
PHYSICAL REVIEW C VOLUME 41, NUMBER 5 MAY 1990

Electromagnetic properties of some positive parity dipole states described
in terms of quadrupole and octupole interacting bosons

A. A. Raduta' and I. I. Ursu
Institute for Physics and Nuclear Engineering, P.O. Box MG 6, M-agurele Bu-charest, Romania

J. Suhonen
Department ofPhysics, University ofJyvaskyla, Finland

N. Lo Iudice
Dipartimento di Scienze Fisiche, Universita di Napoli, Istituto Nazionale di Fisica Nucleare,

sezione di Napoli, Mostra d'Oltremare Pad. I9, Italy
(Received 22 February 1989)

The first three positive parity dipole states predicted by a phenomenological quadrupole-octupole
boson Hamiltonian are extensively studied. Their coupling to the neighboring positive and negative

parity states, due to the M1 and EA, (A, = 1,3) transitions, respectively, are considered. Special atten-
tion is paid to the lowest two states which are of collective Ml nature. The signature which distin-

guishes them from the M1 state describing the scissors mode is also discussed.

I. INTRODUCTION

The low-lying collective M1 state, known as scissors
mode, first discovered in high-resolution inelastic elec-
tron scattering' and immediately after confirmed in nu-
clear resonance fluorescence experiments, has been ob-
served by now in most deformed nuclei from Ti to U
chiefly by means of (e,e') experiments. In rare earth nu-
clei the mode is moderately fragmented with a mean exci-
tation energy of E =3 MeV, is strongly coupled to the
ground state by the orbital component of the M1 opera-
tor with a total strength ranging from B (M l ) 1' =2ptt to
B (M I ) 1' =3.5@~ and is characterized in a distinctive
way by the (e,e') Ml form factor.

The state has been studied in a variety of theoretical
approaches of phenomenological as well as microscopic
nature.

Among the phenomenological descriptions quoted
here we mention the two rotor model which provides
the geometrical picture of the mode. In such a model
indeed, the M1 state is obtained as a scissorslike oscilla-
tion of axially deformed proton versus neutron fluids
around an axis perpendicular to their symmetry axes.
Given its semiclassical nature, the two-rotor model
(TRM) overestimates the energy and especially the Ml
strength. It gives, however, a complete though semi-
quantitative characterization of the mode and reproduces
correctly its M1 form factor up to moderately high-
momentum transfer.

A more quantitative phenomenological description is
provided by the interacting boson approximation
(IBM2), where the mode is described as a state of mixed
symmetry with respect to the exchange of proton and
neutron valence bosons. The model accounts quite satis-
factorily for the M1 properties, specially the M1 form
factor, but is not able to predict the energy of the mode.

Another phenomenological description which gives sa-
tisfactory results is the so-called generalized coherent

state model (GCSM). In this approach the Ml state is
described as a dipole excitation, built out of two quadru-
pole bosons (one for protons and one for neutrons), of an
axially symmetric coherent state. The model accounts
realistically for both the M1 properties and the energy.
This is obtained as the mean value of an effective Hamil-
tonian whose parameters are fixed by fitting some select-
ed levels of the ground, beta, and gamma bands.

The phenomenological approaches, by their own na-
ture, cannot account for the observed fragmentation of
the mode. They can at most predict a splitting as a result
of a deviation of a nuclear shape from axial symmetry. '

A complete detailed description of the properties of the
mode can be attained only within microscopic schemes.

In medium light nuclei the mode has been described
successfully within a simplified shell-model scheme. " In
heavy deformed nuclei the only feasible microscopic ap-
proaches are in practice of random phase approximation
(RPA) type. A considerable number of the RPA calcula-
tions has been indeed devoted to the study of the mode.
Only some of them are quoted here. ' Although all
supporting the orbital nature of the mode, they tend to
overestimate the total strength and its spreading, and,
which is more disturbing, are far from converging to-
wards a unique result. The reason of such a confusion is
to be attached mainly to the fact that the different RPA
approaches use different and incomplete Hamiltonians,
which affect differently the magnetic properties of the
mode. These are in fact quite sensitive ' to the detailed
form of the Hamiltonian. If most of the relevant com-
ponents of the nuclear Hamiltonian are included and its
spherical symmetry, broken in intrinsic RPA, restored,
the RPA description of the mode greatly improves. ' '

Concerning the fragmentation, it is worth noticing that
this can be reduced by going beyond RPA.

From the brief analysis presented above it is clear that
the mode lends itself to be described with more or less
success within a variety of approaches which may strong-
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ly differ from each other on a technical as well as on a
conceptual ground. The reason for such a paradox is to
be found in the fact that the scissors correlation suggest-
ed by the semiclassical TRM has a simple form and fits
therefore easily into different and apparently uncorrelat-
ed schemes.

Given the simplicity of the mechanism of excitation of
the mode and, by contrast, the richness in content of the
approaches used for its description, one is led to suspect
that states other than the scissors mode may be collec-
tively excited via an M 1 transitio~.

In order to explore the possible occurrence of new col-
lective M1 states we developed in this paper a model
based on a Hamiltonian of interacting quadrupole and
octupole bosons, where no distinction is made between
protons and neutrons. We will show that some collec-
tive magnetic dipole states emerge. Though differing
from the scissors mode, these states lend themselves to a
geometrical picture borrowed from the TRM, which was
the inspiring source of the present model.

In the intrinsic frame, indeed, the equilibrium shape of
the nucleus described by the quadrupole octupole Hamil-
tonian is a superposition of two possible shapes, an octu-
pole (with three lobes in a plane cut) and a quadrupole
shape (an ellypse in the same plane}.

The symmetry axis of an octupole lobe may be as-
sumed to coincide with that of the quadrupole ellipsoid.
The equilibrium shape may then look like that produced
by two intersecting ellipsoids. Suppose now that the two
axes oscillate in the same plane against each other and
that the whole system rotates around a g axis belonging
to the plane of the axes. Such a state is expected to have
a large B(M1)f value since the protons describe closed
orbits of large magnetic moments. The picture is similar
to that provided by the TRM. Here, however, the two
fluids are of the same nature, the shapes are different and
the angle between the two symmetry axes is not small,
but large. The magnitude of this angle should be decisive
for the excitation energy of the mode. One expects that
the collective M1 states described by the present formal-
ism lie at a different energy than the scissors mode and be
related to the neighboring negative-parity states by no-
ticeable E1 and E3 transitions. The existence of such a
mode should in fact reflect a zero point octupole oscilla-
tion of large amplitude in the ground state, consistently
with the picture of the nuclear shape sketched above. If
furthermore any of the states described in this paper had
a nonnegligible overlap with the scissors mode, this
would be a measure of the influence of the octupole de-
grees of freedom on that state.

We stress once more that in the present approach the
M1 collective states are constructed without making dis-
tinction between protons and neutrons.

The quadrupole octupole interaction was treated by
one of us (A.A.R.) both microscopically and phe-
nomenologically. ' Here we concentrate ourselves only
on those features which are closely related to the dipole
states.

The model Hamiltonian is defined in Sec. II, where its
matrix elements in a restricted quadrupole octupole cou-
pled basis are also presented. The reduced probabilities

for M1,E1,E3 transitions characterizing the 1+ states
are treated in Sec. III. The microscopic content of the
model is briefly sketched in Sec. IV. The applications are
presented in Sec. V and the final conclusions are drawn in
Sec. VI.

II. THE MODEL HAMILTONIAN

PMx = JDM'x(Q)P(Q)dQ . (2.2)

Here we have denoted by P(Q) the rotation operator cor-
responding to the Euler angles Q and by DMx(Q) the
Wigner functions. (Throughout this paper we shall use
the phase convection of Rose. 35)

The upper index of the projected states indicates that
they are model functions for the states of the ground,
gamma, and beta bands, respectively.

These states span a restricted collective space (r.c.s.) on
which an effective Hamiltonian HcsM acts. This is
chosen so that the following partial decoupling condi-
tions will be satisfied:

( PJM I~CSM I'pJM ) 0~ & g~1

The simplest solution for HcsM is

HcsM = A, (22Ã2+5Qp Q~. )+ A2J 2,
where

(2.3)

(2.4)

In a series of publications we formulated (A.A.R.) a
phenomenological model ' in order to describe the
electric properties of the lowest three major bands (i.e.,
ground, beta, gamma) in terms of the collective motion of
the quadrupole degrees of freedom. The model was
named "the coherent states model" (CSM) since the mod-
el functions for the member states of the three bands are
obtained by projecting out of three orthogonal deformed
states which are elementary excitations of an axially sym-
metric coherent state. These states are constructed so as
the following requirements be fulfilled: (i) They depend
on a real parameter d which simulates the deformation,
(ii) the projected states are also orthogonal, (iii) in the vi-
brational limit (d ~0) the projected states are required to
describe the semiempirical Sakai-Sheline scheme which
accounts for several selection rules concerning the E2 in-
terband transitions, (iv) in the rotation limit (d large) the
results of the liquid drop model in the large deformation
regime should be recovered. In this limit the E2 transi-
tions satisfy the Alaga rule.

The states which satisfy these conditions are

pj's NJ 'PMo 4g 4g e"pl.d ( b go boo })I
o & 2

P)M NJ PM2Qy, 2 Pg& Qy, 2 (b2b2 )22+d 2~7b22
(2.1)

'pJM NJ PMO Qpfg

Qp=(bpbpb p )o+ —(b2b2 )o-t t
&14 &70

where b 2 (
—2 m 2 } are quadrupole boson operators

and ~0) z the corresponding vacuum state, NJ"' are nor-
malization factors and PM+ is the projection operator
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HCSM + A 3+3+ A4 I [(b3b3 )2+(b3b3 }2][b2+b2]Io
+ A [(b3b 3) (3b 2+26 )]2, o (2.5}

where A3 is the octupole boson number operator, HcsM
is essentially HcsM except for the term J 2 replaced here

QP = (b 2b 2 }0
5

8'2 is the quadrupole boson number operator and J 2 is

the squared angular momentum. The lower label indi-
cates that the quadrupole boson representation is used.

The Hamiltonian HcsM can be implemented with some
additional terms which do not violate the condition
(2.3). ' These terms affect only the energies of the beta
band not considered here and therefore will be ignored
for our purposes.

The Hamiltonian (2.4) was successfully used for
describing both the excitation energies as well as the elec-
tric properties of a large number of nuclei. The CSM,
indeed, provides a realistic parametrization of the collec-
tive properties of nuclei from three distinct symmetry
[O(6),SU(3),SU(5)] regions.

Being based on the use of quadrupole collective degrees
of freedom only, the model has some limitations:

(i) It is not able to describe the strong backbending
which takes place at 12+ in the even-even Pt isotopes
where the interplay between the collective and the
single-particle degrees of freedom seems to play an essen-
tial role.

(ii} It is not able to describe the E3 properties, which
are mainly due to the octupole degrees of freedom.

(iii) It is not suitable for describing Ml states, since it
is not possible to build up states of an angular momentum
J = 1 out of quadrupole bosons of the same nature.

In order to overcome the above limitations, several im-

proving extensions have been elaborated.
In a first extension the detailed structure around and

beyond the backbending region has been nicely described
by coupling two quasiparticles to a collective CSM
core.

The magnetic properties of the ground, beta, and gam-
rna bands as well as the structure of the M1 1+ state,
were described within a generalized version of the CSM,
known as GCSM. In this new model one considers two
quadrupole bosons bk„(k=m, v), describing, in the
zeroth order, the independent harmonic vibrations of two
liquid drops associated to the proton (n ) and neutron (v)
systems, respectively.

A further extension has consisted in considering
quadrupole and octupole interacting bosons with no dis-
tinction between protons and neutrons. Due to the cou-
pling of the two types of collective motion, it was possible
to describe not only the positive parity bands —as in the
original CSM—but also two negative-parity bands with
E =0,1,respectively.

The Hamiltonian considered here consists also of in-
teracting octupole (b3 ) and quadrupole (b2 ) bosons
but is accordingly modified so as to allow for the erner-
gence of M1 states.

Such a boson Hamiltonian has the form

with the squared total angular momentum operator
whose expression in terms of quadrupole and octupole
bosons is

(2.6)

Jk„=g (km~Jk„~km')b„bk, k =2, 3 .
m, m'

Here we denoted by ~
km ) the one boson state

(2.7)

ikm ) =b„ iO)„,
where ~0 ) k are the vacuum states of the two bosons:

bk. Io) k
——o, k =2, 3 .

(2.8)

(2.9)

For what follows it is useful to introduce an additional
notation

HcsM = A )HcsM+ A2J (2 10)

Before discussing the technical aspects concerning the
quadrupole octupole coupled basis it is worth comment-
ing on some qualitative features of the model Hamiltoni-
an.

Such a Hamiltonian can be interpreted in terms of the
quadrupole (a2„,m2„) and octupole (a3„,m3„) conjugate
coordinates

1a„„= —[b „+(—)"b „],k, 2

ikq
(2.11)

of a liquid drop surface described by the equation

R =Ro 1+ g g a2qY2 „(—)"
A, =2, 3 —k&p~A,

(2.12)

By quantizing the small surface oscillations around a
spherical shape, one obtains indeed the harmonic part of
H (i.e., H, =22A, A'2+ A383). The nonquadratic terms
do not have a classical counterpart. These terms are
specific of the quantum-mechanical picture and account
for the anharmonic effects due to the interaction between
the quadrupole and octupole degrees of freedom. Such
an interaction has been used by many authors ' ' to
study the negative-parity states of spherical nuclei.

This Hamiltonian can be justified microscopically. It
can be obtained through a boson expansion technique
from a many-body Hamiltonian including the
quadrupole-quadrupole (q2q2) and octupole-octupole
(q3q3) two-body interaction. In this case, as we will
see in Sec. IV, the coefficients A, (1 ~i ~ 5) appearing in
the Hamiltonian (2.5) have a microscopic structure, de-
pending on the single-particle orbits as well as on the
strength parameters of the q2q2 and q3q3 interactions.

Here the microscopic structure of the boson bz„is not
explicitly considered. The coefficients A, are therefore
free parameters.

We notice that the radius expansion (2.12) does not
contain the monopole and the dipole terms. It can be
shown that the dipole and monopole coordinates can be
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expressed in terms of a2 and a&. By requiring indeed that
the mass of the nucleus be conserved and that the coordi-
nates of the center of mass (c.m. ) be zero (which is

equivalent to the condition of vanishing momentum for
the c.m. ) one obtains two equations relating the four col-
lective coordinates. The solution of these equations gives
the following results: (i) The leading term for app is a
linear combination of (aza2}00 and (a3a3}00; (ii) the lead-

ing term of a,M is proportional to (a3a2},~. This shows
that including the monopole and the dipole coordinates
in the expansion (2. 12) amounts to a sort of renormaliza-
tion of the quadrupole-octupole Hamiltonian.

We can summarize by saying that our model Hamil-
tonian is a linear combination of four types of terms: (i)
the harmonic component H, which prevails over the
remaining ones in the vibrational region; (ii) the squared
angular momentum J which plays a dominant role in
very deformed nuclei; (iii) the pure quadrupole term

0& 0& which covers the intermediate regions; (iv) a
quadrupole octupole interaction term which was chosen
of the simplest form.

It is worth comparing the Hamiltonian (2.5) with the
one used in Ref. 30 to study the K"=0,1 octupole
bands. The quadrupole octupole coupling term adopted
there was of fourth order in bosons and had vanishing
m.e. between the states of the positive-parity bands. This
property was required by the effectiveness condition
satisfied by the model Hamiltonian. The coupling terms
used here are chosen so as to induce strong octupole
correlations into the ground state. For a noninteracting
system indeed, in the vibrational limit, the lowest 1+
state is a three boson state, namely, [(b,b3)2b2], MIO&.
Let us now suppose that such a state is also the dominant
component of the wave function describing the coupled
system. In order to obtain a noticeable M1 transition to
the correlated ground state, this should have a large com-
ponent (b3b3)pl0&. Such a correlation can be generated
by a coupling term which does not conserve the number
of octupole bosons. The second coupling terms gives, on
the contrary, a diagonal contribution to the states with a
nonvanishing number of octupole bosons. Its strength
determines, in fact, the position of the band-head state of
the negative-parity band.

Clearly, the Hamiltonian (2.5) is defined in the product
space S~@Sz where S& is the space of the A,-boson states.

In this paper we shall assume that the low-lying states,

1
4J J;JM [ 3 3 Ji 10&3'f J&]JM (2.14)

gj JM = li, (3J, )JM &

=[b, lO&3gqj]JM, i=g, (2.15)

The states pjM and gj'j JM (i =. g, y) are used to study

the positive-parity states while the negative-parity states
are described within the subspace spanned by gj' JM

(i =g, y).
The choice of the basis (2.13) was suggested by the

description of the ground and lowest octupole bands
given in Ref. 30. Indeed, the E =0, 1 octupole bands
were described there by averaging an effective Hamiltoni-
an on the model states:

iPJ3r „=Nj„PM„f„,n =0, 1,(
—) — J

where

ti'0= 3P 0&3gs, 0i=["3lo&3 2&g]2i

(2.16)

(2.17)

These functions can be written in a more suitable form:

0 JM0= NJ 0 g Cppp [b3 0 &38%j ]JM
NJ&'

f'JMI Nj, i X C —iip[(b3bz)2I0&3tP']JM

(2.18)

(2.19)

From Eqs. (2.18) and (2.19) it is clear that pjiM'0 belongs
to the subspace defined by Eq. (2.13). We may therefore
interpret yJM 0 as being obtained by diagonalizing a mod-
el Hamiltonian in the basis t1(J J3r I. The states yjM'0

correspond to the second lowest eigenvalue of H in the
basis (2.13). This statement will become more clear in
Sec. V, where the numerical results will be presented.

The matrix elements of the Hamiltonian (2.5) in the
basis states (2.13) are

including the M1 state, are described by the eigenstates
of H within the collective subspace spanned by the fol-
lowing boson states:

I 0 JM & PJM & V) J2, JM & 0J
i J~,JM & PJ

i
JM', & PJ i, JM I.

(2.13)

where q&fM', q&g~ were already defined by Eq. (2.1) and

& Wj'M
I HI WPM &

=
& gJ~ I H'csM I p JM & + fi&j JI 2J (J + I } &

( ~JIJJMIHIPJ'j' J3r & =fij j fij j I & v JM I cs IPMJM, & +fi i(2~~3+ 2 ( + )]

+2A, (
—)

' J,J',J,W(J',J,'J,J„.J2) W'(33J, J', ;23)(yj', I lbg+b3llq "&

& q j'M IHI pg J J & JI 4v'2 j'5& q j'I Ib—3+b2 I lq j", & 6J, 2,

(i (3J2)JMIHjl(3J2)JM & =5, [(gj"~ IHcsM Iyj"I &+5;,[33+A2J(J+ I)]]

(2.20)

+ A,J,w'(3J,'3J, ;J2)(yji I lb2+b21 lq jj' &(
—) ', i,j =g, y,



2362 A. A. RADUTA, I. I. URSU, J. SUHONEN, AND N. LO IUDICE 41

where Jk=+2Jk+1 and W(abed, ef} are Racah
coefficients.

The analytical expressions of the m.e. of HcsM as well

as the reduced m.e. of b2+b2 were given in Ref. 31.
(Throughout this paper we use the following convention
for the reduced m.e. of a tensor operator T&„..
&jmITk„lj'm'&=c'"' & jlITkllj'&. )

In the next section we shall study the electromagnetic
(e.m. ) properties of some low-lying eigenstates of H.
These are obtained through a diagonalization procedure
and have the form

lp+p &
—C+(g)+ y g (k)y(k)

J, k

IJ™&=X XDJJ"'(b3Io&3qJ"')JM
k=g y J'

X AJJ) QJJ
k =g, y

(2.21)

(2.22}

(2.23)

III. THE e.m. TRANSITION PROBABILITIES

2+M
&
— ~ C(i) (k)

k %2M
k =g, y

+ g g ~k;J J QJ J;2M 1 =g, r . (2.24)
k =g y Ji, J&

Conventionally, we say that the state J"=2+ belongs
to the band k if the amplitude Ck

' is the dominant one in
the expansion (2.24).

The transition operator M, k as well as the corrective
term M', k can be obtained from the classical expression
of the nuclear convection current and the electromagnet-
ic field generated by the colliding electron during the
(e, e') process.

The M1 transition operator describing the inelastic
electron scattering is

=1T(M(q) = —Idr j)(qr)Y(', Jp, (3.3)

J =p~(r)v . (3.4)

The integration domain in Eq. (3.3) is bounded by the
surface (2.12). Assuming a potential structure for the ve-

locity field of the liquid drop, one finds

3Z 1.~v= ' y X —ak(V
A. =2, 3 —

A, ~ p ~ A.

r
Ro

X 0(R r), — (3.5)

where 8(R r) is the —Heaviside function and the overdot
indicates the time derivative operation.

By means of Eqs. (3.4), (3.5), and (2.12) the function
(3.3) can be expanded in terms of the collective coordi-
nates a&„.The leading term of such an expansion is:

where c is the light velocity, j, (qr} the spherical Bessel
function, Y&, stands for the vector spherical harmonic
and J denotes the proton convection current defined by
means of the charge density p and the proton velocity
field v

In this section we shall study the e.m. properties of the
lowest 1+ states described by the wave functions (2.23).
We shall namely derive analytical expressions for the re-
duced transition probabilities relating the 1+ states to the
neighboring positive-parity (by Ml) and negative-parity
(by El and E3) states. By applying these formulas to
some concrete case it is possible to point out two essential
features of the lowest 1+ states: (i) They are of magnetic
nature; (ii) the influence of the octupole degrees of free-
dorn on the structure of the 1+ state is reflected into the
magnitude of the 8(E1) and B(E3) values associated to
this state. As we have already mentioned, the B(M1)
value characterizes not only the 1+ state but also consti-
tutes a measure of the importance of the octupole boson
correlations in the ground state.

To begin with let us analyze the M 1 transition
0+~1+. The transition operator is defined by

T IM
eZRO

c 4m.

' 3/2

j,(qR(1) g (2)(,+1)(—)
+'

2$ 3

X W(AA, 11;1A,—1}

X (akak

1ak„=. [H,ak„]. (3.7)

One obtains in this way a boson representation of TIM
whose leading terms are J2M and J3M.

This expression can be quantized by means of the boson
representation (2.11) of a and by using the equation

+)k 3~4~(g2 J2k +g3~3k )PN (3.1)

where p~ stands for the nuclear rnagneton and g&
denotes the A.-pole gyromagnetic factor. Additional con-
tribution to the M1 strength may come from the higher-
order components of the transition operator

@1k J ~Ig22((b2+ 2)J2)1k

+g23 I ( b 2 +b2 )~3 Ilk 1 (3.2)

1 eZRO
TIM i Ac 4m

3/2

j,(qR() )

v'5
X

2
(ll A)+3A2)(b2b2))gr

k',

+
2 (A3+12A2)(b3b3), kg

v'14

3k3
(3.g)

The influence of the g22 term on the magnetic properties
of nuclei has been investigated in Ref. 38.

From Eqs. (3.1) and (3.8) one finds the following expres-
sion for the gyromagnetic factor g&.
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ZR0 Mc~ 3

4~ (Rc) k
(112)+332)5«2

1+ (33+1232)6«3
k~

A=2, 3 (3.9)

( 0+
~ ~

T ) ~ ~

1+
&
= ej—,(.qR p )V, (3.10)

where

and

3 Ac

44~ R()Mc
(3.11)

f y [ g (k)B(k) +3/1()/3 g (k)B(k) +3/7 g (k)B(k) )
k =g, y

If one takes into account the bosonic quadratic terms in
the right-hand side of Eq. (3.7) and then inserts the re-
sulting a in (3.6), one obtains the explicit expressions of
the gyromagnetic factors gzz and gz&, which represent the
first-order anharmonic correction to the M1 operator.
Since we do not use the contribution of 4;„"to the
B(M1) value we shall not give here the explicit expres-

g22 and gas'
The reduced m.e. of T, between the ground and the

1+ states, given by Eqs. (2.21) and (2.23), respectively, is

tor (g —g„)appearing in the expression of B (M 1 ) 1 ob-
tained within the formalism dealing with distinct proton
and neutron quadrupole bosons. The appearance of such
a factor in this latter scheme is interpreted as reflecting a
motion in opposition of phase of the proton —neutron
subsystems which amount to say that the state is asym-
metric against p —n exchange. This is true only if 0 is a
(p, n) symmetric state. Similarly the appearance of the
factor g2

—
g3 in the expression (3.15) of B(M1)1 can be

interpreted as the signature of a relative rotation of quad-
rupole versus octupole bosoms.

We mention, for the sake of completeness, that the
GCSM based on the proton-neutron picture studies the
motion of a system with 10 degrees of freedom (six Euler
angles and four deformation variables) while here we deal
with 12 variables (six Euler angles and six deformations).
Noticeable is also the fact that the IBA2 uses also 12
variables. The present model however uses only two
types of bosons while the IBA2 uses four bosons, i.e., two
d and two s bosons.

The B(M1)$ value (3.15) depends on two parameters
kz and k~ which define the relation between coordinates
and boson representations by means of Eq. (2.11). These
are fixed by fitting the gyromagnetic factor of the state 2g
Eq. (2.24) and the reduced m. e. (2r ~ ~M) ~ ~2s &.

For a given positive-parity state, with JAO, whose en-

ergy is the ith eigenvalue of the Hamiltonian (2.5}, the
gyromagnetic factor is defined by

(3.12)
g,""= ~iJJlg2J2, p+g3J3, pli, JJ &, (3.18)

The terms A and 8 are the expansion coefficients of the
1+ and 0+ states, respectively, as shown in Eqs. (2.23)
and (2.21).

The M1 form factor is given by

where

XCk JPJM X k,J J J0J J;JM .
~F) (q) ~

= 9' [j,(qR p )]

The transition probability has the expression

B (M1;0+ 1+ ) = i (Oi iM) i i
1+

& /

2

R 2+2 2
0 I N

(3.13)

(3.14)

The final result for g," ' is

g""=g2+(g2 &3) X (B—k,'J, J,J )'
i, k

Inserting the expression (3.11) of 7 into (3.14}one obtains

B (M 1;0+~1+ ) = f (g2 —
g3 ) PN

. + + 9 z zz (3.15)

The following simple relation between the M1 strength
(3.15) and the Ml form factor (3.13) holds

~F) (q «)~ = 'q «B(M1—;0+ 1+), (3.16)

where we denoted by q & the photon point value of the
transferred momentum, which, expressed in terms of the
excitation energy of the 1+ state, is given by

E, —E
Ac

(3.17}

It is worthwhile noticing that the B(M1) value (3.15) is
proportional to (g2 —g3) . This is reminiscent of the fac-

M)
M(( J—M()J (3.20)

1

In our numerical calculations we have put the gyromag-
netic factor corresponding to the lowest 2+ state equal to
the empirical value which is very close to Z/A. It re-
sults from Eq. (3.20) that g," ' does not depend on Jwhen

gz =g&. The common value characterizes also the
negative-parity states. This remark would suggest a
straight procedure for determining (g2 —

g3 ). Let us,
namely, suppose that the gyromagnetic factors g," ' and

g," ' of the states 2+ and 4+ were known. We could then
determine (g2 —g3) by just fitting (g,' ' —g,' ') to the ex-
perimental data. Unfortunately this is not the case and
therefore we need a second equation to determine the two
unknowns. This is obtained from
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&2+II~ 112'&=&3/4~ &6g (c,"'c,"'+c',"c',")

+V'5 g Bk q J Bk J J [g2J~W(1J~2J, ;J~2)+g3J)W(1J,2J2;J,2)] p~,
ki =g, r

(3.21)

where

J=[J(J+1)(2J+1)]' (3.22)

Q3„=e3[b3„+(—}"b3-„] (3.23)

and C ', Bk J J are the expansion coefficients of the
1 2

states 2+ and 2+ [Eq. (2.24)] obtained by diagonalizing
the Hamiltonian matrix given by the relations (2.20).
[Our convention for the reduced m.e. (& JIIOIIJ'&) is
different from that of Ref. 37 (&JIIOIIJ'&&,~). The two
are related by & JI I

O
I I

J'
& (,)

= ( 1 &J)( & JI I OI I
J'

& ). ]
In order to characterize completely the 1+ states we

compute the E3 and E1 transition probabilities as well as
the M1 transition strengths. To this aim we shall assume
for the E3 and E1 transition operators the forms

IV. TOWARDS A MICROSCOPIC INTERPRETATION

As we have already mentioned, the model Hamiltonian
can be derived by expanding a many-body Hamiltonian,
having as two-body interaction the pairing plus 2 pole
(A, =2, 3) interaction, in terms of the QRPA bosons. This
has been achieved a long time ago by one of us (A.A.R.)
in a series of publications.

In this section we want to point out the ground-state
correlations which make possible the magnetic like exci-
tations.

To this goal we shall consider a microscopic Hamil-
tonian describing a system of nucleons moving in a spher-
ical shell-model potential and interacting among them-
selves through a 2 pole (A, =2, 3) interaction. The
single-particle space is restricted to three states I j;m;]
(i =0, 1,2) of parity ( —)' and energies e;, which are or-
dered as

(3.24)
6'O & 6i (6'2 . (4.1)

Using the expressions (2.23) and (2.22) for the states 1+
and J, respectively, one obtains

B(E3;1+—+J )

= I&1IIQ IIJ

=2(2J + 1)q I y J 'A '"'D'"'W(331J' J'J)
I

J'=even
k=gr

(3.25)

B(E1;I+~J )

=—
I &ll IQ IIJ

=q'I g A'"' D'",'g~ ~ &gp'"'Ib2t+b~Ip'"'&I' (3.26)

where SJ J is given in the Appendix.
1 2

We normalize the 8(E3) and 8(E1) values, respec-
tively, to 8(E3;3& ~0+) and 8(E1;1 ~0+), whose
transition probabilities are given in the Appendix.

For the M1 transitions 1+~2+ and 1+~2r we get
the expressions

X [g~JW(2J2 1J~;J, 1)

We suppose that j2 is a particle state while jo and j, are
hole states.

Following the procedure of Ref. 26 the schematic
Hamiltonian can be easily expanded in terms of the
particle-hole RPA bosons

~(c,2c,z )z~ + Yz(cjoy cj2)z~,

A, =2, 3, I,'=5~ 3 . (4.2)

The quadrupole-octupole coupling term of leading order
in bosons, is of the same form as that given by (2.5), with

A4= —I ~X3 Y3[X2+(—)
' 'Y2]

—I' [X +( —)' 'Y ]

X [X2X3(—)
' '+ Y2 Y3( —

)
' ],

(4.3)
A =I [X+(—)' 'Y](X +Y )

+I 3[X3+(—)
' 'Y3] [X2+(—)

' 'Y2]

x( )J)

Here the following notations have been used

I =14+5X g (j J )[g (J ,j, )W(3J', 3J';J 2)

+g2(J2J2 }W(3J13J2J12)]
(4.4)

—
g3J, W(2J, 1J,;J21 }]I

l =g, P (3.27)

r, =14&5X@3(J & Jp)g3(j2 J ] }W(3J&2jp' J23),
where y& stands for the strength of the 2 -pole interac-
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tion and

(4.5)

From (4.4) one sees that the ground-state component
(838 38 ~ )p l 0 ) ) which may be excited by an M 1 operator
is determined by the two-body interaction relating the
pairs of states (hh )-(ph ) and (pp }-(ph ) (p =particle,
h =hole}.

The transition operator has also a nice microscopic
justification. Let us indeed confine the angular momen-
tum operator

j„=—g(c c )p,
I

1/2
j(j +1)(2j+ 1)j=

(4.6)

X [Jz.W(Aj & Aj z,j z 1 )+j z W(Aj~kj, ;j,, 1 )] . (4.S)

We see that due to the truncation of the single-particle
space the angular momentum operator j„is not identical
to the angular momentum in the boson representation
[i.e. , that given by (2.6)). This implies different g factors
for the quadrupole and octupole components of the M1
transition operator.

As a matter of fact this microscopic expression is con-
sistent with that derived in Sec. III by using the liquid
drop model [see Eqs. (3.8) and (3.9)].

The method presented above assures the conservation
of the commutation relations of j„with the quadrupole
and octupolegh, ph, and hh operators. The mutual com-
mutators of j„,however, are not preserved. This is the
price we pay for having truncated the boson space to the
quadrupole and octupole states.

We may then conclude that the phenomenological ex-
pressions of both the model Hamiltonian and the M1
transition operator have a simple microscopic
justification.

The quite schematic microscopic model discussed here
is sufficient for our limited purpose of illustrating the mi-
croscopic content of the boson model presented in this
paper.

For a realistic microscopic description of the nuclear
properties predicted by the model, the many-body Harnil-
tonian must operate in a larger shell-model space. This is
to be truncated in such a way that the Hamiltonian can
account in an effective way for the coupling of the collec-
tive RPA bosons with the noncollective ones excluded
from the space. Such a procedure leads to the formula-
tion of a nonlinear eigenvalue equation.

to the restricted space of single-particle states and expand
its (h, h) and (p,p) components in terms of 8&,8&. The
first-order expansion is

(4.7)
k=2, 3

where

gq=(2A, +1)(xg+ Yg)( —)
'

Dealing with deformed nuclei, in order to enforce the
stability of the solutions against the space truncation one
needs to express the bosons in terms of Nilsson single-
particle orbits. This was done for the neutron-proton sys-
tem in order to describe the scissors mode by a RPA di-

pole state. By adopting a deformed basis, however, one
runs into the difficult problem of projecting out states of
good angular momentum.

Another major difficulty is represented by the fact that
the boson image of the many-body fermion space ob-
tained through the boson expansion contains many spuri-
ous components due to violation of the Pauli principle.
One could obviate to it by adopting the boson expansion
procedure of Marurnori et al. which accounts for the
Pauli principle at each order of the expansion.

In summary a correct microscopic approach in de-
formed nuclei would require (i) to perform a first-order
Marumori expansion in terms of RPA deformed bosons;
(ii} to formulate a nonlinear eigenvalue equation in the
collective boson space; (iii) to account for the contribu-
tion coming from the noncollective bosons through an
effective Hamiltonian; (iv) to project out states of good
angular momentum. Such a program is in practice un-

tractable. In all numerical applications ' ' ' at least
one of the above requirements is missing.

An alternative microscopic scheme which provides a
quite satisfactory interpretation of phenomenological bo-
son models is represented by the so-called fermion
dynamical symmetry model (FDSM}.

This is a truncated shell-model scheme originally
developed with the purpose of providing for a shell-model

group theoretically founded justification of the IBM. It
is in fact assumed, as in IBM, that the building blocks of
all lying collective states are S and D fermion pairs. Un-
like IBM, however, these pairs preserve entirely and ex-
plicitly their fermion structure. They are constructed by
using a single-particle basis in which the single-particle
angular momentum is decomposed into a pseudo-orbital
angular momentum and a pseudospin. Such a basis en-
sures a maximal decoupling of the S-D space from the
rest of the shell-model space.

The model has quite a far-reaching group structure. It
exhibits all dynamical syrnrnetries contained in IBM but
at a fermionic level and predicts additional new dynami-
cal symmetries. Being an algebraic approach, this
scheme offers a relatively simple description of the low-

lying collective properties without making the approxi-
mations induced by the fermion-boson mapping as in
IBM and more in general in all boson models. In particu-
lar the Pauli principle is strictly accounted for. The im-

portance of such a principle has been pointed out recent-
ly by showing that the dynamical Pauli effects account-
ed for in FDSM are crucial for the shell-dependent satu-
ration of the E2 strengths observed experimentally. With
respect to RPA boson expansion, the FDSM approach,
by preserving the Pauli principle, avoids from the begin-
ning the problem of state redundancy and spuriosity. Be-
ing formulated directly in the laboratory frame, avoids
also the problems of angular momentum projection.
Moreover, it accounts for the coupling with the excluded
shell-model states by simply using the pseudospin basis
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and an effective interaction.
It should be extremely useful to explore the possibility

of adopting such a microscopic approach in order to de-
scribe the states predicted by the boson model presented
here. The many-body Hamiltonian underlying this latter
model, pairing plus 2 -pole interaction, has indeed the
right structure for being treated in the microscopic
FDSM. On the other hand our boson model treats
positive- and negative-parity states as well as their elec-
tromagnetic couplings. It would be interesting to investi-
gate if the FDSM approach could be extended to describe
the same states with minimal implementations which do
not alter its group structure in an essential way.

(keVJ i zm
M/8

5

1~' 26DI

2235

517
2

2790

Exp,

V. NUMERICAL RESULTS AND DISCUSSION

The formalism described in the previous sections was
applied to the case of U.

Let us first analyze the energies. The model Hamil-
tonian involves the five parameters A; (i =1,5) and d.
These were determined as follows. For each value of d
the energies of the states 2+,4+, 2+, 1,3 were fitted to
the corresponding experimental data. The parameter d
was fixed so as to attain an overall agreement for the
ground and the lowest negative-parity bands.

The results for the six parameters are given in Fig. 1,
where we plotted also the predicted energies for the
ground and the lowest I( =0 bands. We give also for
comparison the corresponding experimental data taken
from Refs. 45 and 46. The energies of the first six
positive-parity states of angular momentum one are given
on a separate column.

Only the decay properties of the first three 1+ states
are analyzed. These are fully determined by the structure
of the wave functions (2.23) and by the transition opera-
tors given by Eqs. (3.1), (3.23), and (3.24). The
coefficients A JJ of these wave functions for 1 ~ k ~ 3 are
given in Table I. This contains also the structure
coefficients BJ("' of the ground state (2.21). The largest
weight for Os pertains to yo(II' and amounts to C =0.818.

It is worthwhile mentioning the following features of
the amplitudes of the functions given in Table I.

(i) There is a relatively large contribution of the two
octupole components to the Og state due to the A4 term
of the Hamiltonian (2.5).

(ii) The first two 1+ states are mainly determined by
the coupling of the two octupole boson states to the
quadrupole ground band states, while the 13 state has the
two octupole boson excitations of the states yJ~~ as dom-
inant components.

The El and E3 transition operators [(3.23) and (3.24)]
involve the parameters q& and q3, respectively. As al-
ready mentioned, these were fixed by normalizing
B(E3;3 ~0+) and B(E1;1 ~0g ) to unity.

The M1 transition operator depends on the parameters
kz and k3 which define the canonical transformation
(2.11}. These were determined by means of Eq. (3.20)
(considered for the first 2+ state} and Eq. (3.21), where we
used the corresponding experimental values on the l.h.s.
of the equations. For the gyromagnetic factor g," ', the
value Z/A was assumed while the reduced m.e. of the

10gg-
]0'

1149

Th
2' 2'

7A.
Zf

Fxp 7

2+ 2'
g —0'- D"

Th, Exp.

g bano'

d- 3.B
4t- 222 kEV

A~= I.b' gpss

4g= 5'539keV
Ag -- 1gJ.O('eV

A~ = 6'02, &keg

3

Exp.

FIG. 1. The predicted (Th) and the experimental (Exp) ener-
gies for the ground and the E =0 bands are plotted for "'U.
Data are from Refs. 45 and 46. The predictions for the first six
dipole states are also given. The scissors mode energy is taken
from Ref. 3. The theoretical results are obtained by diagonaliz-
ing the Hamiltonian (2.5) with the set of parameters given at the
bottom of this figure.

kq =19.519, k3 =4.344 . (5.1)

TABLE I. The coeScients BJ ' and AJJ defining the states
Og and 1+ (m =1,2, 3) by means of Eqs. (2.21) and (2.23), re-
spectively. They were obtained by diagonalizing the Hamiltoni-
an (2.5) with the parameters A, (1 ~i ~ 5) and d given in Fig. 1.
Only those of magnitude larger than 0.1 are listed.

B(k)J
0+ 1+

AJJ(k)

1+ 1+

—0.283
0.439

—0.202
0
0.1

0
0

0
0.257

—0.475
0.833
0
0

—0.12

0
—0.588

0.585
0.484
0
0.115

—0.227

0
—0.113

0.103
0.162
0.434

—0.385
0.479

M1 transition 2~~2g was taken equal to 0.018pz.
There are in fact no available data for this transition in
the case of U. The value mentioned above, however, is
close to those reported in Ref. 47 for nuclei having a
similar structure for the ground and gamma bands as

U. One obtains in this way the values
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TABLE II. The B(AA, ) values (for AA, equal to M1, E1 and
E3) of the transitions J; ~Jf are listed. The strength q& (3.24)
and q3 (3.21) are fixed so that the reduced probabilities
B(E1;1 ~0+) and B(E3;3 ~0+) are normalized to unity.
The B(M1) values are given in units of pN.

among the first two (I& and lz ) states. A similar split-
ting is predicted to occur also for the scissors mode in nu-
clei with a triaxial shape. '

B(AA, ;J; ~Jf" )

AA, J, ~Jf k=2 k=3
VI. SUMMARY AND CONCLUSIONS

1k —+2g

11, ~2y

1.120
0.184
1.933

0.601
0.111
4.10-4

0.093
0.015
0.312

1+, ~2
1k 3
1k 4

0.322
0.807
0.694

0.450
0.043
0.168

0.026
4.10-4

10-4

3.348
16.77

0.694
7.023

0.092
0.112

The gyromagnetic factors were calculated by means of
Eq. (3.9). The results are

g2=0. 371, g3 =2.266 . (5.2)

A'" =Q 330 A"'=-0.519 .

The numerical results concerning the M1 and EA.
(A, =1,3) transitions of the first three 1+ states are col-
lected in Table II.

It is worthwhile mentioning the collective nature of the
Og ~1k (k =1,2) and 1+, —+2r Ml transitions. Another
good signature of the first excited 1+, state is provided by
its EA, properties. The 8(E1) values of the 1+, ~1 and

1& ~2 transitions are much larger than the strength of
the 1 ~0+ transition.

One may then say that the 1+, state is a very particular
one which exhibits both magnetic and electric collective
properties. Such a signature distinguishes it from the
traditional scissors mode.

According to the result presented in Fig. 1, there are
two 1+ states whose energy lies close to the experimental
energy (i.e., 2.19 MeV) of the scissors mode: these are lz
and 13. One may therefore expect some nonnegligible
overlap between these states and the scissors mode. On
the other hand, the 12 state has an El collective charac-
ter.

We finally point out the splitting of the M1 strength

These values fully determine the M1 transition operator.
We note that the Ml strength of the 0+~ 1k transi-

tions depends only on the coefficients AJIJ' with J =J'.
This is not true for the 1+~2+; transitions with i =g, y
[see Eq. (3.27)]. The absolute square values of Azz' with
JAJ' are however less than 0.1 for 1+, and lz. In the
case of 13 the data given in Table I should be implement-
ed with

The main results achieved in the previous sections can
be summarized as follows.

A schematic quadrupole-octupole boson Hamiltonian
(2.5) is used to describe dipole states of positive parity. A
special attention is paid to those states which can be col-
lectively excited from the ground state through an M1
transition.

The inspiring source for this description was the TR
model. Indeed, the picture of two interacting ellipsoids
provided by TRM, can be simulated by a specific super-
position of octupole and quadrupole nuclear shapes.

Unlike the formalisms used to describe the scissors
mode, the present approach does not distinguish between
proton and neutron Auids. The structure of the states in-
vestigated here is therefore different from the scissors like
states, although some overlap between the two types of
states is possible.

At the present stage one cannot say whether and how
any of the states studied in Sec. V relates to the M1 states
populated in an (e, e') experiment. Indeed, although the
state lz lies close to the experimental data (i.e., 2.19
MeV), its Ml strength is about 0.6pz, while the corre-
sponding experimental value is 1.5pz. For a quantitative
description of the interplay between this state and the
scissors mode one should implement the Hamiltonian
(2.5) with additional terms.

On the other hand, we were not interested in improv-
ing the description of the "traditional" M1 state but
rather to study a new class of collective M1 states, name-
ly, those which are built up by means of quadrupole-
octupole excitations. This is why we did not make an ex-
tensive numerical analysis but restricted ourselves to a
single nucleus, U. The main results are

(i) the Ml strength is mainly distributed among the
first two out of six dipole states.

(ii) These two dipole states (1+, and lz ) exhibit collec-
tive M1 properties.

(iii) The 8 (M 1 ) value for the transition 1+, ~2+ is also
quite large.

(iv) A good signature of the first Ml state is its large
8 (E3) and 8 (E 1 ) values. The lz state is also collective-
ly coupled to the 1 and 2 states via E1 transition.

(v) Using the TRM language one may say that the
quadrupole and octupole nuclear shapes move in a scis-
sors fashion.

The results of this paper strongly suggest that the
physics of low-lying magnetic collective excitations in
complex nuclei has still many interesting features to be
explored.

Experimental analysis of the EA, (A, =1,3) properties of
the collective M1 states lying in the energy region 1—2.5
MeV would greatly stimulate further studies on this sub-
ject.



2368 A. A. RADUTA, I. I. URSU, J. SUHONEN, AND N. LO IUDICE 41

APPENDIX

Here we shall list the explicit expressions of Sz J involved in (3.26) as well as those of the reduced probabilities for
l 2

the 3 ~0+, and 1 ~0+ transitions:

SJ J =&2JJ (g J' J "W(331J),J(J')W(3JJ)2;J2J')W(J213;J'J"),
Jll

B(E3;3,~0g )=q3 CD'p~'—

8(E1;1,~0+)=q, C QDP2 (q'p I b2+bpllto
k

2

D)J&J J'W(33J'2;J)1)&q Jl'llb2+b~l q Jt', '&

Jl, J', k, k'

where J=&2J + l.

(A 1)
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