Half-lives of 44 Ti and 207 Bi

D. E. Alburger and G. Harbottle

Brookhaven National Laboratory, Upton, New York 11973

(Received 26 January 1990)

An end-window gas-flow proportional counter system, including an automatic precision sample changer, was used to measure the decay of radiations from two samples of $44Ti$ and one of $207Bi$. Comparison counts were taken on a 36 Cl standard, and the ratio of counts determined the decay. Points consisted of alternate 30-min counts on each sample and on the standard, totaling 30 h on each, and were taken at intervals of about one month. Based on 3 years of counting on the 207 Bi source and on one of the 44 Ti sources, and 1 year on the second 44 Ti sample, half-lives were obtained as follows: 44 Ti, 66.6(16) yr and $207B$ i, 34.9(4) yr. The $207B$ i value lies between the two most recently reported values. In the case of $44Ti$ there are discrepancies with all three previous results including an Argonne accelerator mass spectroscopy value of 54.2(21) yr.

I.INTRODUCTION

⁴⁴Ti is one of 18 radioactivities found in meteorites,¹ presumably having been produced by the cosmic-ray spallation of iron. As one of their uses,¹ these activities can give information on variations in cosmic-ray flux. Another use¹ of $44Ti$ is to deduce the terrestial age of a meteorite on a time scale of of a few hundred years from the ⁴⁴Ti radioactivity level, in a manner analogous to ¹⁴C dating. There are two applications in the field of γ -ray astronomy, in one of which 44 Ti is currently a prime subject of searches² in the remnants of supernova 1987A as well as in older supernovae. Already the 847- and 1238 keV γ -ray lines from 77-day ⁵⁶Co have been observed³ from supernova 1987A. After the 56 Co decays sufficiently it is hoped that the 1157-keV γ -ray line from ⁴⁴Ti-⁴⁴Sc will be identifiable. If this becomes possible it could help in a more detailed understanding of the supernova process. All of the existing 44 Ca is believed to have originated from ⁴⁴Ti decay following nucleosynthesis. In the other application, ${}^{56}Co$ and ${}^{44}Ti$ are thought⁴ to be the only two important sources of positrons from explosive nucleosynthesis, as observed from a gamma-ray peak at 476 keV thought to be associated with positronium.

All such studies depend on having a reliable and accurate value for the half-life of ⁴⁴Ti. Three measurements have been reported thus far, all of them absolute determinations of the decay constant. Two of these were made in 1965 using dilution counting techniques and a mass spectrometer to obtain isotope ratios. Wing et $al.^5$ obtained $46.4(17)$ yr and Moreland and Heymann⁶ found 48.2(9) yr. More recently, the Argonne National Laboratory group of Frekers *et al.*⁷ used the accelerator mass spectrometer (AMS) technique to obtain isotopic ratios in their sample. By combining that result with a counting measurement they obtained a half-life of 54.2(21) yr for 44 Ti.

In view of our earlier work⁸ at Brookhaven on the half-life of ³²Si $[T_{1/2} = 172(4) \text{ yr}]$, measured by its direc decay over a 4-year period, it was suggested to us by

Kutschera that a similar measurement could be done on 44 Ti. The Argonne group, in fact, very kindly furnished us with a portion of their activity.

Another radioisotope in which we have long had an interest is 207 Bi, which was discovered in 1951 by Neumann and Perlman⁹ and estimated by them to have a half-life of approximately 50 yr. A much shorter half-life, 8.0(6) yr, was measured by Cheng et al .¹⁰ Subsequent results¹ were in the range $28-38$ yr, the most recent being those of Yanokura *et al.*¹⁵ — 33.4(8) yr, and Hoppes *et al.*¹⁶ 32.2(13) yr. The Yanokura et al. value was revised¹⁷ to 36.7(14) vr because of a corrected ²¹¹Po α -particle branching ratio. (The uncertainty of 1.4 yr was calculated by the present authors by combining the various reported uncertainties.) Because of the wide range and inconsistencies of these various results, we decided to make a study of 207Bi concurrently with 44Ti . The half-life of 207 Bi is not believed to be of particular significance, but this activity is a convenient γ -ray energy and intensity standard whose half-life ought to be established with greater accuracy and reliability.

II. EXPERIMENTAL METHODS AND RESULTS

An end-window gas-flow proportional counter system, including an automatic precision sample changer, was used for our measurements. This equipment has been thoroughly described,¹⁸ and its use in measurements on 32 Si has been given in detail.⁸ Samples for the present work were secured to standard brass holders with Duco cement. They were then covered with 0.25-mg/cm^2 thick Al foil, attached with an electrically conducting cement, in order to eliminate erratic counting effects due to source charging. In the previous experiments⁸ on 32 Si small but statistically significant periodic annual variations in the ratios of counts were observed and were thought to be caused by humidity and temperature variations in the air path between the sources and the detector, even though the box pressure was accurately controlled. The earlier micrometer settings for the distances

between the sources and the end-window counter were 1.0 mm for the $32Si$ source and 4.0 mm for the stronger 36 Cl source. For the present experiments the test samples were all the 1.0-mm setting and a similar but weaker 36 Cl source was used that allowed it to be brought to a micrometer setting of 1.0 mm giving the desired counting rate. Thus the direct air path for the 36 Cl comparison source was decreased by 3 mm and this was expected to reduce the periodic variation effect. In fact, no periodic annual variations in the ratios of counts seemed to be evident in the present results covering approximately 3 years of measurements.

The present procedures were nearly the same as in the 32 Si runs, i.e., after a 1-day equipment warmup, the first 44 Ti sample was counted for 20 cycles of 30-min per cycle, alternated with 30-min counts on the 36 Cl reference source $(T_{1/2} = 301,000 \text{ yr})$, altogether totaling 10 h on each. Three such runs were averaged and the ratio of counts gave the plotted points. After 3 days of such runs, it was exchanged for the 207 Bi source, for 3 days, and then to the second 44 Ti source for 3 days beginning in the third year of counting. Individual runs were rejected if the box-pressure regulator lost control due to very high or very low barometric conditions, and make-up runs were made.

$A.$ $44Ti$

The first 44 Ti source consisted of activity provided by the Argonne National Laboratory group. The sample had been produced prior to 1980 via the ⁴⁵Sc(p, 2n)⁴⁴Ti reaction at $E_p = 45$ MeV in the Julich cyclotron. After 3 years of cooling, chemical separation and purification was performed.⁷ The upper part of Fig. 1 shows the 32 44 Ti/ 36 Cl data points from this sample recorded over a total of 3 years beginning in 1986. In all cases of Figs. $1-4$ the ordinate is linear for convenience in plotting. Two changes of counting level occurred during the three years. As may be seen in the singles counts of Fig. 2, slight decreases in both counting rates took place at around $T = 1.7$ yr and this resulted in breaks in the continuities of both the 44 Ti and 36 Cl curves. From our previous extensive studies⁸ of the effects of changes of various parameters (amplifier gain, bias level on output pulses, counter voltage, counter gas-flow rate, and box pressure), we are confident that these small changes would have a negligible effect on the ratio of $^{44}Ti/^{36}Cl$ counts. In fact, no deviations were noticeable at $T = 1.7$ yr in either the $\mathrm{^{44}Ti}/\mathrm{^{36}Cl}$ ratio in the upper part of Fig. 1 or in the 207 Bi/ 36 Cl data discussed below.

The second and much larger abrupt change in counting level occurred at around $T = 2.85$ yr and this amounted to a decrease of about 0.5% in singles counting rates. An attempt was made to compensate for this by adjusting the bias on the output pulses so as to bring the 36 Cl singles rate back to very nearly its initial value. It took nearly 6 more months of counts before it was fully realized that the ⁴⁴Ti/³⁶Cl ratio points, beyond the time $T = 2.85$ yr indicated by the arrow in Fig. 1, no longer matched the first 2.3 yr of data but fell somewhat lower than expected. The procedure was therefore to analyze the two regions

FIG. 2. Lower part, ⁴⁴Ti singles counting rate from the first sample measured over a period of 2.3 yr. Upper part, corresponding ³⁶Cl singles counts. Small shifts in both counting levels are apparent at about $T=1.7$ yr. Lines are hand-drawn guides to the eye.

FIG. 3 Ratio of $207Bi/36CI$ counts measured for 35 points over a period of 3.4 yr. Points were recorded as for 44 Ti in Fig. 1. Due to the counting level change, indicated by the arrow at $T=2.85$ yr, the data were analyzed in two parts. The lines show these two fits.

separately with the results shown in Table I. These fits were individually quite satisfactory since the uncertainty and standard deviation were 0.54 and 0.55 yr, respectively, for the first 24 points, and 2.80 and 2.89 yr, respectively, for the next 8 points. On the other hand, the single fit to all 32 points was poor in that the uncertainty was twice as great as the standard deviation. Because of a

FIG. 4. Lower part, $207Bi$ singles counting rate measured over a period of 2.6 yr. Upper part, corresponding ^{36}Cl singles counts. Small shifts in both counting levels are apparent at about $T = 1.7$ yr. Lines are hand-drawn guides to the eye.

TABLE I. ⁴⁴Ti half-life results from analyses of the data in Fig. 1. Uncertainties are standard deviations.

⁴⁴ Ti sample	Region of fit	$T_{1/2}$ (yr)
No. 1	First 24 points	66.9(6)
	Next 8 points	60.8(29)
No. 2	First 4 points	78.0(16)
	Next 8 points	62.0(36)
	Weighted average	66.6(8)

failure of the timer control unit and the need for extensive repairs, it was decided to terminate the experiments at $T=3.6$ yr.

When it became suggestive after 2 years of counting on the first 44 Ti source that the half-life was going to be longer than the value 54.2(21) yr reported by Frekers et al ,⁷ we considered possible causes for the difference. The most obvious reason for this would be the presence of a long-lived contaminant. Assuming that 54 yr were to be the more nearly correct value, it is easy to show that in order to obtain a fitted value of ≈ 67 yr over a 3yr counting period the contaminant contribution would have to be about 18% of the total activity. We therefore measured the γ -ray spectrum from the Argonne sample by means of a Ge(Li) detector system. The net spectrum after subtraction of room background showed only the x rays following electron capture, and the γ rays of 68, 78, 511, 1157, 1499, and 2656 keV due to the ⁴⁴Ti-⁴⁴Sc-⁴⁴Ca decay chain. Over the energy range up to 3 MeV no other lines were observed and an upper limit of $\langle 1\%$ was placed on the relative intensity of any contaminant γ emitting radioactivity.

The β -ray spectrum from the Argonne⁴⁴Ti sample was then examined by means of a plastic scintillator. This showed the expected β with an end-point energy of 1476 keV plus a lower energy Compton-electron component due to the response of the detector to the 1157-keV γ rays. There was no evidence for a long-lived β -emitting contaminant. However, the selectivity here is not very good and we could only say that any long-lived β emitting contaminant would have to be \lt 20% of the total activity. From the process⁷ by which the 44 Ti source was made there is no known pure β emitter that could be present and interfere with our measurements.

In spite of our conviction that the 44 Ti results from the first source were valid, we were sufficiently concerned about the discrepancy with the AMS value⁷ that we initiated a second set of measurements on ⁴⁴Ti. An old source of ⁴⁴Ti was found among samples that had been accumulated by Sunyar. Although the exact origin of this source is not known, its γ -ray spectrum indicated a high degree of ⁴⁴Ti purity.

Data on the $^{44}Ti/^{36}Cl$ ratio using the second ^{44}Ti source are shown in the lower part of Fig. 1. Only 4 points were taken before the change of counting level occurred, indicated by the arrow at $T=2.85$ yr. Table I gives the results of fits to the separate regions of $^{44}Ti/^{36}Cl$ points before and after the level change occurred. The weighted average of the two results from the second ⁴⁴Ti source alone is $T_{1/2} = 63(4)$ yr.

FIG. 5. Reported half-lives of ⁴⁴Ti vs the year of publication.

$B. ²⁰⁷Bi$

Our source of $207Bi$ dates from 1953 when a substantial supply of this activity was produced by bombarding a target of ordinary Pb with 22-MeV deuterons from the Oak Ridge National Laboratory cyclotron. Following a chemical separation at Brookhaven numerous electroplated sources were made.¹⁹ Figure 3 shows the 35 207 Bi/³⁶Cl data points recorded over a period of 3.4 yr. As in the ⁴⁴Ti case, the breaks in the singles rates of the Bi and 36 Cl points in Fig. 4 are evident at around $T=1.7$ yr, although no deviation is apparent in the ratio data of Fig. 3. Again, because of the second and much larger shift at $T = 2.85$ yr, indicated by the arrow in Fig. 3, the ratio data were analyzed in two separate parts. Results for the 207 Bi half-life were 34.88(21) yr from the first 27 points and 35.2(9) yr from the next 8 points. A single fit to all 35 points was poor, as in the 44 Ti analysis.

III. DISCUSSION

The separate results from the two 44 Ti sources, as given in Table I, are in agreement. Although the uncertainty for source $#2$ is relatively large, it is consistent with there being no long-lived contaminant in source $\#1$. We adopt $T_{1/2}$ = 66.6(16) yr for ⁴⁴Ti, where the uncertainty is

FIG. 6. Reported half-lives of 207 Bi vs the year of publica tion.

taken as 2σ in order to cover possible systematic effects. In Fig. 5 the various values reported for the ⁴⁴Ti half-life are plotted versus the year of publication. We offer no explanation for the large inconsistencies of the various values. Thus our value differs from the Argonne result⁷ by 6 times the uncertainty of their measurement. Assuming that the present result is valid, there would be some concern about the reliability of the AMS technique in this instance. Evidently more measurements would be desirable because of the importance of the activity as mentioned earlier. In the decay scheme of 44 Ti, as most recently studied,²⁰ the log ft value for the main $0^+ \rightarrow 0^-$ 99.3% electron capture branch changes from 6.537(6) to 6.534(11) as a result of the presently adopted value for the half-life.

Our adopted value for the 207 Bi half-life is 34.9(4) yr where the uncertainty is again taken as 2σ . This is shown together with previous results, lying in the range 28—38 yr, in Fig. 6. Our result lies between the corrected value of 36.7(14) yr due to Yanokura et al .¹⁷ and the value 32.2(13) yr due to Hoppes et al ;¹⁶ it differs from both by amounts equal to or somewhat more than the sum of the uncertainties.

ACKNOWLEDGMENTS

We wish to thank E. K. Warburton for assistance with computer analysis. Research has been performed under Contract No. DE-AC02-76CH00016 with the United States Department of Energy.

- ¹M. Honda and J. R. Arnold, Geochim. Cosmochim. Acta 23, 219 (1961).
- ²S. E. Woosley (private communication).
- $3S. M.$ Metz et al., Nature (London) 331, 416 (1988).
- 4D. D. Clayton, Natural Phys. Sci. 244, 137 (1973).
- 5J. Wing, M. A. Wahlgren, C. M. Stevens, and K. A. Orlandini, J. Inorg. Nucl. Chem. 27, 487 (1965).
- P. E. Moreland and D. Heymann, J. Inorg. Nucl. Chem. 27, 493 (1965).
- 7D. Frekers, W. Henning, W. Kutschera, K. E. Rehm, R. K. Smither, J. L. Yntema, R. Santo, B. Stievano, and N. Trautmann, Phys. Rev. C 28, 1756 (1983).
- ⁸D. E. Alburger, G. Harbottle, and E. F. Norton, Earth Planet. Sci. Lett. 78, 168 (1986).
- ⁹H. M. Neumann and I. Perlman, Phys. Rev. 81, 958 (1951).
- ¹⁰L. S. Cheng, V. C. Ridolfo, M. L. Pool, and D. N. Kundu Phys. Rev. 98, 231(A) (1955).
- 11 J. Sosniak and R. E. Bell, Can. J. Phys. 37, 1 (1959).
- ¹²G. Harbottle, J. Inorg. Nucl. Chem. **12**, 6 (1959).
- ¹³E. H. Appelman, Phys. Rev. **121**, 253 (1961).
- ¹⁴T. Rupnik, Phys. Rev. C 6, 1433 (1972).
- i5M. Yanokura, H. Kudo, H. Nakahara, K. Miyano, S. Ohya, and O. Nitoh, Nucl. Phys. A299, 92 (1978).
- ¹⁶D. D. Hoppes, J. M. R. Hutchinson, F. J. Schima, and M. P.

Unterweger, Report NBS-SP-626, 1982 (unpublished), p. 85, quoted in E. Browne and R. B. Firestone, The Table of Radioactiue Isotopes, edited by V. S. Shirley (Wiley, New York, 1986) and revised from $T_{1/2} = 32.2(9)$ yr as given in Ref. 16.

- 17 M. R. Schmorak, Nucl. Data Sheets 43, 383 (1984).
- ¹⁸G. Harbottle, C. Koehler, and R. Withnell, Rev. Sci. Instrum 44, 55 (1973).
- 19 D. E. Alburger and A. W. Sunyar, Phys. Rev. 99, 695 (1955).
- ²⁰D. E. Alburger and E. K. Warburton, Phys. Rev. C 38, 1843 (1988).