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We have investigated the structure of '
Nd84 within the framework of the cluster vibration mod-

el. Further, we have mapped, approximately, the cluster vibration model states into the proton-
neutron interacting-boson model, with particular emphasis on the mixed-symmetry states, hindered
transitions, quadrupole moment signs, and higher-angular-momentum pairs. The cluster vibration
model 2+ (3) state and its properties correspond to the experimentally determined properties and
map into the mixed-symmetry state of the proton-neutron interacting-boson model. We compare
the calculations with recent in-beam (t,p) multiparameter (particle, gamma, gamma/conversion-
electron) coincidence studies, which have established the positive-parity spectra up to 3 MeV. Some
evidence is given for 0 and 1+ levels associated with the 2+ (3) mixed-symmetry state.

I. INTRODUCTION

Because of the nearness of the N=82 closed shell, the
excited state structure of '

Nd84 can be used to test both
microscopic and geometric models. ' Recent experi-
mental investigations of ' Nd have sizably increased
the body of data for this nucleus, which was studied in
several earlier experimental investigations. Inelastic
scattering experiments ' have led to the identi6cation of a
1+ mixed-symmetry state at 3075 keV in ' Gd which
possesses a large B(M1) value of 1.3+0.2p .tvThis new
degree of freedom, i.e., neutron versus proton oscillations
or mixed-symmetry states, was recently carried to the
N=84 nuclei, ' Ba, ' Ce, and ' Nd, by Hamilton and
co-workers, ' who showed that the properties of the 2+(3)
state in these nuclei were consistent with their being
mixed-symmetry states. The exploration of the full ex-
tent of the influence of this new degree of freedom on the
low-energy spectra requires a detailed knowledge of the
number and nature of ' Nd levels up to -3 MeV. Un-
fortunately, none of the experimental studies reported to
date have been able to provide su%ciently detailed infor-
mation on levels with energies greater than -2 MeV.
However, this situation has been resolved by recent mul-
tiparameter in-beam gamma-ray and conversion-electron
spectroscopy studies. ' Previous calculations for

Nd, however, performed by coupling two valence-shell
neutrons to quadrupole bosons ' ' and in the interact-
ing boson model (IBA), ' show poor correspondence

with the level structure.
With two neutrons in the neutron valence shell and an

open proton valence shell, ' Nd provides a good test case
for the. study of models which are based on a boson pic-
ture. Complete bosonization implies a bosonization of
both proton and neutron degrees of freedom. A fruitful
approach based on this idea is provided by the IBA.
In the IBA-2, a distinction is made between neutron
and proton bosons, while in IBA-1, one type of boson
incorporates both proton and neutron excitations. As is
well known, the IBA-2 model can reproduce the states of
IBA-1 as symmetric in proton and neutron bosons, but in
addition, it contains the states of mixed symmetry.

In the case of nuclei with two neutrons (or protons)
outside a singly-closed-shell core nucleus, it is feasible to
apply also an alternative, partial bosonization. In this
case, the two neutrons (or protons) are treated as fer-
mions, while the bosonization is performed only for the
other valence shell. The cluster vibration model
(CVM) can describe the ' Nd nucleus by coupling two
valence-shell neutrons to the quadrupole boson core. In
the CVM calculations, additional simplifying assump-
tions are also made: Quadrupole bosons are assumed to
be harmonic, and the boson-fermion interaction is taken
in its simplest form of dynamical particle-vibration cou-
pling. Thus, the matrix elements of the Hamiltonian do
not depend on the maximum number of quadrupole bo-
sons, N, at which the quadrupole boson space is truncat-
ed. We note that in CVM the anharmonicities are not
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due to interaction between proton bosons, but are gen-
erated by the two-neutron cluster and proton boson, i.e.,
by the proton-neutron interaction. This is in agreement
with the investigations in the IBA framework.

Here, we report on our CVM calculations for ' Nd
and compare the results with our present experimental
knowledge of the ' Nd level structure. We then reinves-
tigate the problem of describing this nucleus in the
framework of the IBA. In a further step, we discuss a
mapping of CVM states into IBA-2. Particular attention
is paid to the properties of the 2 (3) state, which is not
of the IBA-1 type and which has recently been successful-
ly discussed in the framework of IBA-2 as a mixed-
symmetry state.

in the singly-closed-shell Z=60 core nucleus '
Nd82.

Generally, such renormalization in CVM calculations
reflects the renormalization of the boson field due to the
presence of the cluster. ' The pairing strength
G=0. 175 MeV is chosen in accordance with the stan-
dard estimates. The particle-vibration coupling strength,
a, is 0.7 MeV. This value is close to the value a =0.8

used in the CVM calculation for nuclei with two neutrons
in the %=50—82 shell and is in accordance with the es-
timate obtained by using ( k ) =50 and the measured
8(E2)(2,+~0i+). Here k(r)=r(dV/dr), where V(r) is
the single-particle potential energy.

The CVM Hamiltonian (1) is diagonalized in the basis

II. CALCULATION OF ' NB WITHIN THE CVM

In the CVM, the nucleus ' Nd is described by cou-
pling two valence-shell neutrons to the quadrupole vibra-
tional core. The following CVM Hamiltonian is em-
ployed:

H =H~~+HqB+Hrc, +Hc

Here, H&~ describes two independent valence-shell parti-
cles, which are referred to as the cluster; H&B represents
free quadrupole bosons; and H„, is the residual interac-
tion between the particles in the cluster. We employ the
pairing interaction as a residual interaction. The term
HCB& represents the cluster-quadrupole boson interaction,
which has the form of a standard particle-vibration in-
teraction, summed over particles of the cluster. Details
of the model can be found in Refs. 28-30 and 32. Gen-
erally, by varying the number of particles in the cluster,
one can describe the sequence of nuclei going away from
a singly closed shell. However, because of the computa-
tional limitations, the model has been systematically used
only for n ~3.

Earlier calculations for ' Nd in the framework of this
approach have been reported in Refs. 20, 24, and 25.
Here, we perform a more complete calculation, and com-
pare the results with experimental levels up to 3 MeV.

The parameters appearing in the diagonalization of the
CVM Hamiltonian are the following: single-particle en-
ergies, quadrupole boson energy, pairing strength, and
the fermion-boson coupling strength. These parameters
correspond to those that appear in the well-known
Kisslinger-Sorensen model. The parameters are as fol-
lows. The neutron single-particle energies in the
%=82—126 shell are taken from Ref. 34, as determined
from the transfer reaction ' Nd(d, p)' Nd:

e(p i/2 ) —e(f7/2 ) 2. 13 MeV,

e(p3/2) —e(f7/2)=1. 34 MeV,

e(fs/2 ) e(f7/2 ) =1.g5 MeV

e ( h 9/2 ) e(f7/2 ) l. 34 MeV— ,

e (i,3/2 )
—e (f7/2 ) = 1.6 Me V .

The energy of the quadrupole boson is Ace=1. 3 MeV,
which is about 15%%uo lower than the energy of the 2,+ state

Here, j, and j2 are two-neutron single particles that are
coupled to the angular momentum J, and n& is the num-
ber of quadrupole bosons that are coupled to the angular
momentum R. The angular momenta J and R are cou-
pled to the total angular momentum I. Included in the
computation are the boson states up to n& =3 with unper-
turbed energies less than 7 MeV.

III. EXPERIMENTAL LEVELS AND
COMPARISON WITH CVM RESULTS

As mentioned above, in-beam particle-gamma-
(gamma/conversion-electron)-time multiparameter coin-
cidence studies have recently been performed, using the
(t,p) reaction. ' Preliminary analysis of the results,
when combined with the results of previous studies, has
established the nature of ' Nd levels up to -3 MeV in
excitation energy. The presently known levels in this en-

ergy range are shown in Fig. 1.
The calculated spectrum is also shown in Fig. 1 and

compared with the experimental levels up to 2.9 MeV.
We have computed the electromagnetic properties using
the calculated wave functions and the standard CVM
form of the E2 and M1 operator. The effective charges
and gyromagnetic ratios were chosen in accordance with
Ref. 32 and are as follows: The neutron single-particle
effective charge, e,'"' =0.5; boson effective charge,
e„,b=2. 7; boson gyromagnetic ratio ga =Z/A =0.42,
and the orbital and spin gyromagnetic ratios for neutrons
are, respectively, gI =0, and g, =0.5g,"'=—1.91. Table
I presents a comparison of the calculated electromagnetic
properties with the experimental data. As seen in Fig. 1

and Table I, the calculated CVM results for energy levels
and electromagnetic properties agree well with the avail-
able experimental data.

Initial analysis of the data from the recent in-beam
multiparameter has revealed some important features of
the excited-state spectra of ' Nd. The lowest-energy 1+
level occurs at 2655 keV in the experimental spectrum.
Previously, its identification was obfuscated by the fact
that it forms a level doublet, with the 1+ occurring at
2654.9 keV and a 3+ occuring at 2654.6 keV. These two
levels were identified earlier in separate investigations.
The 2654.9-keV level was identified in (n, n' y) and-
beta-decay studies with deexcitating transitions of 1958
and 2655 keV. The in-beam work can set the multipolari-
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ty of a third, previously unidentified transition to the
2+(3) level as being Ml/E2, while the beta-decay study
sets J= 1 and the (n, n'-y) investigation confirms the as-
signment as 1+. The neutron-capture gamma-ray investi-
gations of Snelling and Hamilton establish a level at
2654.6 keV and set a 3+ value based on their angular
correlation data. Again, the in-beam data can confirm
this level as well as the observations of Snelling and Ham-
ilton of transitions to levels different from those observed
for the deexcitation of the 2654.9-keV 1+ level.

More important, the in-beam studies can establish,
from gamma-gamma coincidence data, that the 2655-keV
1+ level populates the 2+(3) mixed-symmetry state. The
transition probability for the population of the 2+(3)
mixed-symmetry state is -30 times that of the other
transitions depopulating the 2654.9-keV level. Also, as
shown in Fig. 2, the in-beam studies populate the 0+ level
at 2743 keV. This level was observed to have an l =0 an-
gular distribution in the (t,p} studies of Chapman et al. '

and has been identified as being populated in the ' Pm
(0 ) beta decay. Unfortunately, the latter study's sensi-
tivity was limited to identifying only the 1182- and 2048-
keV transitions. As shown in Fig. 2, the in beam

gamma-ray and conversion-electron studies have not only
identified an E2 transition to the 2+(3) mixed-symmetry
state but also show an EO transition to the 0+(2) level at
2084 keV. When the relative transition probabilities are
compared, this level populates the 2+(3) mixed-
symmetry state —20 times more readily than the 2+(1)
state. Thus, these observed properties suggest that this
0+ state may be a member of the mixed-symmetry set of
states. Elsewhere, we discuss these and other features,
such as the preferential population of mixed-symmetry
states in the (t,p) in-beam studies.

IV. ISA-1 CALCULATION FOR ' Nd

Two IBA-1 calculations for ' Nd, which were per-
formed using two different parametrizations, ' have been
reported so far. The basic difference between them lies in
the treatment of the 2+(3) state. Krane et al. did not
include the 2+(3) state in the fitting. In the theoretical
spectrum thus obtained, the theoretical counterpart of
the 2+(3) experimental level was missing. Snelling and
Hamilton chose the parametrization in such a way that a
theoretical 2+(3) state was obtained in the energy range

TABLE I. Comparison of calculated and experimental electromagnetic properties of ' Nd.

Quantity

8 (E2)[2+(1)~0+(1)] (e~b~)

8 (E2)[4+(1)~2+(1)] (e b )

Q[2+(1)] (eb)
ru[2+(1)] (p„)
I[2+(2)~0+(1)]
I[2+(2)~2+(1)]
5[2+(2)~2 (1)]
8(E2)[2+(2)~0+(1)]
B(E2)[2+(2)~2 (1)]
I[2+(3)~0+(1)]
I[2+(3)~2+(1)]
5[2+(3)~2+(1)]
8(E2)[2+(3)~0+(1)]
8 (E2)[2+(3)~2+(1)]
I[2 (4)~0+ ( 1)]
I[2+(4)~2+(1)]
I[3+(1)~2+(1)]
I[3+(1)~4+(1)]
5[3+(1)~2+(1)]
5[3+(1)~4+(1)]
8 (E2)[2+(2)~0+ ( 1)]
8 (E2)[2+(2)~2+(1)]
8 (E2)[2+(2)~4+(1)]
8 (E2)[2+(3)~0+(1)]
8 (E2)[2+(3)~2+(1)]
8 (E2)[2+(3)~4+(1)]
8 (E2)[2+(3)~2+(2)]
8(M1)[2+(2)~2+(1)]
8 (M1)[2+(3)~2+(1)]
8(M1)[2+(3)~2 (2)]

Experiment

0.102+0.003

0.08+0.01
—0.39+0.21

0.33+0.08

0.095+0.001

—1.13+0.22

0 007 +—o'. ool

0.43+0.01

0.31+0.11

0.63+0.45

0.24+0.01

0.57+0.01

0.4+02
0 84+0. 17

0.001+0.001

0.095+0.021

0.013+0.003
0.02+0.01

0.034+0.012
0.28+0.zo

Theory

0.106

0.122
—0.40

0.45

0.10

—1.70

0.007

0.41

0.38

0.39

0.73

0.32

0.25

0.001

0.073

0.001
0.007

0.018
0.026

0.001

0.013
0.161

0.220
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of the experimental 2+(3) state. However, there were
two difficulties: (1) The theoretical decay pattern of this
level was in disagreement with the measured one for the
experimental 2+(3) state, and (2) the calculation predicts
a low-lying 0+(2) state, without an experimental counter-
part. Furthermore, in both calculations ' the density of
positive-parity states between 2 and 3 MeV is much lower
than that experimentally observed. The levels 2+(1),
2+(2), 4+(1), 6+(1), and 8+( I ), however, were described
rather well. Consequently, Snelling and Hamilton argued
that the applicability of IBA-1 to ' Nd proved incon-
clusive.

In this work, we have reinvestigated the IBA-1 treat-
ment of ' Nd, with particular attention to (1) the triplet
of experimental states 2+(3), 0+(2), and 4+(2), which lie
at the energies 2.073, 2.084, and 2.110 MeV, respectively,
and (2) the density of states in the range of 2 to 3 MeV of
excitation energy. We found that only the 4+(2) state
and one of the remaining two states of the triplet can be
reproduced in the IBA-1 calculation. In Fig. 1 we com-
pare the CVM theoretical spectrum [Fig. 1(a)] and the ex-
perimentally known levels [Fig. 1(b)] with two fits that in-
clude the states 4+(2), 0+(2) [Fig. 1(c)] and 4+(2), 2+(3)

[Fig. 1(d)]. As shown in Figs. 1(c) and 1(d), the counter-
part of the third member of the triplet, 2+(3) and 0+(2),
respectively, is missing. The calculated spectrum in Fig.
1(c) is qualitatively similar to the calculation by Krane
et al. The calculated 2+(3) state appears about 1 MeV
above the doublet 0+(2), 4+(2). The experimental 2+(3)
state does not have a theoretical counterpart, nor do
several experimental states between 2 and 3 MeV. The
calculated spectrum in Fig. 1(d) qualitatively resembles
the calculation by Snelling and Hamilton.

It should be stressed that any attempt to fit the 2+(3)
state leads to the lowering of the 0+(2) state to the ener-

gy at which no experimental 0+ state appears. On the
other hand, the calculated gamma-deexcitation pattern of
the 2+(3) state reveals that this state does not correspond
to the experimental 2+(3) state. Thus, the parametriza-
tion employed in the calculation in Fig. 1(c) appears more
appropriate than that used in the calculation in Fig. 1(d).
As is well known, IBA-1 contains only the states that are
symmetric in proton and neutron collective degrees of
freedom, i.e., the states that are symmetric in proton and
neutron bosons in IBA-2. The fact that the 2+(3) state
cannot be reproduced in IBA-1 indicates that this state is
not symmetric in protons and neutrons, i.e., that it may
correspond to the mixed-symmetry state of IBA-2 or may
be a two-quasiparticle (2qp ) state.
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FIG. 1. Positive-parity levels theoretically predicted by the
IBA and the CVM compared with the experimentally observed
levels. (a) Theoretical spectrum in the CVM. (b) Experimental-
ly known levels of ' Nd. (c) Theoretical spectrum calculated in
the IBA-1 by fitting to the experimental levels 21 41 22 6l and
02. (d) Theoretical spectrum calculated in the IBA-1 by fitting
to the experimental levels 2i, 41, 2&, 6i, and 23.

FIG. 2. Deexcitation of the 2743-keV level (N.B.: A dot at
the arrowhead indicated that the transition has been established
by its observation in the corresponding coincidence spectra).
Hindrance factor is denoted by "HF."
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V. MAPPING OF CVM INTO IBA-2

In mapping the results of the CVM calculation into the
IBA-2 model, we are mainly concerned with the results
for the neutrons. In the CVM the protons are already
considered as a system of phonons that map directly into
the proton bosons of the IBA-2 model by following the
standard procedure of replacing the square root factors
by s bosons, as for example

[(+ nb )&&]'"I&cvi/t~d's I &is& .

In the CVM model calculation for ' Nd, the neutrons
have been considered as two fermions in the 50-82 shell
model basis. In mapping this two-neutron degree of free-
dom into the IBA model, we will follow the conventional
approach of interpreting the neutron boson as the
equivalent of a collective two-particle state. The micro-
scopic structure of this collective pair can, for example,
be determined from the neutron component of the 0+(1)
state calculated in the CVM. The two-particle, J=O
component in the wave function proportional to s can be
regarded as the equivalent of the neutron s boson, S„,
while the neutron two-particle J=2 component multiply-
ing the s d proton component should be regarded as the
equivalent of the neutron d boson, D . Table II lists the
two-particle components of the neutron s and d boson
thus determined. It can be seen that they are highly col-
lective. Using this correspondence between the two-
particle degree of freedom and the bosons, the wave func-

TABLE II. The structure of the neutron bosons as deter-
mined from CVM ground state wave functions.

tion of the 0+(1) state calculated in CVM can be written
as

l0+(1))cv~=0.75ls„s )+0.51l(d„d„)' 's )+
These first two components reproduce 83%%uo of the wave
function. Of the remaining components, the dominant
configurations are proportional to l(d )' 's ) and

l(d )' 's ) and can be expressed to a very good approxi-
mation as ls„(d )' 's ) and ld„(d„)' 's„) with ampli-
tudes of 0.25 and 0.28, respectively. The coherence in the
neutron part of the wave function multiplying the proton
d configuration has a collectivity very similar to those
collectivities entering in the definition of the neutron s
and d boson (given in Table II), i.e., the admixtures of
so-called s' and d' components in the ground state are
small. Together, these four IBA-like components repro-
duce 97% of the ground state function; over 97% of the
CVM ground state wave function thus lies within the
IBA model space.

The wave function of the 2+(1) state can be analyzed
in a similar way. The structure of a neutron s boson can
be determined from the two-particle wave function that is
multiplied by the ld s ) proton component, and similar-

ly, the d -boson structure can be determined from the
ls„) proton component. This procedure leads to a boson
structure that is essentially indistinguishable from that
given in Table II. Thus, in this way we have hereby
verified the IBA assumption that the low-lying collective
states are all built on similar collective two-particle states
(the s and d bosons). In boson language, the wave func-
tion of the 2+(1) state, as calculated in CVM, can be
written as

l2+(1) )cv~=0.624ls, d„s„)+0.383ld„s„)

Component

(f2 )io)

(p 2 )(0)

(~2 )(0)

(A 2 )(0)

(il3r2

sv

Amplitude

+0.778

+0.139

+0.339
+0.247

+0.323
—0.309

—o 14ls,d~g' &
—0.245ld„d s')

+0.2ld„(d )' 's„)+0.2ld„(d )' 's )

+0 28ld (d' )' 's' ) + (3)

The components quoted above reproduce 83% of the
wave function. The higher components of this state con-
tain 2qp neutron components. The 2qp J=2 neutron
components are especially important. The probability of
finding 2' J =4 components (g bosons, in IBA language)
is very small.

(f7/2)"'

(f7/s. ~Issue)
(2)

(f7n fsn)' '

(f7n "9n)
(2)

(P la P3i2 ~

(Pin, fsn )
(2)

(P3r2~' '

(Psn fs/z) (2)

(f5/2)

(fs/2 "9/2)' '

(I 2 )(2)

(~ 13/2 ~

+0.628
—0.608

+0.136
—0.134
—0.187
—0.136

+0.214
—0.126

+0.104
—0.206

+0.140
—0.110

VI. LOW-ENERGY 2+ STATES
IN THE IBA AND CVM

Recently, the search for 2+ states that are of mixed
symmetry in the neutron-proton degree of freedom has
received much attention. Hamilton et al. ' have success-
fully described the 2+(3) state of ' Nd as a mixed-
symmetry state of IBA-2. They showed that the gamma
decay properties are consistent with those of the lowest
mixed-symmetry state in the U(5) limit. In particular a
strong experimental 2+(3) to 2+(1) M 1 transition is con-
sistent with a transition from a mixed-symmetry state to
a fully symmetric state. In the CVM calculation, the ex-
perimental excitation energies and branching ratios are
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~2+( I) &cvM=0. 642~d„&+0.383~d„&

+o. 141d'. &+0.245ld. d. &, (4)

~2+(2) &cvM=0. 13ld„&+0 46ld„&

+0.37id„&+0.49id„d (5)
1

reproduced. It is thus interesting to investigate whether
the 2+(3) state in the CVM calculation indeed corre-
sponds to a mixed-symmetry IBA-2 state. In particular,
the competition between the collective and 2qp excita-
tions in this energy regime can be studied.

In mapping the CVM wave functions into those of the
IBA-2 model, the structure for the neutron boson should,
in principle, be taken from Table II ~ The higher 2+ levels
contain considerable amplitudes outside the s-d IBA
model space. Here, however, we are only interested in a
qualitative analysis and will therefore not distinguish be-
tween the collective s and d bosons and the less collective
s' and d' collective bosons, which have more 2qp com-
ponents. This approach yields the following results for
the lowest four 2+ levels (for shortness of notation the s
bosons are not written):

I2+(3) &cvM= —0.52~d„&+0.40~d„&

0 23 ~d'. &
—0 241 d d. &,

i2+(4) &cvM 0 ~ 25 id & +0.44id

—0.29id &+0.18id„d„&,

(6)

(7)

where components of higher order in nd have been omit-
ted. Since, for example, what is labeled as the ~d & com-
ponent of the ~2+(2) &cvM and the ~2~+ &cvM states consist
only of about 50% of the same d„boson as given above,
it is dangerous to draw quantitative conclusions. From
the structure of the CVM wave functions, it can be seen
that both the 2&+ and the 24+ levels contain admixtures of
F=F0—1 components. These components are larger in
the 24+ state, where both the two nd=1 and the two
nd =2 components differ in sign, as is typical for mixed-
symmetry states. The CVM calculation thus suggests
that the 24+ state contains large mixed-symmetry com-
ponents, although the admixture of 2qp components is
large (perhaps of the order of 50%). These noncollective
components may severely distort the simple IBA picture
above 2 MeV of excitation energy.

The 0+(1) and 2+(1) states are almost free of 2qp ad-
mixtures and can therefore be used to test F-spin symme-
try breaking. A direct measure of this is obtained by tak-
ing overlaps with states that do have good F spin:

(nd=1, F=F0&=(QN Id &+V N, , Id, &)I&N

Ind=l, F=FO 1&=(VN Id—& VN Id &—)l&N,

Jnd=2, F=FO&=(QN (N 1)(d„&++—2N„N [d,d &+QN„(N„—1)[d„&)l&N(N 1), —

)nd=2, F=FO —1&=(+2N„(N„1)[d„&+(N— N„)[d„d„&—+2N„(N —1)fd &)I&—N(N 2), —

(9)

(10)

where Fo=(N„+N„)/2 is the maximum possible F spin.
The overlaps of the CVM wave functions with these pure
F-spin components can now be calculated, giving

(0+(1)~nd =2;F=F0 & =1.9,(0+(1)~nd =2;F=FO 1&—
( 2+(1)

~ nd = 1;F=Fo & =9.0,(2+(1)~nd =1;F=FO—1 &

(2+(1)~nd =2;F=F0 & =2.2 .
(2+(1)~n& =2;F=F0 —1 &

(12)

(13)

(14)

The nd =0 sector of the 0+ level is, of course, fully sym-
metric. This decomposition of the wave function in the
different F-spin components shows that the admixture of
nonmaximal F-spin components is sizable.

VII. THE 1+ AND 3+ STATES

The study of 1+ and 3+ states is of great interest in re-
lation to the question of mixed-symmetry states in the
IBA model. In the IBA model, all 1+ states necessarily
have F=FO —1, and finding these unambiguously fixes

the position of mixed-symmetry states. In the CVM cal-
culation, there are two kinds of 1+ states possible: (1)
those based on a 2qp excitation, and (2) collective 1+
states involving similar collective two-particle structures
as enter in the ground and first excited states. Only the
latter can be related to the IBA model. For the 3+ states,
one should also clearly distinguish collective from 2qp ex-
citations. These collective 3+ states, however, are not so
directly related to mixed-symmetry structures, since it is
possible to have a ~nd=3, F=FO,J"=3+& state beside
the lowest mixed-symmetry

~ nd =2,F=Fo 1,J =3+ &-
state.

Analysis of the CVM 1+ wave functions shows that the
states at E =2. 13 and 2.20 MeV are dominated by 2qp
components, while the 1+(3) state at E„=3.17 MeV is
the collective state. The 2qp components of this collec-
tive state are negligible.

For 3+ states, a clear separation also exists between
collective and noncollective states. The first three 3+
states are predominantly built on 2qp configurations,
while the 3+(4) state at 3.01 MeV is collective. It con-
tains a mixture of a symmetric three d-boson component
and a mixed-symmetry two d-boson component.
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VIII. THK 4+ AND 6+ STATES

14+(1)&cvM=o. 361(d'. )'")

+o.441(d,d )' ')+o.4slg„),
16+(1))cvM=0 084l(d')' ')+0.23l(d„d')' ')+

+o.4sl(g„d. )'")+o.s6li„),

(1s)

(16)

clearly showing the importance of high-angular-
momentum pairs. It should be noted that the two-
particle structure of the s, and d„components in these
states is very similar to that of the 0+(1) and 2+(1)
states. Table III gives the microscopic structure of the g,
and i, pairs, and it can be seen that these exhibit a degree
of collectivity similar to that of the d boson. This admix-
ture of g, and i„bosons has two directly observable
effects on the spectrum: (i) Energies of the 4+(1) level
and especially of the 6+(1) level are much lower than
expected in a purely vibrational spectrum, and in fact
the spacing is more like what one would expect for a

TABLE III. Microscopic two-particle structures of the neu-
tron g and i bosons as determined from the CVM wave function
of the 4+(1) and 6+(1) states.

In most of the states that we have considered to far,
the admixtures of collective I. =4 (g boson) and I.=6 (i
boson) pairs are small. This is not the case, however, for
the 4+(1) and 6+(1) levels: There can be large admix-
tures of these g and i bosons. The largest components of
these states can be written as

semiclosed shell model nucleus with E(6 )
E—(4+) &E(4+)—E(2+) &E(2+)—E(0+); and (ii) the

B (E2) values do not increase as one goes up the ground
state band as would be expected in a vibrational nucleus,
but instead, one has B[E2;4+(1)~2+(1)]
=B[E2;2+(1)~0+(1)].In comparing these two effects
with the data, one might even conclude that in the CVM
calculation the admixture of the g„and i pairs are un-

derestimated. One should keep in mind, however, that
the equivalent of a g boson has not been included in the
present calculation.

IX. HINDRANCE OF 2+(2) TO 0+( I ) TRANSITION

We have investigated the hindrance of the 2+(2) to
0+(1) transition within the framework of the mapping of
the CVM into the IBA. The reduction of the 2+(2) to
0+(1) transition moment in CVM is a consequence of the
incoherence between fermion and boson contributions.
In the leading order, these contributions are presented by
the first-order cluster-type fermion diagram [Fig. 3(a)]
and by the corresponding second-order induced boson-
type diagram [Figs. 3(b)—(d)]. All these diagrams have
the same topological structure, i.e., the corresponding
contributions differ only in the energy denominators and
the multiplication factor; the relative phases of these con-
tributions are determined by the signs of the correspond-
ing energy denominators. Thus, the induced collective
diagrams [Figs. 3(b)—(d)] can be incorporated into the
normalization of the fermion effective charge. The ener-

gy denominator for the parent diagram [Fig. 3(a)] is 1 /fico
and for the induced collective diagram [Figs. 3(b) —(d)] it
1S

Component

(f2 )(4)

(f7/2 iP I /2 )
(4)

(fs/2 Ps/2)"'

(fs/2~f5/2)' '

(f7/2 ~ 9/2 )

(P1/2~~9/2)
(4)

(ass/2~f sn
)"'

(P3/2~~9/2 )
(4)

(f' )"'
(fsn, F29/2 )'"
(h' )"'
(~ 13/2 )

gv

Amplitude

+0.746
—0.207
—0.576

+0.093
—0.086
+0.062
—0.201

+0.082

+0.029
—0.037
+0.018
—0.004

(j )0

(j2}0
(a) (b)

(f2 )(6)

(fT/2 f5/2)

(f2/2 "9/2)
(P3/2~ ~9/2 )

(fsn "9n)' '

(g 2 )(6)

(i13/2 )

+0.907
+0.354
—0.107

+0.197
—0.043
—0.012
+0.000

(c) (d)

FIG. 3. Leading fermion- and boson-type diagrams contrib-
uting to the 2+(2)~0+(1) transition in CVM. Full, wavy, and
dashed lines denote the fermion, quadrupole boson, and E2 in-

teraction, respectively.
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[( 6—f—ico)( b——2fico)] '+[(—
iI),

—%co)A'co] '+( —')—(fico) = —(4%co+6 ) [2(fico) (2fico+b, )] (17)

Here, Am denotes the energy of the quadrupole boson,
and 6 is the pairing energy. As seen here, there is an in-
coherence among the boson contributions. Moreover,
the sign of total induced boson-type contribution is oppo-
site to the sign of the parent fermion-type contribution.
This type of incoherence appears in the high-order per-
turbation terms too. As a consequence of this systematic
incoherence, there arises a strong hindrance of the 2+(2)
to 0+(1) transition. This hindrance is clearly reflected in
the CVM computation for ' Nd. The calculated ratio of

I

the 2+(2) to 0+(1}and 2+(2) to 2+(1),8 (E2) values is

[8(E2;22+~0)+ )]/[B(E2;22+~2)+ )]=0.007, (18)

1(j )2, 12;22)~ (j )0,00;0, )

is mapped into the IBA-2 transition

(19)

in agreement with the measured value. By performing
the CVM to IBA-2 mapping, the CVM transition

lnd(, )= l, n„( )=l, n, („)=N—2;2 )2~1 ,n„(=)I, n( )=N —1;0, ) . (20)

In this way, the hindrance of the 2+(2) to 0+(1) transi-
tion in nuclei near the U(5) limit appears in IBA-2 as a
consequence of incoherence between the contributions to
the E2 matrix element because of proton and neutron bo-
sons.

X. THE SIGN RULE FOR
STATIC QUADRUPOLE MOMENTS

The quadrupole moment of the 2+(1) state arises in
CVM because of the available two-particle cluster of an-
gular momentum 2 and the positive response given by the
boson "cloud, " i.e., its main effect is a sizable enhance-
ment of the cluster contribution. ' A similar type of
mechanism in its simplest form, appears also for the
quadrupole moment of the ground-state odd-mass nuclei
with one particle (or hole) coupled to the quadrupole bo-
son core. The quadrupole moment of the ground state
is then generated by the lowest-energy single particle (or
hole), and is enhanced a few times by the quadrupole bo-
son response. For example, such a mechanism gives rise
to the quadrupole moment of ' Nd83. The quadrupole
moment is generated by Q, ~ (f7/2)= —0. 15 e b, and is

enhanced by the boson response to Q(7/2) ) = —0.4 e b.
The mechanism is somewhat more complex for even-

even nuclei, which are described in CVM by coupling a
two-particle cluster (two protons or two neutrons) to
quadrupole bosons. In the case of ' Nd, we have two
valence-shell neutrons that are treated as a cluster, and
ten protons in an open proton shell that are treated as
quadrupole bosons. In this case, several two-particle
cluster states of angular momentum 2 and positive parity
are available, and they compete in generating the quadru-
pole moment of the 2+(1) state. However, it turns out
that the main contributions are given by two clusters
only: the lowest two-particle state 1(j )2) (where j is the
lowest single-particle state in the valence shell of the clus-
ter) and its non-spin-flip counterpart.

For ' Nd, the lowest-lying two-particle neutron state
of angular momentum J=2 is (f7/2)2. Its non-spin-flip
counterpart is (f7/2p3/2 }2,because the matrix element

& d„l l~e(")
I ld, , & (0 (21)

The check of the consistency of this semimicroscopic de-
viation of the boson effective charge is given by the signs
of quadrupole moments of the other states of the
ground-state band. The sign of the boson charge, ob-
tained from mapping the 2+(1) state, predicts the nega-
tive IBA-2 quadrupole moments for all the other states
of the ground-state band. This is in agreement with the
results of CVM computation: Q(4,+ ) = —0.57 e b,
Q(6,+)= —0.80 e b, Q(8,+)= —1.01 e b, and

Q (10)+ ) = —0.88 e b.

XI. COMPARISON WITH IBA-2

In order to obtain a better insight into the structure of
the low-energy states, we analyzed them in terms of the
IBA-2 model. In fact, we have adjusted the parameters
of the standard IBA-2 Hamiltonian,

is of the non-spin-flip type. The matrix elements of Yz
between (f7/2)2 and all the other two-particle states
available in the X=82- 126 shell are of the spin-flip type,
and therefore they are small or vanish.

The contributions to the quadrupole moment due to
the two most important two-particle states are
Q[(f7/2)2])0 and Q[(f7/2p3/2)]&0. For a realistic
choice of parameters [e(p3/2) e(f7/2) =—1 MeV, Rco= 1

MeV, a =1 MeV] the second term dominates. Thus, the
sign of the quadrupole moment of the 2+(1) state is nega-
tive, opposite to that of the two neutron particles in the
lowest single-particle configuration. Hence, any calcula-
tion which does not include the p 3 jp single-particle state,
or places it too high, is bound to give a wrong sign of the
quadrupole moment of the 2+(1) state. Therefore, in or-
der to reproduce the sign of the quadrupole moment of
the 2+(1) state, we have to include, in addition to
(f7/2)2, the (f7/+3/2)2 two-neutron state in mapping
CVM to IBA-2. A neutron boson obtained by such map-
ping has a negative quadrupole moment, i.e.,

& (f7/2p3/2 }211Y211(f7/2 )2 & Hn3~ 2=ednd+KQ Q (22)
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with

Q, =(~ d+d s)' '+y, (d d)' 'r=v m. (23)

in such a way as to reproduce the structure and energy of
the ground state and the 2+(1) state. The parameters
thus deduced are ed=1.0 MeV, ~= —0.37 MeV, and

y = —1.3. The value of y =0.0 is taken to be the same
as that used in the CVM calculation. It should be noted
that the values of y are not well determined by this pro-
cedure and could be changed by as much as 0.5. Such a
change, however, will not greatly affect the structure and
energies of the states that we will consider in the follow-

ing discussion. It should also be noted that this pro-
cedure of constructing equivalent states in the IBA-2
model is only possible because the structures of both the
ground state and the 2+(1) state are dominated by
configurations in which the neutrons are coupled to
J„=O and J„=2. The ground state only contains an ad-
mixture of 5.5% of configurations outside this S,D„
space (of which 5.1% is due to the J=4 component of g„
pairs). For the 2+(1) state, this non-S„, D„component is
larger by about 14%, of which 12% is due to g„pairs. It
is also important to note that the J„=2component in the

2+(1) state has a shell model structure very similar to
that of the J =2 component of the ground state. If this
were not the case, the similarity to the IBA-2 model
would have been lost.

The calculated energy spectrum in the IBA-2 model is

given in Fig. 4, where it is compared with the spectrum
as calculated in the CVM. In the latter model the level
density is considerably higher than in the IBA model, as
expected. In the IBA model, only those states are calcu-
lated that are built from a particular collective J=O and
J=2 two-particle state which corresponds to the s and d
bosons. For example, the two 0+ states calculated at 2.02
and 2.41 MeV are a mixture of the 0+ state calculated in
IBA at 2.27 MeV and a 2qp state with a similar unper-
turbed energy. The most important component of the

2qp state consists of a J=0 two-particle state which is or-
thogonal to the ground state. In some IBA calculations
this component is taken into account by including an s'
boson. Similarly, the 2+(2) state at 1.58 MeV in the
CVM contains an important s' component. In the CVM,
the 4+ level is calculated at a considerably lower energy
than in the IBA model because in the CVM this 4+ level
contains a rather important 40% contribution from

3 5

3.0—

1+ 2+
CV 1BA CV ISA CV IBA

3+ e+
CV(BA CV IBA

P

I
l~g

I
~ 2O-~

1.5—

1)0-

SHE
MOI

FIG. 4. Low-spin positive-parity levels theoretically predict-
ed by the IBA-2 and the CVM.

FIG. 5. The scheme of models referred to in the present dis-
cussion. Steps (a) and (b) have been the topics of numerous in-

vestigations in the framework of IBA (Ref. 27). In the present
paper, step (d) is investigated.
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J =4+ pairs (the g„boson in the IBA model).
It is also interesting to investigate the neutron-proton

symmetry structure of the states. ' In both the CVM and
IBA calculations, the 2+(1) state has maximum F-spin
symmetry. In the CVM calculation, the 2+(3) and
2+(4) states both contain a relatively large admixture of
mixed-symmetry components, as is the case with the cor-
responding 2+(2) and 2+(3) states in the IBA model. In
the CVM calculation, therefore, it is not the 2+(2) state,
which can be considered primarily a 2qp excitation, but
rather the higher-energy 2+(3) and 2+(4) states that cor-
respond to the mixed-symmetry 2+ states as predicted in
the IBA model. In addition, in the CVM spectrum the
equivalent of the mixed-symmetry IBA-1+ states can be
found at 3.16 MeV with only a very small admixture of
2qp, non-IBA-type states. The 1+ states below 2.5 MeV
in CVM are dominated by 1+ 2qp configurations. In re-
lation to the position of mixed-symmetry states in the
spectrum, it is interesting to note that in the IBA Hamil-
tonian no Majorana force was used.

XII. CONCLUSION

We have investigated the structure of the '
Nd84 nu-

cleus, and its mixed-symmetry states in particular, within
the framework of both the CVM and the IBA. We have
presented a mapping from the CVM into IBA-2 for the
low-energy states. In particular, we have shown that the
2+(4) state of CVM maps into the mixed-symmetry state
of IBA-2.

We have also deduced a relation between the two mod-
els CVM and IBA and completed step (d) in the intermo-
del relationship diagram shown in Fig. 5. These two
models have different scopes in the sense that the CVM is
made to describe nuclei in the vicinity of a semiclosed
shell. It explicitly treats noncollective neutron 2qp de-
grees of freedom in the case of ' Nd. The IBA, on the
other hand, is made to describe collective low-energy
states. While this model may give a good description of
nuclei that have a sizable number of both valence neu-
trons and valence protons, it has only a limited applica-
bility to a near semiclosed shell nucleus like ' Nd. The
IBA should, however, still be applicable to the most col-
lective states in ' Nd, such as the ground state and the

2&+ state. Thus we have established a relationship be-

tween the CVM and IBA models. Their relationship can
in turn be used to give a more simplified interpretation of
the states calculated in the CVM, such as the assignment
of a neutron-proton symmetry character.

It is important to recognize that, in the sense of boson
symmetry, the present study opens up the possible exten-
sion of CVM itself. In the CVM, the quadrupole boson
space is truncated at a certain boson number N (e.g.,
N=3 for the present calculation of ' Nd), and the ma-

trix elements between the quadrupole boson states are in-

dependent of ¹ These boson characteristics appear in
the standard quadrupole models. However, there is a
simple way to introduce the N dependence in the matrix
elements of each term in the Hamiltonian by keeping all
b b terms unchanged and replacing additional b or b

operators (where they appear) by b (N 8)'i— 'or

(N 8'}'i b—, respectively. Here b is the creation opera-
tor for the quadrupole boson and Pv=g„b„b„ is theA

number operator. The ensuing model is characterized by
the SU(6} symmetry, analogously to IBA, and is referred
to as the truncated quadrupole phonon model (TQM).
If one keeps only the most important terms, TQM is

equivalent to IBA-1, ' ' i.e., by a simple unitary trans-
formation it can be brought to the well-known form of
IBA-1. In a similar way, by introducing the boson trun-
cation factor (N 8')' in —the Hamiltonian, the standard
particle-vibration model is generalized to a form which is
equivalent to the interacting boson fermion model
(IBFA). Analogously, the CVM can be generalized to a
model having an IBA type of boson core and an IBFA s
type of coupling between the boson core and each fer-
mion of the cluster; hence, it is referred to as the CIBA
(i.e., the cluster IBA). As pointed out earlier, the relation
among these models is shown schematically in Fig. 5.
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