
PHYSICAL REVIEW C VOLUME 41, NUMBER 5 MAY 1990

Quantum chaos for exact and broken It quantum number in the interacting-boson model

V. Paar and D. Vorkapic
Prirodoslouno ma-tematicki fakultet, Uniuersity of Zagreb, 4l000 Zagreb, Yugoslauia

(Received 20 April 1989)

We show that the exact K quantum number in the SU(3) limit of the interacting-boson model has

a strong effect on the fluctuation properties: Pure sequences of a single K value have 63 statistic

close to the Gaussian overlap ensemble prediction while mixed sequences with combined K values

are removed far from the Gaussian overlap ensemble because of K degeneracy, exceeding even the

Poisson-ensemble prediction. Applying the extended interacting boson model to the realistic case of
Er nucleus, we have demonstrated that weak breaking of the K quantum number introduces a

very rapid change in fluctuation properties towards those of a pure sequence.

In a recent Letter' the analysis of the energy spectrum
of atomic nucleus Al gave the evidence that fluctuation
properties of mixed-isospin sequence are compatible to a
single Gaussian overlap ensemble (GOE) sequence.
More precisely, it was shown that mixed sequence with
combined T=O and T=1 data set agrees with GOE, al-
though the fluctuation properties in the case of exact iso-
spin quantum number would be very different from those
of GOE, close to the Poisson-ensemble prediction. This
was a first experimental indication that weak breaking of
isospin symmetry introduces a rapid change in the fluc-
tuation properties, in accordance with recent theoretical
investigations.

Certain statistical properties of a quantum spectrum
that corresponds to a classically chaotic system agree
with those expected for random matrices, and for a quan-
tum spectrum that corresponds to a classically regular
system, agree with Poisson-ensemble prediction. '

On the basis of this conjecture resulting from model in-
vestigations, it follows that broken isospin quantum num-
ber does not affect chaotic behavior. On the other hand,
the investigation of fluctuation properties of the shell-
model energy spectrum in Mg indicates that breaking of
isospin for the states calculated in shell model is weaker,
so that a mixed-isospin sequence can be distinguished
from a GOE sequence.

In this paper we present results of the first investiga-
tion of effects due to exactly conserved and broken E
quantum number on fluctuation properties of the energy
spectrum. E quantum number characterizes rotational
states in heavy nuclei; here we employ the SU(3) dynami-
cal symmetry of the interacting-boson model (IBM), ' '
which provides a suitable framework for algebraic
description of rotational states. It should be noted that
the IBM has some new features and therefore appears as
an interesting case to test ideas about quantum chaos.
Namely, the IBM has a microscopic basis, it successfully
describes nuclear phenomenology accounting for collec-
tivity, and is characterized by compact group structure. '

Before discussing breaking of E quantum number, it is
advantageous to consider the case of complete K
quantum-number conservation. We note that such a line

of approach is an analogy to considerations' of isospin-
symmetry breaking in compound-nucleus reactions. In
the SU(3) limit of the IBM, the K quantum number is ex-

actly conserved. ' In accordance, in the first step of our
considerations we shall assume that states of rotational
nuclei have pure E quantum number. All the states with
angular momentum J=O have E=O. Therefore, the set
of J=O levels presents a pure sequence for the fluctuation
analysis. On the other hand, the J=2 states have two
possible values of E: E=O and 2. Therefore, the set of
all J=2 levels presents a mixed sequence, combined of
two subsets of states with (J =2,K =0) and
(J =2,K =2). In a similar way, the J=4 states can have
three possible values of E: E=0, 2, and 4. Therefore,
the set of all J=4 levels presents a mixed sequence con-
sisting of three subsets of states with (J =4,K =0),
(J =4,K =2), and (J =4,K =4).

Unfolding of the energy spectrum and statistical
analysis are performed as follows. Having a theoretical
spectrum, first we determine the corresponding level den-

sity. We employ two different methods of unfolding the
spectrum.

The first method, referred to as constant temperature
(CT) method, is defined in the following way. The stair-
case function N(E) (cumulative number of levels up to
energy E for each set of quantum numbers) is fitted by
the constant temperature (CT) formula of the constant
temperature Fermi gas model. ' In this way we obtain a
rather good fit to the IBM energy spectra. However, in
the upper part the IBM staircase function N(E) falls
below the CT prediction. This is an effect of truncation
of the boson space. This upper part of the spectrum,
affected by truncation, is deleted from the statistical
analysis. To this end we employ the numerical criterion
for truncation energy. Having a set of energy levels

E, ,E2,E3, . . . , E„, in a diagram presenting the cumula-
tive number of levels versus energy we draw a line
through each pair of points (E&, 1) and (E„N(E, )),
where s =n /2, n /2+1, . . . , n. If there is s for which all
points (E„N(E, )) for t )s lie below the line defined
above, the energy E, is taken as truncation energy. Thus,
for each set of n quantum numbers we have a set of levels
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for statistical analysis E„Ez,E3, . . . , E (I ~n) and
the smooth level density pcT(E) which corresponds to the
CT fit. In the next step, the spectrum E&,E2, ~, E„ is

mapped into the unfolded spectrum E& E2 - ~ ~ E

E) =0

and

E', , E—=(E;, E; )—pcT(E;) .

The second method of unfolding, referred to as the
French-Wong (FW) method, is defined in the following
way. For each set of quantum numbers, the spectrum
E„E2, . . . , E„ is mapped into the unfolded spectrum

Z'„Z', , . . . , Z„' by using

and

E', =0

El+1 E (E'+1 Ei)PFW(E')

Here pFw(E; ) denotes the local level density according to
the French-Wong prescription from Ref. 16.

Next, in the calculation of 63 statistic we employ the
method of overlapping intervals from Refs. 17 and 18, us-
ing the level density calculated in the previous step. For
a given L the energy interval (Et,E' ) or (EI,E„') is di-
vided into overlapping intervals

(E1,E', +L), (E', +d, E', +d +L), (E', +2d, E', +2d+L), . . . , (3)

where d is some fraction of the mean level spacing. Here
we employ the value d=0.5, i.e., the energy shift d is

equal to a half of the mean spacing. (We have tested that
a further decrease of d does not infiuence the fiuctuation
analysis. ) For a given L, we calculate the corresponding

63 statistic in each interval according to Ref. 6. By
averaging over all intervals we obtain 53(L), which

presents a fluctuation measure of the long range order in

nuclear spectrum.
In Figs. 1(a)—1(d) we present the calculated b, 3 statistic

with constant temperature density for J=O levels and for
mixed and pure sequences of J=2 states. We obtain simi-
lar results also by using the French-Wong prescription'
for level density. Figures 1(a) and 1(b) show b, 3 statistic
for all levels with J=O and J=2, respectively. The J=O
levels present a pure sequence, while the J=2 levels are a
mixed sequence. Accordingly, 63 statistic for J=O states
is rather close to the GOB prediction, while for all J=2
states it is removed far from the GOB prediction,
overshooting even the Poisson-ensemble prediction.
Therefore, the latter pattern will be referred to as
"supraregular. " In Figs. 1(c) and 1(d) we display 53
statistic calculated for pure sequences (J =2,K =0) and
(J=2,K =2), respectively. In these two cases the b3
pattern is similar to the case of the J=O pure sequence.
Thus, it is seen that the "supraregular" pattern of h3
statistic for J=2 spectrum is due to K quantum number.
In the SU(3) limit of IBM the eigenvalues do not depend
on K quantum number and therefore K degeneracy ap-
pears, which shows up in the fluctuation properties of
mixed sequences of levels. A similar effect appears for
J=4 states too. The h3 statistic for pure sequences
(J =4,K =0), (J =4,K =2), and (J =4,K =4) are rath-
er close to the GOE sequence, while the mixed sequence
of all J=4 levels exhibits a "supraregular" pattern.

Thus, in the case of exactly conserved K quantum
number, the fluctuation properties are as follows: Each
pure sequence of levels (with single values of both J and
K) exhibits a fiuctuation pattern which is close to GOE
prediction, while each mixed sequence of levels (with a
single value of J and several possible values of K) exhibits
"supraregular" behavior due to K degeneracy.
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FIG. 1. 63 statistic for energy levels in the SU(3) limit of
IBM with parameters a=0.015, P=0.004, %=20: (a) J=O lev-

els, (b) J=2 levels, (c) J =2,I(:=0levels, and (d) J =2,K =2 lev-
els. For comparison, we present the Poisson-ensemble (dotted
line) and Gaussian overlap ensemble prediction (full line).
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Let us now consider the fluctuation properties in the
case when K quantum number is broken. To this end, it
is suitable to use the extended version' of the interacting
boson model, with the Hamiltonian

H = H, aM[SU(3)]+@Ot (4)

The first term denotes the standard IBM Hamiltonian in
SU(3) limit' which conserves the E quantum number.
The term OI is the scalar shift operator' which breaks
the E quantum number without breaking SU(3) dynami-
cal symmetry. It has nonvanishing off-diagonal matrix
elements (JE~Ot ~

JK+2) and therefore mixes the states
of P and y bands with identical angular momentum. '

The quantity y in Eq. (4) denotes the mixing parameter.
In the extended IBM the effect of breaking K quantum

number on the energy spectrum was illustrated for
several Gd and Er even-even nuclei. The energy spectra
of these nuclei were fitted in the IBM and in the extended
IBM; it was shown' that the theoretical results obtained
by breaking K degeneracy are in better agreement with
experimental data. In this work we investigate the corre-
sponding fluctuation properties. In Fig. 2 we present A3
statistic of the J=2 energy spectrum calculated in ex-
tended IBM for several values of mixing parameter y, the
other parameters being taken from the calculation' for
the nucleus ' Er. The 53 curve for y =0 corresponds to
the IBM energy spectrum, with exact conservation of K
quantum number. The 53 curve for y=0.107 corre-
sponds to the extended IBM energy spectrum of ' Er
from Ref. 19, with weakly broken K quantum number.
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FIG. 2. 53 statistic for energy levels in extended version (Ref.
19) of IBM with several values of mixing parameter y. The A3

statistic with mixing parameter y =0 corresponds to IBM ener-

gy spectrum, with exact K quantum number, and 63 statistics
with y =0.107 to the calculated (Ref. 19) energy spectrum of nu-
cleus ' Er, with breaking of K quantum number.

Several transitional cases, with intermediate values of
mixing parameter y, are also presented. It is seen how a
small breaking of K quantum number introduces a very
rapid change of fluctuation properties, with a shift to-
wards those of a pure sequence. This result is consistent
with general expectations due to Dyson and Pandey. '

In this connection we also note the important results of
recent Letter that a broken dynamical symmetry leads
to nonintegrability; here the K quantum number is bro-
ken, but the SU(3) dynamical symmetry is not violated
because the shift operator Oi is built from the SU(3) gen-
erators.
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