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Thermal decay rate of multidimensional fission under a nonlinear coupling
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We study the effects of coupling between the fission coordinate and bosonic intrinsic excitations

on the fission width by using a path integral method. We assume a general coupling form factor and

discuss how the decay width at high temperature changes from that of the extended Kramers for-

mula recently obtained in the bilinear coupling model. Applying the results to two different types of
bosonic spectra we show a possibility to represent the effects of nonlinearity of the coupling in terms

of a suitable renormalization of the friction and the mass for the fission coordinate.

The decay of a metastable system is a fundamental
problem in many fields of physics. An important recent
progress in this subject is the development of the path in-

tegral approach to Langer's prescription, ' where the
decay width of a metastable state is obtained by calculat-
ing the imaginary part of the free energy. This method
can naturally describe the change of the decay mecha-
nism from the quantum tunneling to the classical thermal
hopping as the temperature is raised. In addition, it can
easily handle the decay in multidimensional systems such
as the macroscopic quantum tunneling discussed by Leg-
gett and others. ' In the high temperature regime, the
Kramers formula for the fission width was modified with
this method by including a quantum correction and a
memory effect in the dissipation factor. '

The studies so far made are, however, limited to the
case of a bilinear coupling, i.e., to the case where the cou-

pling Hamiltonian is linear with respect to both the coor-
dinates of the oscillators, which represent the environ-
ments, and the decay coordinate. In the case of nuclear
fission, however, the linear coupling form factor is clearly
unrealistic, because the interaction between fission frag-
ments should vanish when they are far apart. The aim of
this work is thus to discuss what happens when the cou-
pling Hamiltonian is not a linear, but a general function
of the decay coordinate.
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where q and q; are the fission coordinate and the coordi-
nates of the environmental oscillators, respectively. The
last term describes the coupling between them, where the
coupling form factor f (q) is assumed to be a general
function of the decay coordinate. Note that Eq. (1) does
not contain the counter term that has been introduced in
Refs. 4 and 5 in order to cancel the static potential renor-
malization.

We calculate the partition function by using a path in-
tegral technique to determine the imaginary part of the

free energy. By eliminating the environmental degrees of
freedom, the partition function at the temperature
T =1/P can be expressed only by the fission coordinate
q(r) as

Z(P)= Jdq J 2)q exp[ —S,r(q)/A'],

where the effective action S,s(q) is given by

(2)

S,tt(q)= I dr q +V,s(q)
0

+—,
' f dr f dr'tc(7. r')f(q(r)—)f(q(r')) .

AP RP

0 0

(3)

In Eq. (3), V,s(q) is the renormalized potential V(q)
+ b, V(q) with
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The influence kernel tt(~) is given by
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where:5(r): is a generalized delta function with a period
AP. Equation (4) shows that the renormalization of the
fission barrier is very sensitive to the properties of the
coupling form factor. Both cases could occur, where V,ff
has a lower or a higher barrier than that of the bare po-
tential V(q). Figure 1 illustrates these cases. The upper
figure corresponds to the situation where f (q} is peaked
in the internal region, so that the fission barrier is raised.
The lower figure shows, on the other hand, the case
where f (q) is localized around the barrier region, and the
fission barrier is lowered.

We evaluate the path integral in Eq. (2) in the saddle
point approximation with respecting the periodic bound-
ary condition q (0}=q(fig) =q. We particularly consider
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the quantum fluctuation of the path around the trivial
classical trajectories q„(r)=qo and q„(r)=qb . The
v„=2mn/fiP are the Matsubara frequencies for environ-
mental bosons, while K(v) is the Laplace transform of
a(r) and is given by
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Let us now compare the present results with those for
the case of the bilinear coupling model. The most evident
change can be seen in the quantum correction factor f&.
It reflects the properties of the coupling form factor both
at the fission barrier and at the potential minimum. As
can be seen in Eq. (4), the effects of nonlinearity of the
coupling Hamiltonian are explicit in the potential renor-
malization and also affect coo and co&. Other effects ap-
pear in the critical temperature T, and in the dissipation
factor co+/cob. To see this more explicitly, let us study
co+, which is the lowest positive solution of

2

FIG. 1. The change of the fission barrier due to a nonlinear
coupling to environmental oscillators. The solid and the dashed
lines are the bare and the effective fission potentials, respective-
ly. The dot-dashed line is the squared coupling form factor.

the high temperature regime, i.e., when T & T„T, being
the critical temperature above which the thermally ac-
tivated decay dominates. It is of the order of 100—200
keV in the case of nuclear fission, since the curvature of
the fission barrier is typically 1 MeV. It is straightfor-
ward to generalize the procedure described in Ref. 5 to
the case of the nonlinear coupling. Following Ref. 3, the
decay width is given by the imaginary part of the free en-
ergy as

2 a+l
ciltt ctPb+ X(Q)g ) =0 .

dq q
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This is the condition that the denominator of Eq. (8) van-
ishes when v, is replaced by co„. Equation (10) clearly
shows that the critical temperature is influenced by the
property of the coupling form factor at the potential bar-
rier. In order to see the physical implication of Eq. (10),
let us relate I to the retarded friction function y appear-
ing in the classical equation of motion. ' " It is defined
by

f —
Eo
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and reads

Putting the critical temperature T, =ficott /2n, we finally
obtain

y(t, ~)=g(~) f(q(t))d
dq (t

with
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One can easily confirm that
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In these equations, coo is the curvature parameter of V,ff
at qo, where V,ff takes a minimum corresponding to the
compound nucleus, and co& is that at the barrier position
q„. The first factor on the right-hand side of Eq. (7) is the
fission width of the transition state theory. The second
factor co+ /co& corresponds to the friction factor originally
introduced by Kramers, but, as will be discussed later, it
is generalized by taking a memory effect into account (see
also Ref. 5). The f& is a factor, which originates from

V =V V (14)

where g(v) is the Laplace transform of g(~). Equations
(10) and (14) suggest that the effects of nonlinearity to the
critical temperature and to the dissipation factor can be
effectively taken into account without changing their for-
mulas if one suitably rescales the friction of the bilinear
coupling model. The properly renormalized friction in
that prescription is given by

' 2

g,tt(v) =g(v) (1&)
dg q

Contrary to Eq. (12), the effective friction g,s; which
governs the decay width, does not involve the retardation



41 BRIEF REPORTS 2453

2

5(co cd; ) YJco,2; mco
(16)

effect as for the form factor f (q). In other words, the
dependence of friction on f (q) can be separated from the
retardation effect. This is consistent with the fact that
the quantity g(v), which enters Eq. (10) through Eq. (14),
becomes independent of v and can be interpreted as a
friction in the simple sense of the original Kramers work
only when the memory effect can be ignored.

We now explore our results by considering two fre-
quency distributions that have been considered in Refs. 4
and 12. Caldeira and Leggett considered the limit when
the frequencies co; are distributed continuously. They in-
troduced a spectral function

with

pog= —
po, hM =

2 '
max

(24)

One can easily confirm that q and hM thus introduced
are the friction and the mass correction, respectively, dis-
cussed in Ref. 12 based on the multidimensional diffusion
approach of Shang and Weidenmueller. ' Note that the
zeroth order term, which appeared in Ref. 12, does not
exist in our formalism because of the absence of the
counter term.

Inserting Eq. (23) into (10), we obtain

with a friction constant g. In this case,

k(v)=aviv . (17)

{[( 1 +x)+ah ]'/ ab ),— (25)

Therefore,
where ab is related to 2) by the same equation as Eq. (19),
while x is defined by
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They have assumed that the spectrum of the oscillators is
sufficiently dense and the coupling strength is slowly
varying with frequencies. We simplify their model by as-
suming

po for co ~co,„,
p(~) = '

0 for co) co,„. (21)

In this model,

g(v) =pocot
max

(22)

If we assume, similarly to Ref. 12, that p(co) extends to
high frequency modes, i.e., co,„iv»1 for physically
relevant values of v, then we have

k(v)=2)v —hM v (23)

Equation (19) confirms our previous assertion that the
effects of the nonlinearity of the coupling form factor are
equivalent to rescaling the friction coefficient as long as
the critical temperature and the dissipation factor co„ /cob

are concerned.
The second spectrum was that used by Brink and Can-

to in order to study a simple model for induced fission.
They replaced the sum over the oscillators with an in-
tegral over co by introducing a function p(co), i.e.,

Equation (26) shows that the nonlinear effect to the mass
correction can also be treated by a suitable renormaliza-
tion. A striking difference of the present model from that
of Ref. 4 is that the mass correction could introduce a
significant change of the critical temperature and there-
fore of the dissipation factor in the Kramers formula.

We conclude this paper by summarizing our results.
We have used a path integral method to study how the
coupling of the fission coordinate to bosonic intrinsic ex-
citations affects the fission width. The prescription by
Langer and AfBeck was used to determine the decay
width. We thus extended the well-known Kramers for-
mula by including a memory effect in the dissipation fac-
tor and by multiplying a quantum correction factor. Our
formula shows that the effects of nonlinearity of the cou-
pling form factor can be taken into account by suitably
renormalizing the friction coefficient and the effective
mass in the corresponding formulas for the bilinear cou-
pling model. This is the case for the critical temperature
and for the dissipation factor in the Kramers formula. A
similar renormalization cannot, however, be applied to
dealing with the quantum correction factor, because it re-
quires the value of df Idq both at the potential minimum
and at the fission barrier. The potential renormalization
is another factor which requires an explicit treatment of
the nonlinearity. We explicitly kept the potential renor-
malization without introducing the counter term. This is
because the potential renormalization is considered' to
be an origin of the large. enhancement of the fusion cross
section in heavy ion collisions at sub-barrier energies,
which are, in a sense, inverse processes of fission.

We have concentrated in this work on the high temper-
ature regime. It is not so difficult to extend our results
also to the low temperature regime, though one has to
numerically deal with the classical bounce trajectory.
This problem will be reported in a separate paper.



2454 BRIEF REPORTS 41

J. S. Langer, Ann. Phys. (N.Y.) 41, 374 (1967).
G. Callan and S. Coleman, Phys. Rev. D 16, 1762 (1977).
I. K. AfHeck, Phys. Rev. Lett. 46, 388 (1981).
A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211

(1981);Ann. Phys. (N.Y.) 149, 374 (1983);153, 445(E) (1984).
5H. Grabert, P. Olschowski, and U. %'eiss, Phys. Rev. B 36,

1931(1987).
H. A. Kramers, Physica 7, 284 (1940).
R. P. Feynman, Statistical Mechanics (Benjamin, London,

1982), pp. 81-83.

R. Vandenbosch and J. R. Huizenga, Nuclear Fission (Academ-
ic, New York, 1973).

N. Bohr and J. A. Wheeler, Phys. Rev. 36, 426 (1939).
A. B. Balantekin and N. Takigawa, Ann. Phys. (N.Y.) 160,
441(1985).
K. Nishinohara and N. Takigawa, Z. Phys. A 324, 139 (1986).
D. M. Brink and L. F. Canto, J. Phys. G 12, L147 (1986).

' Z. J. Shang and H. A. Weidenmueller, Phys. Rev. C 28, 2190
(1983).

' N. Takigawa and G. F. Bertsch, Phys. Rev. C 29, 2358 (1984).


