"Missing" $\frac{19}{2}$ + states in ¹⁴¹Pr and ¹⁴³Pm

S. M. Aziz, P. D. Cottle, and K. W. Kemper

Physics Department, Florida State University, Tallahassee, Florida 32306

(Received 2 January 1990)

A simple weak coupling model previously applied to the analysis of the yrast spectrum of 143 Nd is extended to yrast spectra of odd-A $N=82$ and 83 isotopes of $Z=58-61$ nuclei. The model generally provides a good description of these spectra; however, yrast $\frac{19}{2}^+$ states expected to arise in 141 Pr and ¹⁴³Pm from the coupling of $\pi g_{7/2}$ holes to the 6⁺ states of the even-even cores are not observed experimentally. The absence of these states can be explained using a simple microscopic argument.

A recent experimental study¹ of high angular momentum states of the $N = 83$ nucleus ¹⁴³Nd concluded that its yrast spectrum could be explained with the use of a zeroorder weak coupling model.² In such a model, the energy of a state of an odd- A nucleus is calculated to be the sum of the energy of the corresponding state of the even-even core nucleus and the single particie energy of the correct odd nucleon orbit. This success was not unexpected. The same approach has been used to understand the nu $clei³$ which are one nucleon removed from the spherical nucleus 146 Gd. Furthermore, Ring and Schuck⁴ concluded from empirical evidence that a weak coupling model is generally sufficient to describe spectra of odd-A nuclei for which the deformation parameter β_2 of the even-even core obeys the relation

$$
\beta_2 A^{2/3} < 4 \tag{1}
$$

For $A = 150$, this relation requires $\beta_2 < 0.14$. A recent compilation⁵ shows that β_2 values in the even-A $N = 82$ isotones for which they are known (Ce, Nd, Sm) are 0.10 or less, satisfying the weak coupling condition of Eq. (1). Therefore, it would be expected that weak coupling would provide a reasonable description of the yrast spectra of nuclei adjacent to the even- A $N = 82$ nuclei, including the $N = 83$ and $N = 82$ odd- A nuclei.

The model under discussion is quite simple. Nevertheless, we demonstrate here that it is useful for identifying anomalies in spectra of odd- A nuclei. We extend the zero-order weak coupling analysis to high angula momentum spectra of the $N = 82$ nuclei^{6,7} ¹⁴¹Pr and Pm and the $N = 83$ nucleus^{8 141}Ce and show that it generally explains the features observed. However, the weak coupling analysis predicts that yrast $\frac{19}{7}$ states should be present in both ^{141}Pr and ^{143}Pm . These states are not observed in either nucleus experimentally. This anomaly is explained in the present work with an argument based on the microscopic structure of the $\frac{19}{2}$ states, demonstrating a limitation of the weak coupling approach.

The single-particle orbits in the region under discussion are $2f_{7/2}$, $1h_{g/2}$, and $1i_{13/2}$ for neutrons and $1h_{11/2}$ for protons. For the $N=83$ nuclei ¹⁴¹Ce and ¹⁴³Nd, the lowest available orbit for the odd neutron is $f_{7/2}$; we might also expect to observe $h_{9/2}$ and $i_{13/2}$ neutrons in

the near-yrast spectra as well. The single neutron energies for these orbits are taken from the dominant single-'particle states observed^{9,10} in (d,p) experiments and are tabulated in Table I. If the $N = 82$ isotopes ¹⁴⁰Ce (Ref. 11) and 142 Nd (Ref. 12) are taken to be the core nuclei, then the results of the weak coupling calculations are those shown in Fig. 1. The parities of a number of states in both 141 Ce and 143 Nd are unknown; however, the correspondence between these states and calculated weak coupling energies is good, suggesting both configurations and parities for these states.

In the weak coupling framework, we would expect states in 141 Pr and 143 Pm to arise from the coupling of $d_{5/2}$ and $h_{11/2}$ protons and $g_{7/2}$ proton holes to even-eve core nuclei. For 141 Pr, the core nucleus would be 140 Ce for $d_{5/2}$ and $h_{11/2}$ particle states, and ¹⁴²Nd for $g_{7/2}$ hole states. In 143 Pm, particle states would have a 142 Nd core and the hole states would have a 144 Sm core.¹³ The single-particle energies for $d_{5/2}$ and $h_{11/2}$ protons are from the dominant single-particle states in $({}^{3}He,d)$ studies^{14,15} and are listed in Table II; $g_{7/2}$ hole states are located with $(d, {}^{3}\text{He})$ data 1 ⁷ and are also listed in Table II. The weak coupling calculation results for 141 Pr and 143 Pm are compared with high-spin data in Fig. 2. Once again, states arising in the weak coupling scheme generally correspond well with the observed states. However, the $\frac{19}{2}$ + states which would be expected to arise in both 141 Pr and ¹⁴³Pm from the coupling of the $6₁⁺$ states of the core nuclei to the $g_{7/2}$ hole are not observed experimentally, even though they would be yrast in both nuclei. A $\frac{19}{7}$ + state is observed near 3.0 MeV in 141 Pr, but it is far above the 2.3-MeV energy calculated in the weak coupling scheme. Clearly, the weak coupling model is inadequate for explaining this behavior.

An explanation for these "missing" $\frac{19}{2}$ states can be formulated using a simple microscopic picture of the core 6^+ state. In ¹⁴²Nd, which is the core for the $g_{7/2}$ hole states in ¹⁴¹Pr, the 6⁺ states can arise from either $g_{7/2}^7 d_{5/2}^3$ or $g_{7/2}^6 d_{5/2}^4$ configurations. For the $g_{7/2}^7 d_{5/2}^3$ case, the angular momentum is generated by the coupling of the odd $d_{5/2}$ proton to the odd $g_{7/2}$ proton. In the $g_{7/2}^6 d_{5/2}^4$ case, the spin would result from the coupling of two unpaired $g_{7/2}$ protons. If a paired $g_{7/2}$ proton is removed from the $g_{7/2}^7 d_{5/2}^3$ configuration, then the max-

FIG. 1. Comparison of experimentally observed levels in the $N=83$ isotopes, Ce and Nd, with those calculated by zero-order weak coupling calculations. The configurations are given in terms of ${}^{140}Ce(J)$ [and ${}^{142}Nd(J)$] and single-particle states given in Table I.

FIG. 2. Same as in Fig. 1. The "missing" $\frac{19}{2}$ " positions are labeled with stars.

0.58 0.45

 $0.12^{(f)}$

1.41 1.23

0.70 0.64

TABLE I. Energies and spectroscopic factors for the $N=83$

'Reference 9.

1.37

 $h_{g/2}$ 1.36 $i_{13/2}$

Reference 10.

single-particle and hole states obtained from the $(^{3}He,d)$ and $(d, {}^{3}\text{He})$ reactions. $^{143}Pm^{(c)(d)}$ $141\,\rm{p}_r(a)(b)$ S' Expt. S' Expt. $0.50^{(e)}$ $d_{5/2}$ 0.00 1.00 0.00 $0.53^{(f)}$ 0.42 $g_{7/2}$ 0.14 0.35 0.27 $0.13^{(e)}$ 0.94 ^(f) 0.79 $0.93^{(e)}$ $h_{11/2}$ 1.11 1.31 0.96

TABLE II. Energies and spectroscopic factors for the $N = 82$

'Reference 14.

Reference 16.

'Reference 15.

Reference 17.

"Observed by the $(^3He,d)$ reactions.

0.06

^fObserved by the $(d, {}^{3}He)$ reactions.

weak coupling model breaks down.

Foundation and the State of Florida.

paired $g_{7/2}$ protons and one unpaired $d_{5/2}$ proton couple to their maximum angular momentum. If a paired $g_{7/2}$ proton is removed from the $g_{7/2}^6 d_{5/2}^4$ configuration, then three unpaired $g_{7/2}$ protons can couple to a maximum angular momentum of $\frac{15}{2}h$. An assumption implicit in the weak coupling approach is that the state of the odd- A nucleus possesses the same number of broken pairs as the corresponding state in the core nucleus. We conclude that there is no way of coupling to a spin of $\frac{19}{2}h$ without breaking additional nucleon pairs and violating this assumption of the weak coupling approach. A similar explanation accounts for the "missing" $\frac{19}{2}$ + state in 143 Pm.

imum angular momentum $\frac{17}{2}h$ is generated if the two un-

In conclusion, we find that the zero-order weak coupling model previously applied to 143 Nd is adequate for describing the high angular momentum spectra of ¹⁴¹Ce,

- ¹S. M. Aziz, P. D. Cottle, K. W. Kemper, M. L. Owens, and S. L. Tabor, Phys. Rev. C 41, 1268 (1990).
- A. de-Shalit, Phys. Rev. 122, 1530 (1961).
- ³P. Kleinheinz, R. Broda, P. J. Daly, S. Lunardi, M. Ogawa, and J. Blomqvist, Z. Phys. A290, 279 (1979).
- 4P. Ring and P. Schuck, The Nuclear Many-body Problem (Springer-Verlag, New York, 1980), p. 115.
- 5S. Raman, C. H. Malarkey, W. T. Milner, C. W. Nestor, Jr., and P. H. Stelson, Nucl. Data Tables 36, 24 (1987).
- ⁶H. Prade, W. Enghardt, H. U. Jager, L. Kaubler, H.-J. Keller, and F. Stary, Nucl. Phys. A370, 47 (1981).
- ⁷H. Prade, L. Kaubler, U. Hagenmann, H. U. Jager, M. Kirchbach, L. Schneider, F. Stary, Z. Roller, and U. Paar, Nucl. Phys. A333, 33 (1980).
- 8J. Kownacki, E. Liukkonen, A. Pukkanen, A. Celler, and A. Luukko, JYFL report (1978).
- 9J.E. Park, W. W. Daehnick, and M. J. Spisak, Phys. Rev. C 15,

587 (1977).

¹⁰J. C. Veefkind, D. Spaargaren, J. Blok, and K. Heyde, Z. Phys. A272, 55 (1975).

 141 Pr, and 143 Pm. However, when the angular momen tum of a state requires the odd particle or hole to alter the microscopic structure of the core excitation, as in the cases of the missing $\frac{19}{2}$ + states of ¹⁴¹Pr and ¹⁴³Pm, the

This work was supported by the National Science

- $11L$.K. Peker, Nucl. Data Sheets 28, 313 (1979); W. Enghardt, H. U. Jager, L. Kaubler, H.-J. Keller, H. Prade, and F. Stary, Z. Phys. A316, 245 (1984).
- ¹²H. Prade, J. Doring, W. Enghardet, L. Funke, and L. Kaubler, Z. Phys. A328, 501 (1987).
- ¹³R. Pengo, S. Lunardi, R. Tischler, P. J. Daly, V. Nagai, R. Broda, and P. Kleinheinz, JUL-Spez-36, p. 25 (1979).
- ¹⁴B. H. Wildenthal, E. Newman, and R. L. Auble, Phys. Rev. C 3, 1199(1971).
- ¹⁵O. Straume, G. Lovhoiden, and D. G. Burke, Z. Phys. A295, 259 (1980).
- ¹⁶H. W. Baer and J. Bardwick, Nucl. Phys. A129, 1 (1969).
- ¹⁷P. Doll, G. J. Wagner, H. Brenen, K. T. Knopfle, G. Marirle, and H. Riedesel, Phys. Lett. 82B, 357 (1979).