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Treatment of the Coulomb interaction in momentum space calculations
of proton elastic scattering
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A practical, numerically stable procedure for a more accurate treatment of the Coulomb interac-
tion in momentum space calculations of proton elastic scattering is presented. The accuracy of the
method is compared with other prescriptions in use in the literature and is shown to produce accu-
rate calculations of scattering observables.

I. INTRODUCTION

It is now well established' that the nonlocality of the
first order Kerman-McManus-Thaler (KMT) optical po-
tential for nucleon-nucleus scattering must be treated ac-
curately in order to reproduce experimental data for
proton-nucleus elastic scattering at intermediate energies.
It thus proves very convenient to perform the associated
numerical calculations in momentum space.

It has been shown clearly, in the recent calculations of
Elster et al. , that intermediate energy calculations of
nucleon-nucleus scattering are highly sensitive to the de-
tails of the theoretical input to the calculations, a sensi-
tivity which reveals itself most often near interference
minima in spin-dependent observables and at larger
scattering angles. The effects of the inclusion of the
Coulomb interaction are, however, manifest in the same
angular regions. Thus, to be able to probe details of our
description of the strong nucleon-nucleus interaction, by
comparison with the now high precision experimental
data, it is vital that the effects of the Coulomb interaction
can be included accurately to as large a scattering angle
as can reasonably be achieved.

The common approach to incorporating the Coulomb
potential in momentum space, and that adopted here, is
to use, in the solution of the integral equation, a free par-
ticle Green's function and to add the mornenturn space
representation of the Coulomb interaction to the Snite
ranged (in configuration space) nuclear interactions Vz.
This procedure is, however, complicated by the I/q
singularity in the momentum space representation of the
Coulomb interaction. Approximate prescriptions, to
overcome this difFiculty, have been discussed in the litera-
ture and are examined here. We present an alterna-
tive approximate, simple and stable method which yields
more accurate calculations of reaction observables.

II. THE ELASTIC SCATTERING AMPLITUDE

In the scattering of a spin- —,
' charged particle from a

spinless target, the scattering amplitude can be written

f (8)= A (8)+in h'C(8),

where A and C are the central and spin-dependent Wol-
fenstein amplitudes

and 8' is the unit vector normal to the scattering plane,
&=kxk'/~kxk'~. In Eq. (2), ff(8) is the Coulomb
scattering amplitude due to a point charge (Ze) and k is
the asymptotic wave number of the projectile in the
nucleon-nucleus (N- A ) center of mass frame. The
TL~(N) are the Coulomb-modified nuclear partial wave
transition amplitudes, where L+ denotes the orbital and
total angular momenta, J=L+ ,' The TL—+.(N) measure
the deviations from point Coulomb scattering due to
short ranged nuclear interactions, Vz, and from the
Coulomb interaction, Vc, of the target of charge density
p(R). They are defined

I exp[2i5L +(N) ]—1 I
TL+(N) =

2l
(4)

where the 5L+(N) are the Coulomb-modified nuclear
phase shifts, defined in configuration space through the

asymptotic form of the radial wave functions

QL+(R)~F1 (kR)+ Tl+(N)HI+(kR),

where HL+ =GI +iFL, FI and GL are the regular and ir-
regular Coulomb functions, and PL+ is the solution of the
radial Schrodinger equation for potential V&+ Vc. We
now briefly review procedures, discussed in the literature,
for the approximate evaluation of the Tl +(N) in the pres-
ence of the Coulomb interaction.

III. APPROXIMATE METHODS

In the crudest approximation, when calculating the
TL+(N) in momentum space, it has been supposed that

A(8)= ff(8)
00

+—g exp(2icrL )[ (L +1)TL+(N)
L=0

+LTD (N)]Pz (cos8), (2)

and

oo

C(8)=—g exp(2io I )[TL +(N) Tl (N—)]PL (cos8),
L=1

(3)
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the dominant effects of the Coulomb interaction are con-
tained within the Coulomb-nuclear interference, intro-
duced in Eqs. (1)—(3), and in the Coulomb phase factor
exp(2ioL ) entering in Eqs. (2) and (3). Thus it has been

suggested that one could evaluate

determines the transition amplitudes TL'+" (N) according
to

TL+( VA-+ Vc.g )[FI,hL ]+[FI,JL ]
T'""(N)=

[JL,HL ]+TL+( V~+ Vc.~ )[hL, HL ]

TL+ (N) = TL+( V~ ), (6)
(12)

where TI+( VN) is to be calculated in the complete ab-
sence of the Coulomb interaction. That is TL+(N), in

configuration space, is defined by the equation

p'z'+'(R)~j I (kR)+ TL+(N)fL (kR), (7)

Pl~here eL =R'L+ijL, jL and &~ are the Riccati-Bessel
and Neumann functions, jL (x)=xjL (x), etc. , and f'L+ is

the solution of the radial equation in the presence of the
nuclear interaction V~ alone. We call this method (I).

An attempt to include, to some extent, the Coulomb
interaction effects in the calculation of the TL+(N) has
been used by Picklesimer et al. They make the replace-
ment

Tq'+ (N) = TL+( V~+ Vc —Vf'), (8)

where V&~' is the Coulomb interaction due to a point
source of charge Ze. As the notation implies,
TL+( Vz+ Vc —Vc') is the partial wave transition ampli-
tude, defined by Eq. (7), with g'L+' calculated from the en-

tirely short ranged interaction Vz+ Vc —V&'.

A more sophisticated technique, method (III), for the
evaluation of the TL+(N) was proposed by Vincent and
Phatak. The method is in principle exact, provided
there exists a cut-off radius, R,„„beyond which Vz can
be assumed to have vanished and V& to have its asymp-
totic form, Vc(R)=Ze /R. The technique is to calcu-
late, in momentum space, an intermediate set of partial
wave amplitudes TL+( V~+ Vc.„)using the momentum

space form,

where the square brackets denote Wronskians, evaluated
at the cut radius, e.g. ,

„dF, dj,
[FL jL]= ji. dR

FL d—R
(13)

IV. THE SUBTRACTED
MOMENTUM SPACE METHOD

+TI+( Vc;~,„, ) (14)

where the TL +( VP'. z ) describe scattering from a cut-off'
cut

point Coulomb interaction,

Z2
V~~'. ~ (q) = [1—cos(qR, „,)],2' g

and where

In this section we propose an alternative approximate
method, method (IV), for treating the Coulomb interac-
tion in momentum space. Like Vincent and Phatak, we
proceed from calculations of the partial wave transition
amplitudes TL+( VN+ Vc.~ ), calculated in the presence

of the cut-off Coulomb interaction.
These transition amplitudes can be written

TL+( VN+ VC;R, ) = exp[2i5L+( Vc', R, )]Tl.+ (N)

p(0) =1,

Ze
[p(q) —cos(qR, „,)],

277 g
(9)

{exp[2i5„( VP.„)]—1I
TL (VF', R,„,

)=
21

(16)

with 5L+( VP'. z ) the associated phase shifts. Our ap-
cut

proximation to the exact amplitude TL+(N) is

where q = ~k' —k~. The potential (9) corresponds to the
finite ranged potential V~.~, where

cut

{exp[2i5L+(N)] —1IT(lv) (N)—
2l

(17)

Vc.„(R)=Vc(R); R ~R,„, ,

Vc.„(R)=0; R )R,„, .
(10) 5L+( ) —5c,+( Vv+ Vc;~, )

—5L+( Vc;~, » (18)

where the phase shift 5L+(N) is defined by the relation

The requirement that this cut-off solution should match
smoothly with the exact solution, Eq. (5), at the cut-off
radius R,„„i.e.,

(i'L+ (Rcpt) = JL(kR,„,)

and measures the departure from the cut-off point
Coulomb scattering due to the full cut-off interaction
Vz+ Vz. ~ . For sufticiently large R,„, this is expected

cut

to approach the usual Coulomb-modified nuclear phase
shift 5r +(N) introduced in Eq. (4). In terms of the partial
wave amplitudes, Eqs. (14) and (16), the TI"+'(N) can be
written

+TL+(V~+ Vc.R )hL (kR,„,)

~ FL (kR,„,)+ TL'+" (N)HL (kR,„,), L+
TI+( Vx+ Vc;~,„, ) . TI.+( Vc",~,„,

)—
2iTL+( Vc'. ~ )+ 1

(19)
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V. NUMERICAL RESULTS

In order to assess the numerical accuracy and stability
of the various approximate methods it is very desirable to
be able to perform both configuration and momentum
space calculations for the same system. For simplicity,
we thus make use of the local proton-target optical poten-
tial'

(k'lUNlk) = p(q)[t'(e, q)+rr 8t'('e, q)],
(20)

q = lk' —kl,
where we take the t'(e, q) (a =c, ls) as pararnetrized
nucleon-nucleon transition amplitudes obtained by fitting
the empirical on-shell amplitudes as a function of NN
scattering energy e In th. e evaluation of Eq. (20), e is set
equal to half the beam energy in the NN center of mass
frame. The corresponding configuration space interac-
tion was obtained numerically. The Coulomb interaction
was assumed that of a uniformly charged sphere of radius
R&=1.3A' fm. As a specific example, we apply the
methods to p- Ca elastic scattering at 200 MeV incident
energy.

We first investigate quantitatively the methods (I) and
(II) outlined above. These calculations were carried out
in configuration space for the assumed local proton- Ca
interaction discussed above, comprising real and imagi-
nary central and spin-orbit terms. We will show only the
calculated proton analyzing power, A, which displays
the most sensitivity to the accurate inclusion of the
Coulomb interaction. The solid curve in Fig. 1 shows the
result of the exact (configuration space) calculations, ob-
tained with the computer program cHUCK3. The dot-

dashed curve is the result of the nuclear interaction only
approach, method (I), while the dashed curve results
from the prescription of Picklesimer et al. , method (II).
The calculations were obtained by substitution of the
TL+ (N) and Tl+'(N) into the expressions of Eqs. (2) and
(3). As is clear from the figure, these approximate pro-
cedures do not, in any way, reproduce the exact calcula-
tions for A~ for this system.

In the case of the Vincent-Phatak method we find that,
while for low partial waves the treatment is very accu-
rate, the method is numerically inaccurate in the higher
partial waves. Similar conclusions were drawn by other
authors. ' Even when the cut-off Coulomb transition
amplitudes, TL+( Vz+ Vc.a ), were calculated with high

precision in configuration space, the Tz"P(N), obtained
using Eq. (12), proved numerically unreliable.
Specifically, they showed significant departures from the
exact calculations in the L =20-30 partial wave region
of importance to the p- Ca system at 200 MeV con-
sidered here. Not surprisingly, this inaccuracy then leads
the calculated observables to be sensitive to the particular
choice of R,„,. As there is no obvious a priori best choice
value for R,„„the method is diScult to use with any
confidence. We demonstrate a typical set of numerical
results in Fig. 2. The figure shows the percentage error in
the approximate partial wave transition amplitudes from
those of the exact calculation,

~T =
I Tg )+ (N) —TL+(N) I ~l Tg+ (»I,

as a function of L for J =L +—,'. The circles show the re-

sults from the Vincent-Phatak method, Eq. (12), when us-

ing a cut-off radius R,„,=8 fm and, as discussed above,
the calculations are in considerable error in the higher
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FIG. 1. Calculated vector analyzing powers A for p- Ca
elastic scattering at 200 MeV. The solid curve includes the
Coulomb interaction exactly. The dot-dashed and dashed
curves are obtained using methods (I) and (II) of the text, re-
spectively.

FIG. 2. Percentage errors hT =
l TL'+ (N) —TI +(N) l I

l TrI'+(N)l in the (J=1.+
z ) partial wave transition amplitudes

calculated using method (II) (squares), method (III) (circles,
R,„,=8 fm), and method (IV) (solid line, R,„,=8 fm).
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partial waves. We present the R,„,=8 fm calculations as
these yielded the best agreement we were able to obtain
with the exact A using the Vincent-Phatak method.
This analyzing power (dashed curve) is compared with
the exact calculation (solid curve) in Fig. 3. As was dis-
cussed in the Introduction, there are significant errors,
particularly at the A minima and at larger scattering an-

gles, where accuracy is required. Also shown in Fig. 2
(squares) are the percentage errors obtained using the ap-
proach of Picklesimer et al. , leading typically to 10% er-
rors for partial waves with values L = 15 onward.

We now consider the proposed approximate method,
method (IV), of Eq. (19). The one disadvantage of this
method is that it requires two calculations to be per-
formed, namely, a calculation of the nuclear and Anite
Coulomb problem, Tl ~( V~+ Vc.„),and of the point

Coulomb case, TL+(VP'.„).The percentage errors in
cut

the calculated Tz"+'(N), for a cut-off radius R,„,=8 fm,
are represented by the solid line in Fig. 2 and the associ-
ated A by the dot-dashed curve in Fig. 3 with significant
improvement over the Vincent-Phatak calculation. In
this case the agreement with the exact calculation is
essentially perfect to scattering angles of order 50'.
While the absolute errors in the lower partial waves are
greater than those of the Vincent-Phatak approach our
method is numerically well behaved across the entire par-
tial wave range. Of course there is no reason why the
Vincent-Phatak method should not be implemented in
the treatment of the lower partial waves. The rise in the
calculated hT at large L simply reflects the fact that the
radially cut-off, and consequently L cut-off, partial wave
amplitudes entering Eq. (19) eventually fall too rapidly to
zero compared with the exact amplitudes.

In Figs. 4 and 5 we demonstrate the systematic im-
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FIG. 4. Percentage errors in the (J=I.+ —,') partial wave

transition amplitudes calculated using method (IV). The
dashed, dot-dashed, and solid curves show the results obtained
with cut-off radii of R„„=6,8, and 10 fm, respectively.

provement in the calculated partial wave amplitudes and
the convergence toward the exact observables obtained
using the method, as a function of cut-off radius used.
The dashed, dot-dashed, and solid curves in Fig. 4 show
the percentage errors in the TI'+'(N) obtained with a cut
radius R,„,=6, 8, and 10 fm, respectively. The corre-
sponding analyzing powers are shown by the short-
dashed, dot-dashed, and long-dashed curves, respectively,
in Fig. 5. In the latter case, R,„,=10 fm, the agreement
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FIG. 3. Calculated vector analyzing powers 3 for p- Ca
elastic scattering at 200 MeV. The solid curve includes the
Coulomb interaction exactly. The dashed and dot-dashed
curves are obtained using methods (III) and (IV) of the text, re-
spectively, with R,„,=8 fm.

FIG. 5. Calculated vector analyzing powers A~ for p- Ca
elastic scattering at 200 MeV. The short-dashed, dot-dashed,
and long-dashed curves were obtained using method (IV) and a
cut-off radius R,„,=6, 8, and 10 fm, respectively. The solid
curve includes the Coulomb interaction exactly.
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with the exact result, the solid curve, is excellent up to
scattering angles of 70' in the center of mass. We are able
to reproduce these results accurately using both
configuration space and momentum space methods.

VI. CONCLUSIONS

In this paper we presented an approximate procedure
for the inclusion of the Coulomb interaction in momen-
turn space calculations of proton elastic scattering. The
method is simple to incorporate in momentum space cal-
culations but requires a prior calculation of the cut-off
point Coulomb amplitudes, TL+( VP.a ), for the system

under study. More importantly, the method is well
behaved numerically and the accuracy of the partial wave
transition amplitudes and the deduced elastic scattering

observables is found to improve systematically with in-
creasing radial cut-off, R,„,. We have shown that the
procedure is capable of producing accurate quantitative
calculations of spin-dependent scattering observables for
modest values of the Coulomb cut-off radius. The appli-
cation of the method to full folding calculations of
proton-nucleus scattering will be presented elsewhere.
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