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Structure functions of nuclei in the "instant" form of dynamics
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Convolution formulas for the inelastic structure functions of a nucleus are derived using the "in-
stant" form of relativistic particle dynamics, and are contrasted with other convolution approaches.
Using only physical nucleon constituents and harmonic oscillator shell model wave functions, the

magnitude of the dip in the European Muon Collaboration ratio in the intermediate range of x is

reproduced. The calculations of this ratio fail to come back up towards unity as x decreases below

0.4, and possible reasons for this are discussed.

I. INTRODUCTION

Over the past few years a number of independent ex-
periments' have confirmed the original observation of a
systematic difference between the structure functions of
heavy nuclei and deuterium, known as the European
Muon Collaboration (EMC) effect. Many exciting ex-
planations have been offered, including dynamical rescal-
ing, bloating of the nucleon, multiquark states, partial
deconfinement of quarks, excess pions, ' and so on.
On the other hand, a number of groups have proposed
that the conventional treatment of the Fermi motion may
need to be modified to take into account the fact that nu-
cleons are actually bound inside nuclei. " ' lf nucleon
binding requires a quark-level description to be properly
understood, these two approaches may be two sides of
the same coin. Nevertheless, the description of nuclei as
nucleons bound by meson exchange forces has been un-

deniably successful and it seems reasonable to push such
an approach to its limits before hailing the EMC effect as
an indication of truly new physics.

There are essentially two treatments of binding and
Fermi-motion corrections in the recent literature. Aku-
lunichev et al." and Dunne and Thomas' viewed the
process as the collision between the virtual photon and an
off-mass-shell nucleon. The purely kinematic correction
is not sufficient to explain all of the EMC effect unless an
ansatz for the structure function of the off-mass-shell nu-
cleon is used. ' Unfortunately, there does not seem to be
any independent way to test this ansatz. Thus, its effect
can only be viewed as an estimate of the uncertainty in
the binding correction calculated this way. Since this can
be as much as 40% of the EMC effect it is not very satis-
factory.

The alternative approach used so far' ' ' relies on
the "light-front" form of relativistic particle dynamics. '

There the quantities P+ =E+P, and PT are conserved
at each step, but P =E —P, is only conserved overall.
To understand the significance of this choice of dynamics
it is necessary to couple it with the assumptions that go
into the derivation. The two assumptions that are of im-

mediate interest are the following: (i) The current opera-
tor of the nucleus consists of a sum of one-body operators
(the currents of the hadronic constitutents), and (ii) there
is no final-state interaction between the debris of the con-
stituent that interacts with the current and the residual
nucleus. The first assumption, which says that there are
no two- (or more-) body currents, bears directly on the
form of dynamics assumed. Suppose, for example, that
this assumption is (approximately) valid in the laboratory
frame in the "instant"' form of dynamics, in which the
three-momentum P is conserved at each step but E is
only conserved overall. If an interaction dependent uni-

tary transformation is carried out that brings the genera-
tors of the Poincare group from the instant form into the
light-front form, then that same transformation applied
to the current will produce two-body currents. It is also
plausible that assumption (ii) will be more nearly correct
in one form of dynamics than another. We do not have
any a priori way of knowing in which form of dynamics
these assumptions are better satisfied, but we are led to
study the instant version because the wave functions of
nuclei are conventionally given in that form.

It must be stated, however, that the one-body current
assumption is not consistent with Lorentz invariance. In
the instant form of relativistic particle dynamics all com-
ponents of the boost generator contain interaction, and
the commutator of these terms with a one-body current
will produce two-body currents, in general. This point
must be kept in mind in Sec. II, where the convolution
formula for the structure tensor is derived. Although
written in tensor notation, it is not a covariant equation.
Our numerical calculations are performed in the labora-
tory frame.

A brief outline of the paper is as follows. In Sec. II we
derive the convolution formula for deep-inelastic scatter-
ing from nuclei in the instant form. This is written in a
more familiar form in Sec. III, and the behavior as a
function of Q is examined in detail. We also discuss the
limits of the convolution formula there. The results are
presented in Sec. IV, and in Sec. V we make some con-
cluding remarks. In the present paper it is assumed that
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nucleons are the only constituents of the nucleus; a re-
mark about the role of pions is made in the conclusion.

debris from the struck nucleon is in state P with three-
momentum p". The states are normalized as

II. FORlVf AL DEVELOPMENT OF THE INSTANT FORM
& A, plA, p'&=5(p —p'), (2.3)

A. Derivation of the convolution formula

(2.1)XA =
2p 'q

where Q = —
q )0; we also use the variable

x =mzxz/mN, which varies from zero to —A. Then
we do the same for WIv"(q, k) when a photon of four-
momentum q strikes a free nucleon with four-momentum
k, with k =mz. Making use of one additional assump-
tion discussed below leads to O'"A being expressed as a
three-dimensional integral with respect to k of an in-
tegrand in which the current matrix elements are precise-
ly the same as the ones that enter Wdv . The final task is
to relate q and q in such a way that the overall energy-
momentum-conserving 5 functions in the two tensors are
both satisfied.

From its definition

W~"(q I )=g f d'p'd'a "5(q+p —p' —p")
a, P

X & A, plJ"(0)la, p', P, p" &

X &a, p', P, p" IJ"(0)l A, p&E„(p),

(2.2)

where we have made use of assumption (ii) to write the
final state as two noninteracting clusters: the residual nu-
cleus is in state u with three-momentum p', and the

We first outline the derivation, which parallels that in
Ref. 15 but uses a different form of dynamics. We write
down the definition of the Lorentz tensor W~z"(q, p) that
contains the product of matrix elements of the elec-
tromagnetic current describing a virtual photon of four-
momentum q interacting with the target nucleus of four-
momentum p, with p =m„. The scaling variable xA is
defined by

and the factor E„(p)=(m„+p )' converts this to an
invariant normalization.

To make use of the one-body current assumption (i),
we introduce into Eq. (2.2) the identity operator in the
form of a sum over a complete set of states. These are
simultaneous eigenstates of the three-momentum opera-
tors of all A nucleons, and therefore also of the free
Hamiltonian. The overlap of the target ground state
I A, p &

—which is an eigenstate of the total three-
momentum and interacting Hamiltonian —with these
states gives the momentum space wave function of the
target, shown in Eq. (2.4). The 5 function in that equa-
tion is indicative of the instant form of dynamics since
the total three-momentum operator does not contain in-
teractions. Equation (2.5) shows the same thing for the
residual nucleus:

A

5 p —y k, y„,(k„.. . , k„)=&k„.. . , k„lA, p&,
i=1

(2.4)

A

5 p' —y k; y, (k, . . . , k„)=&k, . . . , k„la, p'& .
1=2

(2.&)

We also need the one-particle overlap function

(((7 p(k) f d k2 d kg It(g p
—k(k2i

A

Xp„(k,k2, . . . , k„)5 p
—k —g k,

1=2

(2.6)

Making the additional assumption (iii) that interfer-
ence terms —in which the current J" interacts with one
nucleon and J with a different nucleon —can be neglect-
ed, and using Eqs. (2.4) and (2.5) in (2.2), yields

W"„(q,p)=AE„(p)g f d kp (k), g f d p"5(q+k —p")5[q +E„(p)—E (p —k) —E&(p")]
a 0

&& & kl I"(0)IP, p" & &P,p"
I
J"(0)lk & (2.7)

p, (k) =
I g. ,(k) I' (2.8)

The overall energy- and momentum-conserving 6 func-
tion from (2.2) has been written out explicitly in (2.7), and

satisfies the completeness relation

g f d kp (k)= f d kp (k)=1. (2.9)
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As expected in this form of dynamics

g f d kkp (k)= —p.1

a
(2.10)

We would now like to relate the quantity within the
large curly brackets in Eq. (2.7) to the structure functions
of a free, i.e., physical nucleon; we will then take these
quantities directly from experiments on free nucleons and
thereby evaluate the structure functions of the nucleus.
The way to establish this relation is to write down, ab ini-
tio, the definition of the structure tensor WIv'(q, k) for a
free nucleon of four-momentum k struck by a photon of
four-momentum q, with the latter quantities not yet
specified. See Fig. 1 for the kinematics. When this is
done the expression looks just like the quantity in the
large curly brackets in Eq. (2.7}, except that the
momentum-conserving 5 function is 5(g+k —p"), and
the energy-conserving 5 function is

5[q +Ett(k) Ett(p"—)] .

E~( k } is the energy of a free nucleon of momentum k.
By making the identifications

the quantity in large curly brackets in Eq. (2.7) is precisely
the structure tensor of a free nucleon.

Since the target nucleus is stable, 6 & 0, and in its rest
frame 5 is just the sum of the binding energy 8 and the
kinetic energies of the nucleon and the recoiling nucleus.
(If one were doing time-ordered perturbation theory, b,
would be referred to as the amount by which the Xo. in-
termediate state is "off the energy shell. " We are not do-
ing perturbation theory here, however. ) These relations
lead to the convolution formulas below in which the
structure functions of a free nucleon are evaluated at
shifted values of the arguments.

Although the quantity b, in Eq. (2.11) has a magnitude
of only tens of MeV —since it consists of nuclear binding
and kinetic energies —and q is large compared to the
nucleon mass in the deep-inelastic region, nevertheless 6
makes a non-negligible contribution to Q as can be seen
from Eq. (2.11), where

Q =Q,(k)= —
q

= —(q —6) +q
=Q +2q b, —b

=—Q 1+
m~x

(2.13)

and

q'=q' —b, ,

(2.11)

where

(k) =Etv(k)+E (p —k) —E„(p), (2.12)

it is seen that [to within the normalization factor Etv(k)]

The final line of Eq. (2.13) is written in the rest frame of
the target, and neglects terms of relative order Q . It
shows that Q exceeds Q by a few percent, and the
difference grows at small x.

Using the definition of the scaling variable for a free
nucleon of momentum k struck by a photon q,
x —=Q /2k q, and neglecting more terms of relative or-
der Q

m~

Etv(k) +kz
1+

m~x
(2.14)

(qo, q ) in the coordinate system in the rest frame of the target in
which q is chosen along the negative z axis. Equations
(2.13) and (2.14) can be generalized to any frame in which

qj =0 by replacing mzx =m~x„by p+x~, provided
that (p~ &&q and ~k~ &&q . Putting Eqs. (2.13) and (2.14)
into (2.7), the structure tensor for the nucleus (per nu-
cleon), W"„"(q,p), becomes

(a) E„( )
W"„"(q,p)=g f d kp (k) WIv'(q, k) .

a N
(2.15)

(qo, q )

g .k

N,

A, p A-1, a,p-F

(b)

FIG. 1. Kinematics for the structure functions. The same
matrix elements of the electromagnetic current occur in the nu-
cleon case Ea) as in the nuclear case (b).

As discussed in the Introduction, this convolution formu-
la is not Lorentz covariant because of the one-body
current assumption. [The equation in light-front dynam-
ics that corresponds to the second part of Eq. (2.11) is

q =q —b, where 6 represents the amount of non-
conservation of P at the AX+ vertex. When this is
multiplied by q+ =q+, which remains finite in the Bjork-
en limit, Q and Q differ at most by a finite amount'
rather than a finite percentage as in Eq. (2.13). Conse-
quently, although there is still an additive term involving

in the relation analogous to Eq. (2.14), it vanishes in
the limit. ]

To obtain the connection between the structure func-
tions F, 2 for the nucleus and the nucleon, we use
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)M

Wyv gpv+
Q

2

k "k"
F) ~+ F2 ~ (2 16)

k.q

where k =k+(k q/Q )q, and the corresponding formu-
la for 8'~ with the replacements q ~q, k ~p, and k ~p.
The inversion of the latter expression yields

(2.17)

and

1pq (2.18)

and inserting (2.15) and (2.16) into (2.17) and (2.18) pro-
duces the desired connection. After some lengthy algebra
we obtain for the nuclear structure functions per nucleon,

Fl, a and Fz, w

F, „(x,Q )=g f d k p (k)F, ~(x, g )

a N

and

(2.19)

F2 „(x,Q )=g f d k p (k) F2—~(x,g ),
a

(2.20)

where p without the p subscript means that it is evalu-
ated in the rest frame of the target. The functions F».
and F2 ~ appearing in Eqs. (2.19) and (2.20) are precisely
the structure functions of a free nucleon, but at shifted
values of the arguments. The relationship between the
arguments of the two sets of structure functions is given
in Eqs. (2.12)—(2.14).

Equations (2.19) and (2.20) are not strictly correct at
small x because of the neglect of terms of order (b /mz)
which are really (5/mzx) . The exact equations (in the
Bjorken limit) are given in the Appendix. We do not
show them here because corrections in 6 are of relativis-
tic order and we eventually use a nonrelativistic nuclear
density. Furthermore, if the nucleon structure functions
obey the Callan-Gross relation (see below) —as in all our
calculations —Eqs. (2.19) and (2.20) are correct.

To conclude this section on the formalism using instant
dynamics, we make a remark concerning assumption (ii}
from the Introduction, the neglect of final-state interac-
tions. What is at issue here is the relative size of the time
interval T between the action of the two electromagnetic
currents and the mean free time for the debris from the
struck nucleon to interact with the residual nucleus. In
the space-time description of deep-inelastic scattering in

the quark-parton model, ' T and m~x are conjugate
variables. From our estimate of the final-state interaction
time we find that it is less than T for x &0. 1 —0.3. Not
only is the kinematics in Eq. (2.7) altered (which would

lead to a smearing of the nucleon structure function}, but,
in addition, the second current matrix element in that
equation becomes significantly different from the first. In
the small-x region, therefore, the neglect of final-state in-

terctions may not be justified. Further difhculties with
the small-x region are discussed at the end of Sec. III. It
may be the case, therefore, that low-order moments of
the structure functions (or quark distribution functions)
cannot be reliably calculated in a convolution model
since they involve integration over all x.

F2 ~(x, g )=2XF) N(X, Q ), (2.21)

and substitute this into Eq. (2.20). Dividing both sides of
the resulting equation by 2x yields

F2 „(x,g ) m~=g f d k p (k)F, ~(x, Q ) .
2x E~ k

(2.22)

From Eq. (2.19) this can be rewritten in the form

F2 „(x,Q )=2 F) „(x,Q )=2x„F) „(x,g ) .
mg

(2.23)

Equation (2.23) is just the Callan-Gross relationship for a
nuclear target.

III. DISCUSSION OF THE FORMAL RESULTS

A. The convolution formula

It is of some value to change one variable of integra-
tion in Eqs. (2.19) and (2.20) from k, to y=k+/m~.
This will not only make the comparison with earlier work
much simpler, but will also enable us to discuss quantum
chromodynamics (QCD) evolution in a straightforward
manner. Although we shall consider only Eq. (2.20) for
Fz „(x,g ) in detail, exactly the same procedure can be

applied to Eq. (2.19).
Let us rewrite Eq. (2.20) in the form

B. The Callan-Gross relationship

One may now easily prove from Eqs. (2.19) and (2.20}
that if the nucleon structure functions obey the Callan-
Gross relation, so do the nuclear structure functions.
Suppose that indeed

(3.1}
EN(k)+k, m~

F2 „(x,g )=g f dk, f d k~ f dy 5 y
— p (k) —F2N(x, Q ) .

Recall, from Eqs. (2.12)—(2.14), that x and Q depend on k, the square of the momentum of the struck nucleon. (We
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are working in the rest frame of the target. ) In order to proceed we make one approximation, namely, to replace k
wherever it appears [except in p (k)] by its average value in state a, (k ) . If we then define [cf. Eq. (2.12)]

E ((k') )+E ((k') ) —m„
5 =

m~

& E„).=E„(&k').),
and realize, from Eq. (2.14), that

X=(x+5 }/y,

(3.2)

(3.3)

(3.4)

and interchange the order of integration in Eq. (3.1), it becomes

F2 „(xg )=g f dy f dk5 y— (3.5)

Because (Ez )~ and 5 are now constants, independent of k„ the integral over k, can be performed trivially, giving

m&yx
F2, ~(x,g')=g f dyf. (y} E +5a

where

f~(y)™~f d'k, p, (k)lk =~ i —(g„& ~n

x+5, , 5
, Q 1+

X
(3.6)

(3.7)

This can be made even more concise by defining

m~f.(y}=
&E ) yf. (y»},

N a

in terms of which

(3.8)

Fz „(x,g )=g 1+
X

x+5, 5
p F2~, 1+

y
' x

(3.9)

Except for the correction factor ( 1+5 /x ) which appears
in three places in Eq. (3.9} this is the standard form of
convolution for Fermi-motion corrections in deep-
inelastic scattering from a nucleus. At this point we note
that Eq. (3.7) for f,(y) is identical to Eq. (2.20} of Dunne
and Thomas' (DT), except that there the condition was
k, =marvy

—m, . Thus, the analytic expressions obtained
by DT for the harmonic oscillator model may be taken
over here by simply replacing their m, by (E~ ) . For
example, for the Os state we would find

f (y)-exp[ —(mNy —(E~) ) /marco], (3.10)

which peaks at y =(Ez) /m~) 1. The peak in f (y)
would also occur at y & 1 for all other states a.

In concluding this discussion we remind the reader
that Eq. (3.6) [or Eq. (3.9)] is only approximate, because
we replaced k by ( k ) . On the other hand, we have
been able to check this approximation to some extent by
instead replacing k by ((ki) +k, ) and performing the
k, integration completely. The difference between the
two calculations for one nucleus was less than 1% for
x (0.8.

B. QCD evolution

By using the operator product expansion one has been
able to prove (independent of the taret involved) that
beyond some unspecified momentum scale the moments
of structure functions like F2 should evolve with Q~ ac-
cording to perturbative QCD. In first-order QCD this
means that (for nonsinglet moments M„)

M (Q2) (g2) dn

(3.11)
M„(go ) ~(g(') )

F„(x,Q )=f dy f(y)F —,Q (3.12)

then it follows directly from the definition of the mo-
ments

M„'"' '(g )=f dx x "F,„,, (x, g )

and Eq. (3.12) that

(3.13)

where d„()0} is the appropriate anomalous dimension.
Suppose that, as in Refs. 12 and 15 one has an expres-

sion of the form
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M„"(Q2)= f dy y"+' f(y) M„(Q') .

Since the term in large brackets is independent of Q,
M A(Q2) MN(Q2)

MA(Q2 ) MN(Q2 )

(3.14)

(3.15)

as it should.
If, one the other hand, we consider Eq. (3.9), the pres-

ence of the factor (1+5 /x ) appears to present a prob-
lem. In particular, the nth moment of the nuclear struc-
ture function will have lower moments of the nucleon
mixed in. At high enough values of Q the lower mo-
ment will dominate (d„+,)d„}and the nth nuclear mo-
ment will evolve incorrectly with increasing Q . Al-
though this observation presents a severe problem of
principle for the present formulation of the problem, we
believe the following comments should be taken into ac-
count. As discussed at the end of Sec. II, the impulse ap-
proximation for the nucleus is expected to break down
somewhere in the small-x region. Thus, the formulas de-
rived here should not be taken too seriously for x below
some minimum value, x;„,which we expect to be of or-
der (0.1 —0.3). Provided this limitation of the calculation
is kept in mind we see no major problem with proceeding
to use it. (We note that the small-x region is anyway sub-

ject to other corrections, such as contributions from the
virtual mesons responsible for nuclear binding, and sha-
dowing. }

IV. NUMERICAL CALCULATIONS

TABLE I. Square root of the average value of k (in MeV)
used for each single-particle state. See Eqs. (3.3}and {3.10).

We have investigated the predictions of our model for
deep-inelastic scattering on He, ' C, and Ca. Follow-
ing DT modified as described below Eq. (3.9}, we use a
simple harmonic oscillator model for the nuclear density.
The separation energies and harmonic oscillator parame-
ters were also taken from DT (Table I of Ref. 12), in or-
der to simplify comparison between the two models.
Only one other detail needs to be mentioned. The aver-
age value of k for each single-particle state enters the
present calculation through (EN),—see Eqs. (3.3) and
(3.10). Rather than use the values given by the harmonic
oscillator wave functions we have chosen to use values
calculated for the eigenstates of a Woods-Saxon single-
particle potential. ' These are summarized in Table I.
For the deuteron we prefer (k )d~ =140 MeV/c, but we

also show some results with 170 MeV/c in order to illus-

trate the sensitivity.
The nucleon structure function F2 N(x, Q ) appearing

1.05—

4
He

1.00 I

l

0.5
I

I

0 X

0.95—

0.90— ~t40

FIG. 2. The calculated EMC ratio of the structure function

F2 for 4He divided by that for deuterium vs x. The data are
from Bodek et al. (Ref. 1). The sensitivity to our input is shown

by the two theoretical curves for this ratio, which are labeled by
the mean square momentum in deuterium, taken as 140 MeV/c
(preferred) and 170 MeV/c.

in Eq. (3.9) is also the same as DT, who, in turn, took it
from the analytic parametrization of Buras and
Gaemers's —adjusted for three flavors. The valence
quark distribution has the form

x V(x, Q ) = x'(1 —x)
3I'(a +b), b-t
I al b

with

(4.1)

and

a =0.7—0.163t,

b =3.6+0.741t,
(4.2)

r =ln[ln(Q /A )/ln(Qo/A )] . (4.3)

Here we take A=0. 3 GeV and Q&=1.8 GeV2. For the
sea quarks we use

xS(x)=a ——1 (1—x)' (4.4)

with

a =P.23828 +P.3598—P.4888
(4.5)

P=0.003 23e ' '+0. 163e ' —0 157e

Finally, F2 N(x, Q ) is related to x V(x }and xS (x }as

F2 N(x, Q )=[SxV(x)+4xS(x)]/18 (4.6)
Single-particle state

Os

Op

1s
Od

4He

170

12C

149
194

Ca

110
156
195
180

for an isoscalar target.
The results of our calculations are sho~n in Figs. 2—4.

Clearly, while the large-x behavior is reasonable and the
EMC ratio is less than unity at intermediate x, the shape
of the prediction is quite different from the Stanford
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12C 4OC

1.0 I

--0 5

I

I x
1.0

0.9 0.9—

0.8

FIG. 3. The EMC ratio for "C—otherwise as for Fig. 2.
The dashed curve shows the small effect of the explicit
modification of the Q argument of Fz N in Eq. (3.9).

0.8—

FIG. 4. The EMC ratio for Ca—otherwise as for Fig. 2.

Linear Accelerator Center (SLAC) data. In particular,
the factor (1+5 /x) ' in Eq. (3.9) is in large part re-
sponsible for the pronounced dip at small x. We have
also tested the importance of the explicit appearance of
Q rather than Q in Eq. (3.9). It is very small as shown
by the dashed versus the solid curve labeled 140 for ' C.
(The labels are the values of (k ) '~ used for deuteron—
recall that 140 MeV is our preferred value. )

Our calculation of the structure function of the deute-
ron itself is in fair agreement with the data for x &0.3,
but it exhibits the same defect of falling below the data at
smaller x, as for heavier nuclei. Using a nucleon-nucleon
potential with a repulsive core gives an I'& that is very
close to that obtained from a harmonic oscillator with
( k ) ' = 140 MeV. The contribution of the kinetic ener-

gy of the recoiling spectator nucleon to b, in Eq. (2.12) is
included in these calculations.

V. CONCLUSION

%e have examined the predictions of the instant form
of nuclear dynamics for deep-inelastic scattering from a
variety of targets. The resulting convolution formulas in-
volve the structure function of physical nucleons, which
is obtained directly from experiment without any need
for an off-mass-shell extrapolation. In the instant version
of dynamics the arguments of the nucleon structure func-
tion Fiv(Q, x ) differ from the arguments of the nuclear
structure function F„(Q,x) by amounts that depend ex-
plicitly on the binding energy as well as the kinetic energy
of the nucleons in the nucleus. In particular, the change
in the scaling variable x via Eqs. (2.14) and (2.12) is a dis-
tinctive feature of the instant version.

In each version of dynamics one must choose appropri-
ate nuclear wave functions, and we have used traditional
wave functions of the harmonic oscillator shell model
type. The numerical results are somewhat disappointing
for x less than about 0.4. There is some discussion at the
end of Sec. II to the effect that the convolution formula

may break down in this region, but it is not at all clear
why it should be so bad. This is particularly mysterious
if we compare with the results of Dunne and Thomas
who, while allowing the nucleon to go off shell in a some-
what arbitrary way, nevertheless found quite reasonable
values at small x —independent of the off-shell prescrip-
tion. Certainly there needs to be a lot more work on the
question of final-state interaction corrections in nuclear
deep-inelastic scattering.

It is widely recognized that if a system is bound some
of the momentum must be carried by the mesons respon-
sible for the binding. This has led a number of authors to
combine the binding and pionic "explanation" of the
EMC effect. ' ' ' There is a possibility that if this were
done consistently within the instant form of dynamics,
the dip at small x might be compensated to some extent.
This is our next priority.

For the present, the EMC effect remains more of a
mystery than ever. Even though there may be important
new physics hidden in the data, it will not be possible to
extract it until the binding corrections can be dealt with
in a reliable manner.

During the course of this investigation we learned of
other work using instant dynamics. ' Equation (3) of
Ref. 20 is the same as Eq. (2.15) of the present paper, ex-

cept for the presence of k+ =En(k)+k, (called p;+) in

place of EN(k) in the denominator. The factor of
E„(p) E/z( )kin Eq. (2.15) arose from the normalization
of the wave functions, as given in Eqs. (2.8) and (2.9), to-
gether with the requirement that 8'~z transform like a
Lorentz tensor. The step from W" to the structure func-
tions I', z that are actually measured is simply given by
the projection operators in Eqs. (2.17) and (2.18). Conse-
quently, Eq. (21) in Ref. 20, which relates F2" to F2, also
differs from our Eq. (2.20) by a factor of E~(k)/k+,
which can depart from unity by a significant amount.
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APPENDIX

Q2

8mttx ( I+5/mttx)

As we remarked at the end of Sec. II A, the neglect of terms in (5/mNx) is not justifiable at stnall x. It is possible to
retain all the terms in (b, /mttx ) which survive in the Bjorken limit. Instead of Eqs. (2.19) and (2.20) we find

m& F2 tv(x, Q )F»(x, Q )=g f d k p (k), 1 — » F &(x~Q )+
&~(k) 8m~x (I+5/mtvx) 2x

and

(Al)

m~ x ( I+b, /m~x+ 3b ~/8m~~x 2)
F2 A( xQ')=y f d k p~(k) — F2 ~(x, Q 2)

1+6, m~x

3

4 7?2~X

2
1 2xF, tt(x, Q ) (A2)

lt is easily seen that (Al) and (A2) reduce to (2.19) and (2.20), respectively, when (b /mzx ) is small. A little more effort
is required to check that if F& tt and F2 z satisfy the Callan-Gross relationship Eq. (2.21), Eqs. (Al) and (A2) reduce ex
actly to (2.19) and (2.20).

We are grateful to Dr. R. P. Bickerstaff for drawing to our attention our initial oversight concerning terms in
(b, /m~x ) .
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