
PHYSICAL REVIEW C VOLUME 41, NUMBER 6 JUNE 1990

Predictions of the Paris N-N potential for three-nucleon continuum observables:
Comparison of two approaches

T. Cornelius, "W. Glockle, "J. Haidenbauer, ' ' Y. Koike,"W. Plessas, ' ' and H. Witala"'
"Institute for Theoretical Physics II, Ruhr Un-iuersitat Bochum, Uniuersitiitsstrasse 150,

D-4630 Bochum, Germany
' 'Institute for Nuclear Physics, Kernforschungsanlage Ju lich', P.O.B. 1913,D 51 70-Jiilich, Germany

"'Department ofPhysics, Hosei Uniuersity, Tokyo 102, Japan
Institute for Theoretical Physics, Uniuersitat Graz, Uniuersitiitsplatz 5, A 8010-Graz, Austria

(Received 14 August 1989)

Two different approaches for solving three-nucleon scattering are compared. The one relies on

separable subsystem interactions, while the other one can use any two-nucleon potential and solves

the three-body integral equations directly. Both approaches are tested in the case of a finite-rank

expansion of the Paris N-N potential (the so-called PEST) and the results are then compared to the

predictions calculated straight from the original interaction. By considering cross sections and po-

larization observables of elastic n-d scattering at E„=10MeV, it is found that both methods lead to

compatible results. Where appropriate a comparison is also made to experimental data showing a

remarkably good agreement between theory and experiment.

I. INTRODUCTION

Over many years the theoretical treatment of the
three-nucleon (3N) continuum with realistic N-N forces
has been a great challenge. In addition to the H and He
bound states, 3N scattering processes provide a wealth of
further observables making it possible to study many
more aspects of the 3N problem. Above all there is the
primary question of the performance of present-day N-N
interactions in the 3N system. In particular, one is most
interested in whether or not the meson-exchange theory
of nuclear forces, which in the 2N system is capable of
reproducing the numerous experimental data, can also
fully describe the more complex 3N system. Especially
one would also like to know, if 3N forces play a sensible
role. Clearly all these questions can only be answered
along with an exact solution of the three-body equations
employing the most-advanced N-N potentials.

While 3N bound-state observables could be calculated
to great accuracy for quite some time, ' the 3N continuum
problem witnessed a major advance only recently. The
solution of the 3N scattering with realistic forces has be-
come possible by following two different approaches.

(i) The first one (we call it approach A) consists in

designing a separable representation of a given N-N in-

teraction V via an on-shell and off-shell-equivalent finite-
rank expansion; this is subsequently used as input for
the three-body Faddeev equations, which then result in a
coupled system of one-dimensiona1 integral equations to
be solved in one of the established ways.

(ii) The second one (approach B) consists in applying
the given N-N potential V directly in the three-body Fad-
deev equations, what amounts to numerically solving a
coupled system of two-dimensional integral equations
without resort to any approximations. Clearly it is now
most interesting to estimate the reliability of these two

approaches. The purpose of the present paper is to pro-
vide a quantitative comparison between them by means
of the Paris potential predictions for elastic N-d scatter-
ing.

For our comparison we proceed in two steps. In the
following Sec. II we first confront formalism and tech-
nique of approach A to the one of approach 8 by keeping
the N-N interaction in both calculations strictly the same
(namely, a separable representation of the Paris poten-
tial); this sheds light on the exactness of the two methods.
Next, we compare the results of Sec. II to the predictions
of the original Paris potential obtained from approach 8;
thereby we get insight into the reliability of the finite-
rank expansions used (Sec. III). It stands to reason that
ideally all these results should agree to a satisfactory ac-
curacy. Only then both approaches A and 8 can be con-
sidered as reliable and lead to the true predictions of the
underlying N-N interaction. We discuss this in Sec. IV.

II. APPROACH A VS APPROACH 8
UNDER THE SAME DYNAMICAL INPUT

We now want to compare the results from approaches
3 and 8 for the very same N-N interaction. For this pur-
pose we must evidently apply the separable representa-
tion obtained for the Paris potential. Following the
work of Haidenbauer and Plessas we make use of the
Ernst-Shakin-Thaler (EST) method. In the present in-
vestigation we in particular employ the separable repre-
sentation specified by the interpolation energies as given
in Table I. This defines the ranks of the separable expan-
sion in each channel; they are, in fact, the same as in Ref.
8. Throughout all partial waves the a priori numerical
EST form factors are expressed by the analytical forms as
already introduced before, i.e.,
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TABLE I. Finite-rank approximation of the Paris potential (PEST) used.

Partial wave

1
sp

I 3 3 1 3P l PP P 1 d2~

Sl dl

p2

Rank
Selected interpolation energies E; (MeV) or
ensembles a;= {E;1,j; see also Refs. 6 and 8.

El =0, E2 = 100, E3 =500
El=10 E2= 50
a, =

f
—2.2249, —}, a2= f 125,2}, a3= f 100,0}

a = f425, 2}, a, = f
—50,0}, a6= f

—50, 2}
a, = f75, 1},a2= f175,3}, a3= f300, 1}

p =rI; «f.—1 ll
1+t

'
1 —t' (2)

The actual values of the parameters occurring in Eqs. (1)
and (2) as well as a subroutine for calculating gi;(p) can
be obtained from the authors upon request.

We emphasize that the EST method involves no open
parameters. Only the analytical representation of the
pertinent form factors, which originally result in numeri-
cal form, require a suitable parametrization. Closed ex-
pressions for the separable form factors are needed in our
calculation along approach A to perform a contour de-
formation in solving the integral equations.

In approach A the so-obtained separable representa-
tion of the Paris potential (PEST) is used to rewrite the
three-body Faddeev equations, in the Alt-Grassberger-
Sandhas (AGS) form, as a coupled system of one-
dimensional integral equations. Approach B does not ex-
ploit this possibility but employs the separable interac-
tions, just as any other arbitrary potential, in solving the
two-dimensional integral equations. ' Evidently the
structure of the dynamical equations to be solved in the
two approaches is totally different. In addition, the
singularities arising from the free nucleon propagator are
completely avoided in approach A by performing a con-

1

a;(p)=,+„Ki;+p'yi;(p) l
(p2+p2 )

"h

(i =1, . . . , N) . (1)

Here N is the rank of the approximation, and the param-
eters C, P, and v are fixed so as to exactly reproduce the
threshold behavior of the numerical form factor. For the
remaining term in Eq. (1) the defect function y&;(p) is
most conveniently represented via a series of Gegenbauer
polynomials. Such an expansion is feasible after perform-
ing the mapping

tour rotation into the complex plane, while they are treat-
ed by a subtraction method and a spline interpolation in
approach B. In both calculations all N-N partial waves

up to j 2 are included. For the evaluation of the 3N
scattering observables three-body amplitudes up to total
angular momentum J =17/2 and J =25/2 have been
used in approaches B and A, respectively; it was already
shown in Ref. 4 that for the observables considered here a
convergent result is practically achieved with J= 17/2.

Table II gives the results of integrated n-d cross sec-
tions at E„=10MeV. At this instance we compare the
figures in the first two columns (same interaction PEST).
The agreement between the two approaches A and B is
quite good, since the differences are at most 0.4%.

Table III shows the results for the differential cross
section of elastic n dscatter-ing at E„=10MeV. Though
at extreme forward and backward angles there are
differences of about l%%uo, the agreement is again very sa-
tisfactory. The same information can also be read off
from Fig. 1, where it is seen that the crosses (approach A)
essentially coincide with the curve (approach 8).

A similar good agreement shows up also in the various
spin observables for elastic n-d scattering. As examples
we show the three deuteron tensor polarizations T20 T2&,
and Tz2 in Figs. 2 —4. Only in the particular case of T2o
at very forward angles 0 (40', where this spin observable
takes rather small values, there remains a certain
discrepancy which is probably due to an insufficient num-
ber of mesh points used in approach B.

From the preceding comparison we may thus conclude
that the two approaches with their independently
developed codes for solving the three boay equations
practically yield identical results (for one and the same
N-N interaction), within an accuracy of 1 —2% (except in
the above-mentioned case of Tpo at small scattering an-
gles). About 1% is also the uncertainty estimated for
each of the two computer programs.

TABLE II. Integrated total, elastic, and reaction cross sections for n-d scattering at E„=10.0 MeV

as obtained from the different approaches.

tot(mb)
o.,)(mb)

Approach A

1043.1
900.6
142.5

PEST
Approach B

1043.1
900.0
143.1

Paris potential
Approach B

1043.7
900.0
143.6

Experiment
Ref. 11

1055+10
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FIG. 1. Differential cross section for elastic n-d scattering at
E„=10 MeV in case of the PEST interaction for approaches A

(crosses) and B (solid line).

FIG. 3. Deuteron tensor polarization T» for elastic n-d

scattering at E„=10MeV. Same description as in Fig. 1.

III. PREDICTIONS FROM PEST
AND THE ORIGINAL PARIS POTENTIAL
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In the next step we aim at examining the reliability of
the separable-expansion method. %ithin approach 8 we
compare the results obtained from PEST (in the previous
section) with the ones from the original Paris potential.
As before, both interactions are taken to act in all X-X
partial waves j 2.

Again we first regard the integrated n-d cross sections
in Table II. Comparing the figures in the second and
third columns we notice that there is essentially no
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FIG. 2. Deuteron tensor polarization T2o for elastic n-d

scattering at E„=10 MeV. Same description as in Fig. 1.
FIG. 4. Deuteron tensor polarization T&2 for elastic n-d

scattering at E„=10 MeV. Same description as in Fig. 1.
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TABLE III. Differential cross section for n-d elastic scattering at E„=10.0 MeV as obtained from
the different approaches.

e,. Approach A

PEST
Approach B

d o. /d Q(mb/sr)
Paris potential

Approach B Experiment

0
15
30
45
60
75
90

105
120
135
150
165
170
172.5
180

189.32
180.67
157.59
126.86
95.24
66.84
43.27
25.54
17.22
28.19
72.84

145.43
166.53
174.71
185.89

188.69
180.10
157.18
126.59
95.00
66.61
43.03
25.34
17.17
28.35
73.74

147.41
168.68
176.91
188.15

188.24
179.70
156.92
126.54
95.11
66.80
43.22
25.49
17.24
28.26
73.44

146.95
168.19
176.41
187.65

170.3+2.0'
174.7+2.1b

187.2+3.5'

'Measurement at 8, = 170.5' by the Uppsala group (Ref. 12).
Measurement at 8, = 172. 1' by the Uppsala group (Ref. 12).

'Extrapolated value (Ref. 12).

significant difference between the calculations with PEST
and the original Paris potential (within approach B) To-.
gether with our comparison in the previous sections this
means that with respect to integrated cross sections the
PEST finite-rank expansions are completely reliable as
are the solutions of the Faddeev equations within both
approaches A and B. We may also note that the so ob-
tained Paris potential predictions agree well with experi-

ment (last column of Table II); cf. also the integrated to-
tal cross sections at other energies given in Ref. 8.

The same arguments hold for the differential cross sec-
tions of elastic n-d scattering given in Table III. Here too
all results are in convincing agreement. Also the back-
ward experimental data can be we11 reproduced by the
Paris potential; thus the long-standing problem of
theoretical results undershooting experiments appears to
be resolved. In this connection we should, however, men-
tion that the Paris potential predictions stay at variance
with the measurement of the Karlsruhe group, ' above all
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FIG. 5. Nucleon-to-nucleon spin-transfer coefficient K for
elastic N-d scattering at E&=10 MeV. The theoretical results
are calculated within approach B for the Paris (solid line) and
PEST (crosses) interactions; they refer to n-d scattering, while
the experimental data (Ref. 15) are for p-d.

I

FIG. 6. Nucleon-to-nucleon spin-transfer coefficient K in
elastic N-d scattering at E&=10 MeV. Same description as in
Fig. 5.
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FIG. 7. Nucleon-to-nucleon spin-transfer coefficient K," in

elastic N-d scattering at EN=10 MeV. Same description as in

Fig. 5.
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X

in the backward-scattering domain. This is also true at
neighboring energies. There was a subsequent repetition
of the Karlsruhe experiment at higher energies, ' and it
turned out that at least at the energy of E„=20MeV the
corresponding new data are in good agreement with the
Paris potential result. Consequently it seems that the
former data set is not completely reliable and it would be
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FIG. 9. Nucleon-to-deuteron spin-transfer coefficient K~~ in

elastic X-d scattering at EN=10 MeV. Same description as in

Fig. 8.

desirable to have further measurements, especially in
view of the obvious sensitivity of the backward-scattering
regime to details of the N-N force, here the deuteron
wave function (cf. the findings in Ref. 3).

Finally we regard for our comparison several spin ob-
servables, for which rather accurate data exist at Ez = 10
MeV; these are the spin-transfer coefficients depicted in
Figs. 5 —10. Of course, the experimental data are for p-d
scattering, while our calculations are for the uncharged
case n-d, but it is expected that at our energy Coulomb
effects are negligibly small in these particular observ-
ables. ' The results given in Figs. 5-10 con6rm the relia-
bility of the Paris potential predictions obtained with ap-
proaches A and B. At the same time a convincing agree-
ment with experiment is found.
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FIG. 8. Nucleon-to-deuteron spin-transfer coefficient K„" in

elastic X-d scattering at EN=10 MeV. Same description as in

Fig. 5. Experimental data are from Ref. 16.

FIG. 10. Nucleon-to-deuteron spin-transfer coefficient K, in
elastic X-d scattering at EN=10 MeV. Same description as in
Fig. 8.
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IV. CONCLUSIONS

We have compared two different approaches for calcu-
lating 3N scattering observables for present-day realistic
N-N interactions. By the consideration of elastic n-d
scattering at E„=10MeV we have found that both ap-
proaches, though conceptually rather different, yield re-
sults that agree within less than 2%%uo. In view of the com-
plexity involved in the corresponding calculations and
numerical algorithms this is a remarkable achievement.

In particular we have seen that the method of applying
separable 2N t-matrices in the three-body Faddeev in-
tegral equations (approach A) yields the same results as
the direct method of solving the two-dimensional integral
equations right away (approach B). Either approach is
thus suitable for calculating predictions of 3N (scattering)
observables for any given interaction V. The first ap-
proach A requires to this end a correct separable repre-
sentation of the corresponding off-shell N-N t-matrix.
We have demonstrated that in the case of the Paris po-
tential the separable PEST interactions fully meet this re-
quirement. Their use allows to deduce in a reliable way
predictions of 3N observables for the true Paris potential.
The method of finite-rank expansion thus appears to be
quite eScient.

In the present paper we have considered cross sections

and several polarization observables for elastic n-d
scattering and found good agreement in all places. Of
course, it might happen that for even other observables,
at other energies, or for breakup reactions larger
differences between the two approaches can show up. If
such a finding affected the separable PEST representa-
tions, they would have to be further refined to include ad-
ditional interpolation energies (higher ranks).

With respect to the PEST representations we may add
that already the result obtained with them for the H
binding energy' was in perfect agreement with the value
calculated from the original Paris potential by the Han-
over group. ' In this light the above investigation of 3N
scattering observables further supports the reliability of
the PEST interactions.

Finally it should be noted that by using the PEST rep-
resentations within approach A also the p-d elastic
scattering problem with inclusion of the long-range
Coulomb force can now practically be solved and, indeed,
this was quite recently pushed into a promising stage. In
particular the Graz group succeeded in calculating p-d
(polarization) observables below breakup threshold from
a simplified (rank-I) EST approximation of the Paris po-
tential. ' By taking into account in addition to 'so and

s, —d, also all N-N p-waves a satisfactory description of
all p-d data in the low-energy domain could be achieved.
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