentum j, and the total isospin t, of the two-
body system. Here, 1 is the orbital angular momentum.
The state ( p ~ nlm, m, ) can then be written as

(p~lnm, m, &
=

m m ml
1 2

P1
1 2

(stm, szm, ~Srns)(lmtSms[jmt)(v&m, rzm, ~tm, }Yt (p}~s&m, ;szm, ) ~r&m, ;rzm, ) . (2)

Here, Is;, m, ] and [r;,m, I are the spin and its projec-
t I

tion and isospin and its projection for the ith particle.
For separable potentials in momentum space we can
write

Va (p,p ) g~i(p)CIt gnt (p )—

V=lg„)C„(g„l

with

[Cn ]I/
—CJ, [ Ig. & ]II ~It Igni )'

(3c}

(4)

(3a)

V"(p,p') = (Pl VIP'),

where

(3b}

Since we are dealing with coupled channels for 1%1', we
can write the above potential in matrix form as

This potential includes the coupling due to the tensor
force by admitting Ctt %0 for 1%1'. To include the cou-
pling between the AN and XN channels, we must general-
ize the above interaction to include this coupling. This is
most simply achieved by replacing l by [ r „r2,1 ]—:t',
where r, is the quantum number that specifies the mass
eigenstate of particle i. The corresponding scattering am-
plitude has the same partial wave expansion given in Eq.
(1) with V"(p,p')~t "(p,p', E), and t "(E)given by
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r "(E)=lg„)r"(E)&g„l,

T (E)=[C„'—G (E)] (6a)

[Go(E)],~
= [ & g I Go(E) lg & ]zz

=5 & g„ I
G (E)Ig„& .

where

=C„[I G—o(E)C„] (6b) To properly include the AN and XN thresholds, we must
include the rest mass of the particles in the energy E.
Thus we have

&plG (E)lp)=

for the N-N system

E — —m —mX Y for the N- Y system,

where the reduced mass of the YN system is

pzr =mzmr/(mz+m„) For. some separable poten-
tials, e.g., the Yamaguchi ' potential in the S, - D, NN
channel, the strength matrix C„ is singular, and we must
use Eq. (6b) to calculate r"(E).

In this way, we are able to evaluate the amplitude for
NN scattering, for rank-one potentials, including the cou-
pling that results from a tensor force. On the other hand,
for the Y-N system, we can include both the tensor in-
teraction and the coupling between the NA and NX
channels. In the event that we have both NA-NX cou-
pling and a tensor interaction, the scattering amplitude
t„(E) and r"(E) are 4X4 matrices. Although the above
analysis is for a rank-one separable potential in which one
of the particles can be in one of two states, the above pro-
cedure can be extended to higher rank potentials and the
case where both particles can be in any one of a number
of mass eigenstates. In the more general case the dimen-
sionality of the matrices increases. If we have tensor cou-
pling and both particles can be in one of two states, then
we would be dealing with 8 X 8 matrices.

Because the problem of interest is the three-body YNN
system, we must embed the above two-body amplitude in
a three-body Hilbert space. Introducing the spectator
particle notation, we can write the matrix element for the
two-particle (aP) amplitude in the three-body Hilbert
space, T„(E), in terms of the two-particle amplitude in
the two-body Hilbert space as

&q,;p, lT, (E)lp', q', & =5(q, —q', )&p, lr (E —e, )lp', &,

(9)

where er is the energy of the spectator particle including
its rest mass m (see Appendix A). In Eq. (9) we have
not included the spin and isospin quantum numbers;
thus, the equation is an operator equation in the spin-
isospin Hilbert space of the three-particle system.

B. The three-body equations

In this section, we would like to present a generaliza-
tion of the Alt-Grassberger-Sandhas (AGS) equations

where 5 &= 1 —5 &, T„(E)is the scattering amplitude for
the (aP) pair of particles in the three-body Hilbert space,
and Go(E) is the three-body Green's function

Go (E)= (E Ho)—
Here, Hp is the Hamiltonian for the three noninteracting
particles, and because we include the possibility of the in-
dividual particle being excited, this free Hamiltonian is of
the form

3 k2
'

3

Ho= g my+ = g mp+ +
2m p & &

2p 2v
(12)

where

m~kp —
m&k~ m (k&+k~) (m&+m ~

)k-

mr+mp m +m&+mr

and

mmmm
m (my+mr)

P = =PPr, v
mp+

' +mp+
(14)

The second half of Eq. (12) is the free Hamiltonian in the
three-body center of mass. Here, the masses of the parti-
cles are operators, and their values will depend on the
state on which the Hamiltonian Hp is acting, i.e., the
eigenstates of Hp are not only labeled by the rnomenta
k, spin s, and isospin ~ of the particles, but also by
their masses or excitation energy. This implies that the
eigenstates of Hp are of the form

which include the additional degrees of freedom that
each particle can be in one or more mass eigenstate. In
this way, we will be able to write the equation for the
YNN ( Y =A, X) system, where one of the particles can be
either a A or X. The Alt-Grassberger-Sandhas (AGS)
equations for the three-body system are given by

U p(E)=5 pGo '(E)+ +5 T (E)GO(E)Urp(E),
r

(10)
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(15) T (E) as

where r = Is,2,m I labels the internal quantum num-
bers of particle a.

To reduce the AGS equations to a set of coupled one-
dimensional integral equations, we introduce separable
two-body amplitudes for both the NN and YN interac-
tions. But first, we need to write the two-body ampli-
tudes in the three-body Hilbert space in terms of the cor-
responding amplitudes in the two-body space. In this
case, the analogous result to that in Eq. (9) is given by

I t I

(y 1 2 3~T (E)~y 1 2 3)
q p

=&(q —q.'» ~ (p rttr 'It (E & )lr~r';p') .
a a

In operator form, we can write the above expression for

T (E)= g f dq ~r q )t [E E—(q )](q r
a

(17)

where e (q ) is the spectator particle kinetic energy in-
cluding rest mass (see Appendix A). We now introduce
the following angular momentum and isospin coupling
scheme

S =s&+s, j =I +S, t =v&+~

4' =j +s, J=X +S, T=t +r

where g is the channel spin and X is the orbital angular

momentum of the spectator particle a relative to the pair
(Py ). Making use of the completeness of the eigenstates
of the total angular momentum and isospin of the three-
particle system in the above coupling scheme, we can
write

T (E)= g g f dq q ~q r 8 K„JMJTM&)t& &, [E—e~(q~)](MrTMJJK
J a a

TM&. p

(19)

where K =In, S,& I. Here, as in the two-body case, one writes 8 = Irt3, r~, l ) when the particles can be in more
than one mass eigenstate with different spin and isospin. If we now assume a separable approximation for the two-body
amplitude as in Eq. (5), we can write the two-body amplitude in the three-body Hilbert space as

T (E)= g g f dq q ~g„;q r K JMJTM&)7. [E e(q )](M—&TMJJK r q;g„
JMJ K r

TM~

where, as in the two-body case,

~g„;q r K JMJTMr) —= ~g„;q Q JMJTMr)

(20)

(21)

is a diagonal matrix. With this result at hand, we can write the AGS equations as a set of coupled one-dimensional in-
tegral equations. To achieve this, we first multiply the AGS equations [Eq. (10)] by the Green s function from both the
right and the left. We then take matrix elements of the resultant equations using the states given in Eq. (21). Making
use of the fact that our amplitudes are diagonal in total angular momentum and isospin, we obtain a set of coupled
equations for the partial wave amplitude which are of the form

X& .& (q, q&', E+)=Z& .& (q, q&, E+)+ g f dq q Z& &(q,qr;E+.)~&'& [E er(qr)]X& .&
—(qs, q&', E+),

Q~Qg

(22)

where Q = [r,K I
= [r,S,j,t,S,X ) are the

quantum numbers that label the different three-body
channels for a given total angular momentum J and iso-
spin T. The Born term is given as the matrix element of
the free three-particle Green's function, i.e.,

Z(2 .g (q, qp, E+)

=5 tt(TJQ q;g„~GO(E+)~g„;qttQttJT) .

(23)

In Appendix B, we present an explicit expression for this
Born term in terms of the form factors of the separable
potential. At this stage we would only like to point out

that, because it corresponds to the exchange of particle y,
we expect Z& & to be diagonal in r (a=1,2,3), i.e. , the

mass, spin, and isospin of the particles do not change.
This means that if we list our three-body channels so that
the label corresponding to the internal degrees of freedom
changes most slowly, then the matrix ZQ Q

is block di-
a' P

agonal. Each block along the block diagonal matrix cor-
responds to one choice for the masses of the three parti-

n
cles. On the other hand, the matrix ~ couples the two-
body channels that have different mass eigenstates, and in
this way it will couple the different block diagonal ma-
trices in ZQ Q

. For example, if we turn off the couplinga' P
between the AN and XN channels, then certain nondiago-
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nal elements of the matrix 7 are set equal to zero, and

the three-body problem for the YN1V system decouples
into two three-body problems, one for the ANN system
and the other for the XNN system. We will i11ustrate this
result later when we consider the antisymmetrized equa-
tions.

C. Antisymmetry in the hypertriton

=
& (12)3

1 GO(&) I(23)1&

=
& (21)31Go(E) l(13)2 &

= —
& (12)3iGs(E) i(13)2 &

= —Z3 2 .

Similarly, we have

Z, 3=(Z3, )

(27a)

(27b)

Let us consider the reaction in which a hyperon Y is
incident upon the deuteron. Since the system has two
identical nucleons, antisymmetrizing our amplitude with

respect to the two nucleons reduces the number of equa-
tions we need to solve. The possible reactions we have
are

Y+d —+ Y+d

and

Z, ,=
& (23) 1

I GO(&) l(13)2 &

=&(13)2IGo{~)j(23)1&=Z, . (27c)

We now make use of the above results to write the an-
tisymmetrized single-nucleon-exchange amplitude as

~N+(NY) .

Taking particles 1 and 2 to be the nucleons and particle 3
to be the hyperon, we can write the AGS equations for
the above reaction, assuming separable potentials, as

Z„= & (NN) Yi G (E)i(NY)N &~s

=1/&2I Z3, —Z3 2 I

=&2Z'
3, 1 (28)

X3 3 Z3 1 71X1 3 +Z3 272X2 3

X1 3 Z1 3 +Z1 272X2 3 +Z1 373X3 3

(24a)

(24b)

where in the last line we have used the fact that
Z3 2 Z3 1 Similarly, the antisymmetrized hyperon-
exchange amplitude is given by

Z'. p=&(13y)QIG, (E)l(yrr, )13&, (25)

where y is the exchanged particle.
For the reactions under consideration, we can express

the two asymptotic states in terms of the following an-
tisymmetric states:

X2~3
— 2~3+ 2~1 1 1 3+ 2~3 3 3 3 (24c)

In writing the above equations, we have concentrated
on the particle labels at the expense of the channel labels
we discussed in Sec. II 8. This is motivated by the fact
that we want to write a set of equations for the antisym-
metrized amplitudes. In particular, we would like to
write the input Born amplitudes Z

&
in terms of the cy-

clic Born amplitudes Z'
&, which are defined as

ZN ~ =~s & (NY)N~ Go(E) ~
(N Y)N & ~s

= —,Iz, , +Z, , I
= —z„. (29)

Using the above results for the antisymmetrized one-
particle-exchange amplitude, we can write Eq. (24a) as

X3 3 Z3, 1(+p] 3 +F2,3I

=(1/+2»r ~r"I», 3
—

X2,3 I (30)

XY Y—=X3 3
AS (31a)

where we have taken ~, =~2 =r We n—ow c. an define the
antisymmetrized amplitudes for the two reactions under
consideration as

(d, Y &
= l(NN) Y & A,

= l(12)3 & (26a)

for the Y+d channel; while for the N +(NY) channel we
have

~(NY)N &„s=I/&2t ~(23)1&—~(13)2& I . (26b)

To carry out the antisymmetrization we make use of
the symmetry of the Born amplitudes under permutation.
In particular, we use the fact that

Xx,'r =—1/+2 ( Xi,3
—X2,3 l

This allows us to write Eq. (30) as

Xr r =Zr x+Xxr. ,

(3 lb)

(32)

Using the above definition of the antisymmetrized ampli-
tudes, we can combine Eqs. (24b) and (24c) to get

XN r —1/&2(Z, 3
—Z~ ~)+ I/&2(z, ~r2X~ 3

—Z2, ~,X) 3)+1/&2(Z, 3T3X3 3 Zp 373X3 3)

=Z~ r+Z~~PX~ „+Z~ r~ X~. r, (33)

where ~ =~3. In writing the last line in Eq. (33), we have
made use of the symmetry of the one-particle-exchange
amplitudes, and the definition of the antisymmetrized
amplitudes. We now can combine Eqs. (32) and (33) into
a single matrix equation of the form

XY, Y

Xx, Y

0

ZN, Y

0 Zy@ 7 0 Xy Y

+
ZN, Y ZNN

(34)
In writing the above equation, we have dropped the su-
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X, Y YS (35b)

The other input amplitude corresponds to the exchange
of a hyperon, and is given by

Z~ ~ = —Z) q
= —

(
—1)"((23)1~Go(E)

~
(31)2), (35c)

where the phase R is the result of permuting particles 1

and 3 in the ket, and is given by R =s, +s3—S,+~, +~,—~, +1,.

D. The role of the effective three-body force

In Eq. (34) we have a set of two coupled equations for
the YNN system. If we take the hyperon Y to be in one
of two states, i.e., Y =A, X, and include the coupling be-
tween the AN and XN two-body channels, then the num-
ber of equations before partial wave expansion is four.
These four equations can be written in matrix form as

perscript that refers to the antisymrnetry on the grounds
that the amplitudes are now labeled by the physical chan-
nels and not the particle number. The input to these
equations are the antisymrnetrized one-particle-exchange
amplitudes, and these are of two kinds: the nucleon-
exchange amplitude which is given by

Zr~=/2Z3 ) =&2((12)31GO(E)l(23)1) (35a)

and

FIG. 2. Contribution to the YN amplitude due to coupling
between the AN and XN channels.

( iGOTi(E)GOTq(E)Goi ) . (37)

Assuming the separability of the amplitudes, this contri-
bution gives two kinds of terms described in the follow-
ing.

(i) Those that are normally present in the ANN prob-
lem in the absence of coupling to the XN channel. These
are of the form

force in the ANN space. In the presence of the AN-XN
coupling, the two-body YN amplitude T; (E) (i = 1,2), is a
solution of a coupled channel problem. There are two
classes of diagrams that result from this coupling. These
are illustrated in Figs. 1 and 2, where the shaded ellipse is
the two-body potential. In Fig. 2 we have diagrams that
generate the two-body AN amplitude including the cou-
pling to the XN channel. On the other hand, the diagram
in Fig. 1, may be considered as a three-body force in the
ANN space. If we iterate the AGS equations, we get
terms of the form

XA

where

ZY

and

ZA

ZY, N

XY SN
for Y =A, X,

&~~ &AX

+ 0 Z~ ~~A v~~ X~
(36a)

(36b)

Z. . . , ydpAZg NPAAZlV (38)

which are diagrammatically illustrated in Fig. 3 with
Y =A. Here the open ellipses correspond to the YN am-
plitude.

(ii) The second class of diagrams are only included if
the coupling between the AN and the XN channels, at the
two-body level, is included. These are of the form

~YY

Y 0

+YY
for Y =A, X,

0 0

«x
(36c)

We now observe that for Hz=0, there is no coupling be-
tween NA and NX channels. After partial wave expan-
sion, this basic matrix structure is preserved, but the size
of the matrix is determined by the number of three-body
channels for a given (J, T).

We now turn to the question of an effective three-body

z. . . , ~rA~Z~ ~r",„z~, . . . . (39)

This corresponds to the diagrams in Fig. 3 with Y =X,
and can be considered as a three-body force contribution.

To determine the contribution due to this effective
three-body force, we need to compare the results of the
full calculation with the results when excluding the
three-body force. To achieve the latter, we include the
coupling between the NA and NX channel when calculat-
ing r However, w.hen calculating the kernel of our in-
tegral equation, we take r to be diagonal, i.e.,
Hz=0=rzA Then the con. tribution from the diagram in

Y

FIG. 1. Diagrammatic representation of an effective three-
body force in the ANN space.

FIG. 3. Contribution to the three-body amplitude with inter-
mediate state of a hyperon Y. For Y =A this diagram is a stan-
dard contribution to the binding energy of AH, while for Y =X
it corresponds to an effective three-body force contribution to
the binding energy.
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Fig. 3 with Y=X is not included, but the coupling be-
tween the AN and XN is included in the calculation of
the two-body amplitudes. In this approximation, the ker-
nel of our integral equation is block diagonal, with one
block corresponding to the ANN problem, while the
second block corresponds to the XNN problem. In this
way, we are able to determine the magnitude of this
effective three-body force contribution to the binding en-

ergy of the hypertriton.

III. NUMERICAL RESULTS

In order to verify that our equations do indeed yield
the correct ~H binding energy, we repeated the calcula-
tion of Dabrowski and Fedorynska. The parameters of
their YN potentials are listed in Table I. The more con-
ventional Yamaguchi separable potential form ' is

v;, (p, p')= '
g;(p)g, (p'),

2P)J.

where the form factor for s waves is given by

g;(p) =(p'+P,')

(40)

(41)

the appropriate conversion from Dabrowksi and
Fedorynska is

2 2

1J 1J (42)

The further conversion required to obtain our interaction
strengths is

Cij = 4n A ii
l—2+@(NPJ~, (43)

where the masses of the nucleon and hyperons are taken
to be mz =939 MeV, m z = 1115 MeV, and m z = 1192
MeV. Hypertriton binding energies for this model are
quoted in Table II along with the corresponding A sepa-
ration energies. (The NN spin-triplet parameters of Ref.
26 correspond to a deuteron binding energy of 2.42 MeV
and scattering length of a, =5.38 fm, and the spin-singlet
low energy scattering parameters are a, = —23.7 fm,
r, =2.5 fm. ) The agreement between our A-separation
energies (Table II) and those of Ref. 26 for the full model

TABLE II. AH binding energies (in MeV) for the Dabrowski
and Fedorynska (Ref. 26) separable potential model parameters
listed in Table I.

Model

Two channel
Two channel (A,xz =0)
One channel

B (AH)

2.86
2.35
2.72

0.63
0.12
0.47

In order to explore the questions raised in the Intro-
duction about (1) the dispersive energy dependence of a
coupled-channel potential embedded in a three-body
problem and (2) the effective three-body force that results
when the XN channel is formally elim. inated, we have
used the Stepien-Rudzka and %yeech separable potential
model that was designed to parametrize the Nijmegen'
model F. (Schick and Toepfer found a strong depen-
dence of these effects upon the strength of the AN-XN
coupling; thus, we use a more physical model. ) The po-
tential parameters are listed in Table III along with those

(row 1) and the one-channel equivalent model (row 3), in
which one neglects the XN channel but uses one-channel
AN potentials that have the same scattering lengths and
effective ranges as the full two-channel model, is exact.
We have also checked our equations in the one-channel
approximation by reproducing the results of Gibson and
Lehman for AN model parameters of Herndon and
Tang. The results of the second row of Table II, in
which the AN XN cou-pling has been neglected (Az&=0)
in the two-channel potential model, are included to illus-
trate the fact that AN-XN conversion enhances the at-
traction of the YN force in both the two-body and three-
body problems. This is a consequence of the well-known
effect in a classical coupled oscillator system: When the
oscillators are coupled, they are "pushed" apart in fre-
quency. In our case the AN interaction is more attractive
after it is coupled to the XN system. The increased bind-
ing is also anticipated from the fact that, if one expands
the Hilbert space, then a variational bound on the bind-
ing energy should increase in magnitude.

A. AN-XN coupling and ANN forces

TABLE I. Separable potential parameters from Ref. 26 for
the YN force. The numbers in parentheses are the strengths
converted to the potential form defined in Eqs. (40) and (42).
The P are in units of fm ', the A. "in fm, and the (A. ) in fm
The C;, are the values of our strength parameters in units of
fm 2

TABLE III. YN coupled-channel separable potential param-
eters for the model of Ref. 28. The units of Pare fm ' and of A,

are fm. The equivalent single-channel strengths (fm ') and
ranges (fm ') are those of Ref. 9 and correspond in sign to the
definition in Eq. (40). Note that the strengths from Ref. 28 are
related to those of Ref. 9 and the C;, (fm ) of this paper by
Eqs. (42) and (43).

S=1 S=1 S=O

~hX
~XN

~XN

IBA~

XN

CAN

CxN

CKN

—0.90 (0.1384)
0

1.32

—0.336 78

—0.552 (0.1833)
+0.884 (+0.2935)
—1.53 (0.5080)

1.60
1.60

—0.446 18
+0.703 68
—1.199 35

~AN

~XX

~XX

P~
Px
CA~
Cxw

Cz

—0.529 8

+0.677 7
—0.987 1

1.60
2.00

—0.428 24
+0.842 89
—1.889 13

0.326 2

1.725 1

—0.792 03

—0.725 1
—1.097
+0.891 6

1.18
1.44

—0.173 39
—0.384 71
+0.458 56

0.095 2

1.201 1

—0.232 21



2794 I. R. AFNAN AND B.F. GIBSON 41

g (p) =g, (p)+(s J(p) /&8)gr(p),

where

(44)

of the equivalent one-channel potentials. The SS poten-
tial parameters for a central force S, model 0% and the
Phillips 4% deuteron D-state S, D-, tensor force mod-

el are given in Table IV. The investigation was per-
formed with both to ensure that our conclusions are
unaffected by the presence of a noncentral NN force.

For the tensor force model, the form factors in Eq. (40)
have the form

Sl D l )1vN

B (~H) BA(PH) B(PH) BA(PH)

Full model
No XNN channel
One channel AN

2.460
2.253
2.292

0.24
0.028
0.067

2.626
2.305
2.368

0.40
0.079
0.14

TABLE V. ,~H binding energies and A-separation energies (in
MeV) for the separable potential model parameters listed in
Table III.

s;, (p)=3(o; p)(o, p) —(o o ),
g, (p) =(p'+P')

gr(p»)= Cp'(p—'+P'r) '.

(45a)

(45b)

(45c)

energy of the three-body system. (Both potentials models
have the same scattering lengths and effective ranges. )

However, to understand the role of the energy depen-
dence of the effective energy-dependent AN force

TABLE IV. NN separable potential parameters from Refs.
10 and 36. The units of P are fm ' and those of A, are fm

The C» are our strength parameters (fm '): C(x) = —(4~/2p)A. ,

CQ2 + (4vr/2p )kg, and C22
—14rr/2p)g

S=1

I'D (%)

T
B( H)
Coo

Coo

Cz2

0
0.381 5

1.405 6

2.225
—1.007 4

4
0.243 1

1.3134
1.689 4
1.528 3
2.225

—0.641 9
+ 1.084 9
—1.832 0

0.149 3
1.164 8

—0.394 29

Because the separable potentials of Ref. 28 were
parametrized to fit the low energy AN scattering parame-
ters of the Nijmegen model, the signs of the coupling po-
tentials were not uniquely determined. As was first ob-
served by Dabrowski and Fedorynska, we confirm that
choosing the relative sign of the AN-XN coupling terms
in the 'So and S, channels to be opposite increases the
AH binding energy. In the case of the model of Ref. 28,
we find the hypertriton to be unbound, if the signs of the
AN-XN coupling potentials are assumed to be the same
for 'So and S, . Thus, we list the parameters in Table III
for the Stepien-Rudzka and Wycech model for a specific
choice of signs for the coupling strengths.

Beginning with the full AN-XN coupled-channel mod-
el, we obtain a ~H binding energy of 2.46 (2.63) MeV us-

ing a S, - D, ( S, ) NN spin triplet force (see Table V).
Note that the noncentral force effect in the NN channel is
significant, when one is attempting to reproduce B~(AH)
quantitatively. For the S, - D, NN force we obtain
B„(~H)=0.24 MeV compared to 0.40 MeV for the S,
SN force model. Replacing the AN-XN two-channel po-
tentials by their equivalent one-channel potentials
reduces the ~H binding energy from 2.46 to 2.29 MeV
when the NN force is a S, - D, model and from 2.63 to
2.37 MeV for the S, SN central-force model. Clearly,
including explicit AN-XN coupling increases the binding

A~ I'Ax+—i Vx~ I'/(~ —Hx)v) (46)

when the XN channel is formally eliminated (see Fig. 2)
as well as the role of true three-body forces, we have
turned off the XNN diagram (Fig. 1) as described in Sec.
II. The resulting AH binding energy of 2.25 (2.31) MeV
for the S, D, ( S, -) NN force model is smaller than the
one-channel, static AN potential approximation result of
2.29 (2.37) MeV. Thus, we verify that the dispersive en-

ergy dependence of the AN-XS interaction leads to a
reduction in the AH binding energy. (Again, both two-

body potentials have the same scattering length and
effective range, while the true three-body force terms
have been removed from the AH calculation in the case of
the AN XN coup-led-channel model. ) Restated, a static
approximation to the energy-dependent effective interac-
tion defined by Eq. (46) binds the hypertriton more than
the effective interaction itself. (A similar result has been
shown to hold for an NN-NA force model in the tri-
ton. '4)

At the same time, a comparison of the no XNN chan-
nel calculation with the full AS-XS coupled-channel cal-
culation shows that the true three-body force effect is at-
tractive and much larger than the dispersive energy-
dependence effect. The binding is 2.46 (2.63) MeV for the
full model compared to 2.25 (2.31) MeV for the effective,
energy-dependent AN force model. Because both of these
models overbind the hypertriton (BA=0.24 and 0.40
MeV compared to the experimental 0.13+0.05 MeV), one
is led to ask whether model calculations employing the
best available meson theoretic YN potential models will
show that the AH system is bound only because there is a
ANN three-body force. [A 7% D-state S, D, NN mod--
el yields B„(„H)=0.14 MeV. ]

Finally, we note that the theoretical three-body force
that arises here in the hypertritron due to the forrnal el-
imination of the XN channel is attractive. This is to be
contrasted with the phenomenological result in the model
calculations of Bodmer et a/. for 3=4,5 hypernuclei,
where one finds a repulsive three-body force. This likely
results from many-body effects combined with AN-XN
coupling. For example, the excitation energies of the al-

pha core states in AHe (the even parity T=1, S=O excit-
ed states lie more than 40 MeV up in the spectrum) are
larger than the 2 MeV separation between the d* system
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TABLE VI. AN spin-triplet separable potential parameters
for central and tensor forces having a scattering length of
—2.06 fm and an effective range of 3.18 fm, along with parame-
ters for the spin-singlet interaction. The CII are our strength
parameters as defined in Table IV.

A, (fm ')
p (fm ')

pT (fm ')
C00 (fm )

C02 (fm )

C22 (fm )

'S

0.1581
1.385

—0.3846

S-D
0.1133
1.362
7.700
3.250

—0.2756
+2.1220

—16.3395

'S,

0.1086
1.266

—0.2642

B. Noncentral force effects

We have seen above that utilizing a S, - D, NN spin-
triplet potential model significantly reduces the hypertri-
ton binding energy. What we wish to explore here is the
comparative size, and the overall contribution of the ten-
sor force in the NN and the AN interaction to the binding
(A-separation} energy of the hypertriton. For that pur-
pose, and in the absence of a separable tensor force po-
tential for the AN-XN system, we have used the one-
channel AN potential parameters listed in Table VI.

In Table VII, we present our results for the binding en-
ergy of the hypertriton for the four model calculations.
Since the effect of the AN tensor force is expected to be
small, we have ensured that the calculation of the binding
energy is accurate to the number of significant figures re-
ported in the tables. This required the use of 24 point
Gauss quadratures in all our integrals. Using the central
force ( S& ) potential for both the NN and AN spin-triplet

and the deuteron and wi11 strongly suppress AN-XN cou-
pling effects. That is, AN-XN coupled-channel potentials
can yield less binding in heavier systems (and nuclear
matter) than their corresponding one-channel AN
effective potentials. This is the essence of the „He-~H
analysis of Ref. 9, where it is argued that suppression of
AN-XN coupling due to such effects lowers the 0+ and
1+ state binding relative to simple AN effective interac-
tion models. The implication of these convicting three-
body force results is that any phenomenological ANN
force will depend strongly upon the spin-isospin quantum
numbers of the nuclear core states.

interaction, we obtain a binding (A-separation) energy of
2.300 MeV (0.074 MeV}. Replacing the S, NN potential
with a 4% D-state deuteron S~ D~ tensor force poten-
tial, we find the binding (A-separation) energy to be
2.252 MeV (0.027 MeV). In contrast, if we replace the
S, AN potential with a S, - D, model fit to the same

scattering length and effective range, we find a binding
(A-separation) energy of 2.296 MeV (0.070 MeV). That
is, the reduction in the ~H binding energy due to the ten-
sor force nature of the AN interaction is an order of mag-
nitude smaller than that due to the tensor force nature of
the NN interaction. On the basis that the contributions
of the tensor forces are, in general, small and can be
treated in perturbation theory, we would expect the final
binding (A-separation) energy, when the tensor force is
included in both the NN and the AN interactions, to be
=2.248 MeV ( =0.023 MeV). However, when including
the tensor force in both interactions, we find the binding
(A-separation) energy to be 2.260 MeV (0.035 MeV). In
other words, the inclusion of the AN tensor force, when
the NN tensor force is already present, produces addi-
tional attraction rather than enhancing the repulsion.
This nonperturbative effect is similar to the inclusion of
the coupling to the XN channel, i.e., the three-body force,
discussed in Sec. II. In fact, a careful examination of the
origin of this additional attraction reveals that on in-
clusion of the tensor force in both the NN and AN in-
teraction, we get additional coupling between the (NN)A
and (AN)N three-body channels in the Z matrix. This, in
effect, leads to diagrams similar to that in Fig. 1, where
now we have the (NN)A channel with the NN tensor
force leading to an NN relative angular momentum 1=2.
The new elements of the Z matrix, resulting from includ-
ing the tensor interaction in both the NN and AN, couple
the (NN)A channel to the (AN)N channel with the AN in
relative orbital angular momentum 1=2. Hence the con-
tribution of the NN tensor force can be substantial even
though its contribution in perturbation theory is small.

Another effect that arises from including the tensor
force in both the NN and AN interactions is the sensitivi-
ty of the hypertriton binding energy to the sign of the
tensor interaction Cp2 ~ This again is illustrated in Table
VII, where we give the binding (A-separation) energy
when the sign of C02 is changed. Here we observe that
this change in binding energy is only present if the tensor
interaction is included in both the NN and AN potential.
In the last row in Table VII we have the result for the
binding (A-separation) energy when we change CO2 for

TABLE VII. AH binding energy B(~H), and A-separation energy B„('„H),in MeV for various corn-
binations of central and tensor NN and AN potentials. Included in the table are the result of reversing
the sign of the tensor interaction C02. For the case when the tensor force is included in both interac-
tions, we have reversed the sign of the tensor force in the AN potential.

3S, Si - D) 3S
AN

S)-'D, C02 )0
B (~H) BA(AH)

C02 (0
X

X
X

X

X
X

X

2.300
2.252
2.296
2.260

0.074
0.027
0.070
0.035

2.300
2.252
2.295
2.329

0.074
0.027
0.071
0.103
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TABLE VIII. ~H binding and A-separation energies in MeV for the combination of central and ten-

sor NN and AN potentials indicated. The AN spin-singlet potential was given the unphysically large

strength of 0.1581 fm ' in this case.

's,

X

X

3 3Si- D,

X

X

's,

X
X

3S 3D

X

a('„H)
(MeV)

3.925
3.540
3.905
3.536

(MeV)

1.699
1.315
1.679
1.311

the AN potential. If Cpz in both the NN and AN are
changed, the results for the binding (A-separation) energy
are 2.254 MeV (0.029 MeV). On the other hand, if we
change the sign of Coz for the NN interaction only, we
find that the binding (A-separation) energy is 2.344 MeV
(0.119 MeV). Thus the hypertriton could be used to
check the relative sign of the tensor force in the NN and
AN interactions, the sign of the S,- D, mixing parame-
ter e&. The magnitude of the AN contribution is deter-
mined by the relative sign of the tensor interactions in the
NN and AN potentials. Existing models imply that the
relative signs are the same; that is e, (AN)le, (NN) )0 for
low energy scattering.

Because the A-separation energies in this model study
are so small [8 ( H) =2.226 MeV and 2.225 MeV for the
S, and the S,- D, models, respectively), we performed a

pseudomodel study in which the strength of the AN
spin-singlet potential was arbitrarily set to the spin-triplet
value of 0.1581. That is, the NN parameters are un-
changed as are the spin-triplet AN parameters. but the
model hypertriton becomes strongly bound in terms of
the A-separation energy, 8( H~)- 8(H). Our results are
presented in Table VIII and confirm the general features
discussed above for the more realistic force model. The
tensor force effect due to the NN interaction is again an
order of magnitude larger than that due to the AN in-
teraction. However, in this case the effect of the AN ten-
sor interaction (reducing the binding) is almost complete-
ly cancelled by the binding enhancement due to the extra
coupling between the (NN)A and (AN)N channels.

Based on these two model studies, we conclude that the
effect of the AN tensor force depends on the inclusion of
the tensor force in both the NS and AN potential and the
relative sign of the tensor force in the two interactions.
Furthermore, including tensor coupling in the AN-XN
force is needed before a detailed picture is obtained.

C. XN bound state in the AN continuum

The E d ~AS~ reaction shows a "cusp" structure as
one crosses the XN threshold just as one would ex-
pect. The presence or absence of a XS bound state
[i.e., whether the Vz~ component of the YN interaction
is sufficiently attractive to support a bound state in the
absence of AN-XN coupling (V~~=0)], has been shown
by Toker, Gal, and Eisenberg ' to affect the shape of the
structure of the cross section as one crosses the XN
threshold. This phenomena has also been explored in de-

tail by Dalitz and co-workers. We have used the poten-
tial models A and B of Ref. 41 in model calculations of
the ~H binding energy to investigate the effect of a XN
bound state on that observable.

In our model study we have used the S, - D& and 'So
NN potential parameters of Table IV along with the AN
'So parameter of Table III. Toker, Gal, and Eisenberg
needed only to model the AN S& interaction for their
K d ~ANm. study. We obtained a ~H binding energy of
2.41 MeV for model A (no XN bound state) and a binding
energy of 2.84 MeV for model B (XN bound state in the
continuum). Thus, we conclude that, for the Toker-Gal-
Eisenberg parametrizations of the AN-XN S& interac-
tion, the existence of a XN bound state in the continuum
would severely overbind the hypertriton.

IV. CONCLUSIONS

We have formulated the separable potential Faddeev
equations that describe „H allowing for tensor forces and
AN-XN coupling. Our model investigation has demon-
strated the following. (1) The dispersive energy depen-
dence that results from embedding the coupled-channel
AN-XN two-body potential in a three-body system is
repulsive and reduces the ~H binding energy. (2) The
true three-body force due to coupling XNN states to the
ANN state is attractive and increases the zH binding en-
ergy. (3) The inclusion of tensor coupling in both the NN
and AN channels produces an effect similar to that aris-
ing from the coupling between AN and XN in that it
leads to a dispersive contribution and a "three-body
force" contribution. As a result the AN( S, D, ) contri--
bution to the hypertriton binding energy depends sensi-
tively on the presence of the NN tensor force and the rel-
ative sign of the tensor coupling in the NN and AN in-
teractions. That is, 8 (~H) depends upon the relative sign
of the S&- D, mixing parameter e, for the NN and AN
interactions. Clearly, a complete analysis of the tensor
force effect will require the inclusion of tensor coupling in
the coupled AN-XS interaction channel, which is under
investigation. Finally, the existence of a XS bound state
in the continuum would appear to lead to severe over-
binding of the hypertriton, and is therefore not supported
by the existing data.
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APPENDIX A: DEFINITION OF SPECTATOR ENERGY

Go(E) = E —ez(qz )—
2(mal+mr)

Pz
m~ my

2@2
(A2)

Go(E) = E —2m~ —m &-
2m~

k

2m~

where particles 1 and 2 are the nucleons and particle 3 is

the hyperon. For the case when nucleon 2 is the specta-
tor, this Green's function can be written as

k
G (E)= E— m +o x

m~

k

2m~ 2m y
mg my (Al)

which can be considered as the two-body Green's func-
tion for particle 1 and 3 at the shifted energy of

(m~+ k2/'2m~ ) =E—
i.e., the total energy minus the kinetic energy of the spec-
tator. In the three-body center of mass this Green's func-
tion takes the form

To some readers it may not be apparent what the
definition of the spectator particle's energy in Eq. (9)
must be. Because of the mass difference between the A
and X hyperon, we have two different two-body unitarity
cuts, both of which must be included in the two-body NY
amplitudes. This can be most simply achieved by em-

ploying relativistic kinematics where the mass of the par-
ticle is part of the kinetic energy. On the other hand, the
binding energy of the hypertriton is basically a nonrela-
tivistic problem, and the potential used for the descrip-
tion of the E-Y interaction is a nonrelativistic potential.
Thus to maintain the thresholds for XA and XX scatter-
ing within a nonrelativistic formulation, we must include
the mass of the particle with its kinetic energy [see Eq.
(12)]. The three-body Green's function for the NNY sys-
tern is then given by

This differs from the two-body free Green's function
commonly encountered, by the fact that (i) the energy is
shifted by the spectator particle's energy, i.e.,
E~E—e2(q2); (ii) the two-body Green's function is at a
center-of-mass momentum q2, and to that extent it in-
cludes the energy of the pair s center-of-mass motion; (iii)
the kinetic energy of the nucleon spectator does not in
any way depend on the hyperon mass. These conditions
are exactly what we expected from a relativistic theory
where the Green's function is given by

G,(E)= E-(k, +m )
/

(k2+ 2 )I/2 (k2+m2 )1/2 (A3)

APPENDIX B: THE KERNEL
OF THE FADDEEV EQUATION

In this appendix, we present an explicit expression for
the one-particle-exchange amplitude. In deriving this re-
sult, we have assumed cyclic labeling. In this way we can
use these amplitudes in Eqs. (35a) and (35c). Because the
one-particle-exchange amplitudes do not change the spin,
isospin, and mass eigenstates of the three particles, we
take these quantities to be fixed in our expressions. For a
more detailed derivation of the results presented in this
appendix, the reader is referred to the work of Stingl and
Rinat, or Afnan and Thomas. We have for the one-
particle-exchange amplitude, after partial wave expan-
sion, that

With these definitions for the three-particle Green's func-
tion we can write the N- Y amplitude in the three-body
Hilbert space

(k, k~k3~t„(E)~k', k2k3 )

=&(q2 —q2) & p21 t &3[E —e2(q~)] IP2) (A4)

where ez(q2)=m~+qz/2m& in the three-body center of
mass. For the relativistic case we would have instead
e2(q2) =(qz+m~)'/ .

l
l l L b g(g

Zg g (q, qt3, E)=q ~qt3' g g g Ag"g
L =Oh=0 ~P

a —b

p~p I „„(q,qt3, E), (Bl)

where Q labels the three-body channels and includes the orbital angular momentum of the interacting pair, while n

labels the two-body channels. The function I „„is given bya' P

+1
I „„(q,q&, E)= ,' dx—

Here, we have

—l —
lpp. g..b. )g.,(pt3)Jt '

PL(x) .
E —2m~ mr q /'2m —qt3I—2mtt (q +q&)—l2m„— (B2)
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x=q q&,

P =
qp P q~ Pp=q~+Ppqp

rn& rn

Pa PPm&+m
'

m +m

The coefficients 3&"& in Eq. (Bl) are given in terms of 3J, 6J, 9J, and 12J symbols as
a' P

(83}

(84)

(85)

t

Ag'g = ( —) t tpl lpS~Spj j pg Spy XpL f'
r

g g f. ~ S~ SP sP

Xgg(f AA') '~ ~ J
' j f jp s

f AA' S I lp Sp

(21 +1}!(21p+1)!
(2a)!(21p

—2b)!(21 —2a)!(2b)!

00

A' L gp A L J 1 —a b A' a lp bA —X~ Xp f
0 0 0 0 0 0 0 0 0 0 A' A L

1 —aa

lp f
1p

bA— (86)

where a =—(2a +1)'~ and the phase R is given by

R = —J +X~+Xp+ 4 +eVp+ j~+j p
—s +Sp

+I +~y+~~ —tp+2T+L . (87)

The 12J symbol in Eq. (86) is that defined by Ord-
Smith. 4'

To minimize the computational problem it is impor-
tant to make use of the symmetry of the one-particle-

exchange amplitude. This is given by

Zg g (q, qp, E)=Zg g (qp, q;E) . (88)

I „„(q,qp, E)=I „„(qp,q;E) . (89)

In addition, we can make use of the symmetry of I „a'"P
which is given by
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