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Elastic scattering of m
—+ on Si, Ar, 'Ca, Zr, and ' 'Pb at energies around the (3,3) reso-

nance is studied within the framework of the strong absorption model of Frahn and Venter. The

parameters thus obtained are used in the analysis of the inelastic scattering of pions leading to the

lowest 2+ state in "Si. A reasonably good account of the scattering processes (elastic and inelastic)

is given by the simple model.

I. INTRODUCTION II. THE SAM FORMALISM

With the availability of pion beam facilitates at the
LAMPF, SIN, CERN, TRIUMF, and other laboratories,
the pion-nucleus scattering has been the subject of a num-
ber of investigations. Theoretical studies on the problem
proceeded along the following general lines. One is the
"zero range approximation" for the pion-nucleon interac-
tion with the advantage of allowing one to work in the
coordinate space. Another is the "momentum space ap-
proach" that requires the construction of an optical mod-
el potential for the pion nucleus in the momentum space.
The other is the "6-hole model, "which assumes that the
dominant mode of interaction of pions with nucleus is to
excite a nucleon to a b, with a corresponding hole in the
nucleon state.

In the region of the (3,3) resonance, the pion-nucleon
interaction is strongly absorptive and the pion pulse thus
have a short mean free path (0.5 fm or so) in nuclear
matter. This is evidenced by the clear diffraction oscilla-
tion in the angular distribution exhibited by the pion-
nucleus elastic scattering. This feature of surface absorp-
tion is similar to that observed for the composite particles
and is commensurate with the strong absorption model of
Frahn and Venter (abbreviated as SAM). The model is
generalization of the earlier diffraction models and is in-
terrnediate between the phase shift analysis at low energy
and the dispersion relation at high energy and seeks its
justification eventually in the latter.

The present work was undertaken in an attempt to see
how far the pion-nucleus scattering around and below the
(3,3) resonance can be described within the framework of
the SAM without evoking the degrees of freedom associ-
ated with mesons and the excited states of nucleons. A
similar study based on the phenornenological diffraction
model, which is a simplified version of the SAM in fact,
has recently been done by Chowdhury and Guo for the
scattering of antiprotons from nuclei.

A. Elastic scattering

g ( t) =
t 1+exp[( T t)/b j)— (2)

It is clear from relations (1}and (2) that the real part of
the scattering function changes from small values at
small 1 to unity at high 1, with a rapid transition around
the critical value T, while the imaginary part is surface
peaked.

The amplitude for elastic scattering of a spin-zero pro-
jectile from a spinless target nucleus is given by the well
known expression

f(8)=f,(8)+(2ik}

X g (21+1)[g,exp( 2i o t ) —1]—
1=0

X exp(2ilt )Pi(cos8), (3)

where f, (8) is the Coulomb scattering amplitude and

other symbols carry their usual meaning

The main line of approach is given below; details are in
Ref. 2. The model starts with a direct parametrization of
the scattering function gI as given by

giexp( 2i o i
—
) =g(t)+iijdg (t)/dt .

Here crt is the usual Coulomb phase shift and g(t) is a
continuous monotonic function of angular momentum
t ( =1+—,

' ). The function g (t) is characterized by a cutoff
or critical angular momentum T and a diffuseness param-
eter 5, with the requirement that its derivative should
have a simple Fourier transform. The parameter p,
more accurately p/4b„ is a measure of the real nuclear
phase shift. A convenient form for g (t) is the Woods-
Saxon form, namely
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Because of the SAM assumption, 5/T «1, the dgldt
approximates the delta function 5(t —T}. When P&(cos8)
is replaced by the leading term in its asymptotic expan-
sion, the main contribution to the sum over I in (3) comes
from the vicinity of t=T. The sum over I can be re-

placed by an integration by means of the Poisson summa-

tion formula; this introduces the Fourier transforms of
dg /dt, namely

F(48)=f dg ldt exp[ i (—t —T)8]dt,

which, because of (2), becomes

For n »(2n ) ', the scattering atnplitude is

f (8)=f,(8)+f„(8), 8& 8, (Coulomb region),
=f„+(8), 8& 8, (diffraction region),

where 8, =2 arctan(n IT) is the critical angle, and

f„*(8}=—(T/2n sin8)'r exp(ix)

X I 3 *F[(8 8, )]—exp —i( T8 n l4—)

F( b,8)= (n 58) /sinh(n 68} . (4)

It is convenient to distinguish between the two regions of
the Coulomb parameter n, namely n && 1 and
n»( 2m)

For n « 1, the scattering amplitude (3) then becomes

f (8)=f,(8)+f„(8),
where

1/2

with

BF[b—,( 8+8, )]expi ( T8 m l4)—]I,

3*=+6(+u )(Tl2sin8, )' —p,

B =(8+8, ) '+p,

f„(8)=-T 8
k sin8

F(b8) and F[6(8+8,) ] is the form factor as given by (4).
The function y and G(u} appearing in (5) are given by

J, ( T8}
X i

2ll

T8 p Jo( T8)
and

y=T8, 2n ln—sin(8, /2)+2oo

G ( u ) =m' ~
expi ( u +n /4 )erfc [u exp( i m /4) ]

sin8,
X 1 —u

' 1/2
1 sin8,

+(1+i—', u )cot(8, /2) +
sin8,

+ ( 1+iu )—', cot(8, /2)
sin8,

with

u = ( Tl2 sin8, )'~'(8 —8, )

and

erfc(z)=2m 'r f exp( —H)d~ .

The SAM formalism thus leads to a closed expression for
elastic scattering cross section over all angles excluding
large angles in terms of three adjustable parameters T, 6,
and p.

8. Inelastic scattering

The formalism developed for elastic scattering can, un-
der conditions of strong absorption, be easily extended to
include the inelastic processes as well. In conjunction
with the Austern-Blair relation, the amplitude for the in-
elastic scattering is expressed in terms of the elastic
scattering matrix. This leads again to a closed expression
for the inelastic cross section for various multipole modes
of collective excitation, as given in Ref. 4. The procedure
is outlined below.

The amplitude for the inelastic scattering uia the single
excitation of collective nuclear states of multipole order
L is given by

f ~(8)= (2L +1)' ct gi —[(21' 1+)'~ expi [(cr&+o I )]Bgi/Bl (I'LOO~IO) (I'L, MM ~10) Y&.
—(8 0),

2
E, E'

where I =(I + I') /2 and rII is given in (1).
The

BnE /Bl, under SAM conditions, is confined to a narrow range of l values around the cutoff angular momentum lo,
T =10+—,'. Since the summation in (6}is only over I and I' for which ( I —I'~ is small, one can approximate the Coulomb

phases by

trI+trI. =2tr&=2trr+(t —T)8, .
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The scattering amplitude (6) then becomes

ft~(8) =—(2L +1)' ct exp(2i
err�)g(21'+1)'

P(1)(I'LOO~IO) (I'L, —MM ~LO) Yt. (8,0),
2

1, 1'

where

P(l)= [exp[i (t —T)8, ]}()n(/()I .

The Taylor expansion of P(1) about I' gives the above
scattering amplitude as

fLM(8) = ,'i +—'(2L+1)' 'ct exp(2io r)

Because of the localization of P "(I') the summation over
I' in (7) is over the range I' L —to I'+L. To a good ap-
proximation CLM ( I' ) = CLM and

L
C" = g i —,(A, /2)'(I LOO~(l +A, ),0)

A, = —L r!

X (IOL, —MMi(10+A. ),0)

X g g (21'+1)'
r =01'=0

XP "(I')Ct"((t(l') Y(. (8,0),
where P "(I') is the rth derivative of P(1') at I', and

I —I'
l —('- L

Lht

(7)

are real coefficients and are excluded from the summation
over I' in (7).

Next, using an asymptotic expression for Yt. (8,0) in
terms of the Bessel function JIMI(z) and converting the
summation over l' to an integration by means of the Pois-
son sum formula, one can express

g(2I'+1)'"P "(I')Y,—, (8,0)

X ( I'LOOilO) (I'L, —MM ilO) . appearing in (7) as

g (21 + 1)(/2P&(I ) Y
—

M(g 0)—( )(M —IMI)/&~ —(/&( ig)~+(( T/2g)
I'=0

X(8/ i 8)' [[H++(—)"+'H ] III,(T8)+i [H+ —( —)"+'H ]JI((tI(T8

where

H+ =[1+p(8, +8)]F[b (8,+8)]

and [b,(8,+8)] is given by (4).
The amplitude (7) for the inelastic scattering then becomes

f ( g) —c ( )(~ I~I)/2I L 1+(2L + 1 )(/2[exp(2( (7 )](T/4~) 1/2)(8/sing) l/2

X ((H +H+ )[aLM 8 JIMI(T8) pt-M(8)JIt(tl —
,(Tg)]-

+i (H H+ )[aLM(8)—JIMI (( Tg)+I3tst(8) JIMI (Tg)]I,
with

L

aLM(8)+il3t((t(8)= g i" exp(il(8/2)(IOLOO~(lo+X), 0)(IOL, MM~(IO+—l(),0) .

A further simplification is made through the asymptotic
expressions for the Clebsch-Gordan coefficients in terms
of the rotation matrices.

A closed expression is thus obtained for inelastic
scattering; the ingredients are the SAM parameters T, 5,
and p, describing the elastic scattering, and the only free
parameter is the deformation length 6L [= (2L
+ 1)' cL ] scaling the inelastic scattering cross section.

III. RESULTS AND DISCUSSION

A. Elastic scattering

Angular distribution data for the elastic scattering
of m

—on Si, Ar, ' Ca, Zr, and Pb were analyzed

I

with the SAM formalism. Results are summarized in
Tables I and II and some typical fits to data are illustrat-
ed in Figs. 1 —6. Uncertainties in the values of T and 6
are about 5%, while those in (M are about 20% ((M is not a
sensitive parameter either). The SAM parameters are
uniquely given by an analysis and no combination of the
parameters other than the ones shown could be found
giving another minimum in the least squares value.

A reasonably good fit was obtained, usually up to
about 90 or so. A somewhat inferior fit at the lower en-
ergies is not surprising, as then pions begin to propagate
deeper in the nucleus, clearly not conforming to the SAM
conditions of surface absorption. At still lower energies
the pion-nucleon interaction is so weak that the nucleus
may even appear almost transparent to the incident
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FIG. 5. SAM analysis of elastic scattering of 80 MeV ~
from ' Zr and ' 'Pb.

FIG. 6. SAM analysis of elastic scattering of 80 MeV ~
from Zr and Pb.

pions. '
Under conditions of strong absorption, the SAM pa-

rameters have a simple geometrical interpretation. The
interaction radius R and the surface diffuseness d of nu-

clei are given from T and 5 through the well-known rela-
tions

T =kR ((1—2n IkR )'

b, =kd(1 —n IkR )(1 2n IkR)—
where n and k are, respectively, the Coulomb parameter
and the wave number. The values of R and d are summa-
rized in Tables I and II.

B. Inelastic scattering

Angular distributions of m
—of energies 130, 180, and

226 MeV inelastically scattered to the 2&+ state (E„=1.78
MeV) in Si (Preedom et al. ) were analyzed using the
SAM parameters in Tables I and II. A satisfactory fit to
the data could be obtained (Figs. 7 and 8) thus giving
confidence in the SAM parameters and the model itself in
describing the pion-nucleus scattering.

The quadrupole deformation parameters thus obtained
are shown in Table III. It is seen that the deformation
parameters given by the ~+ and m inelastic scattering
agree to each other within errors. Also included in the
table for a comparison are the deformation parameter
adopted by Raman et al. and also that given by the in-

Nucleus
Energy
(MeV)

TABLE I. SAM parameters for ~+.

p/4A
R

(fm)

d
(fm)

28Si

28S1

28S1

4'Ar
"Ca
"Ca
4OC

40C

"Ca
48C

48C

90Zr

208Pb

130
180
226
180
80

130
180
230
130
180
230

80
80

4.70
5.80
6.40
6.60
4.10
5.50
6.50
7.50
5.70
6.70
7.70
5.20
6.20

0.80
0.95
0.85
1.00
0.60
0.90
0.90
0.95
0.85
0.85
1.10
0.65
0.65

0.14
0.03
0.12
0.10
0.21
0.11
0.04
0.11
0.16
0.04
0.13
0.15
0.15

4.99
5.21
5.12
5.93
5.63
5.85
5.85
5.95
6.06
6.02
6.10
7.27
8.99

0.84
0.84
0.67
0.89
0.80
0.94
0.79
0.75
0.89
0.75
0.86
0.86
0.86
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TABLE II. SAM parameters for m

Nucleus
Energy
(MeV)

R
(fm)

d
(fm)

"Si
2ssi

assi
4'Ar
40C

40Ca

4'Ca
~Ca
4SCa

4'Ca
4SCa

"Zr
20spb

130
180
226
180
80

130
180
230
130
180
230

80
80

5.00
5.90
6.60
6.80
4.85
5.90
6.80
7.70
6.20
7.10
8.00
6.00
7.45

0.80
0.90
1.00
0.80
0.50
0.85
0.95
1.05
0.70
0.95
0.90
0.50
0.50

0.14
0.10
0.11
0.03
0.18
0.15
0.03
0.05
0.20
0.04
0.08
0.18
0.05

5.15
5.19
5.19
5.96
6.27
6.04
5.95
5.98
6.36
6.21
6.21
7.61
9.21

0.84
0.80
0.78
0.71
0.66
0.89
0.84
0.82
0.84
0.84
0.71
0.66
0.66

elastic scattering of protons, '" by way of example. The
SAM values are systematically somewhat higher than
these values. The Pz values found by Preedom et al.
from the distorted wave impulse approximation of their
inelastic pion data on Si (the same data as analyzed by

us}, on the other hand, are consistent with those given by
other probes.

The controversy" ' as to whether or not the deforma-
tion parameter for pions should be larger than those by
other probes is not over. The present work, limited of
course to Si, seems to be in agreement with similar
higher Pz values found for pions over protons and other
probes in case of Mg, Zr, and " Sn. ' '

10 1

12
226 &~V

—10';

1 .13

10 00 80
8 (deg)

120 10 0 80 120
8 (deq)

FIG. 7. SAM analysis of the inelastic scattering of m+ from
Si leading to the lowest 2+ state.

FIG. 8. SAM analysis of the inelastic scattering of m from

Si leading to the lowest 2+ state.
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TABLE III. The Pz values leading to the 2+ state (E„=1.78

MeV) in Si.

+ +r)

0.56+0.06'
0.49+0.06
0.40+0.06'

Deformation parameter Pz
{m,m ') d

0.54+0.06'
0.46+0.05
0.45+0.05'

0.41

(p,p')

0.40'

'At the pion energy 130 MeV.
"At the pion energy 180 MeV.
'At the pion energy 226 MeV.
Adopted by Raman et al. (Ref. 9).

'Reference 10.

IV. CONCLUSION

The pion-nucleus scattering around the (3,3) resonance
to a good approximation can be accounted for by the
strong absorption model. Effects arising from higher or-
der processes, like meson degrees of freedom and those
from antinucleons and the excited states of nucleons,
probably show up past the second diffraction peak (or
higher in some nuclei). The strong absorption model of
Frahn and Venter, for that matter any diffraction model,
deals with an effective geometry of the interaction. Since
only a few target mass numbers are covered in the
present study, although over a wide range ( A =28—208),
a comparison of the geometrical parameters of the reac-
tion given by m. + and n. between themselves and with
those given by other hadronic probes was not attempted.
A detailed SAM analysis of the elastic scattering of pions

from many more nuclei at about the same energy is un-
dertaken for such a comparison.

The quadrupole deformation parameter of Si, the
only nucleus studied here through the inelastic scattering
of pions, is found to be somewhat larger than that given
by other probes. The Pz values given by rr+ and m.

however, agree to each other within error, as perhaps ex-
pected for a T=O nucleus. Again SAM analysis of in-
elastic scattering on several nuclei is necessary before a
meaningful comparison is made with other probes, as
well as between m+ and m themselves. The density dis-
tributions of protons and neutrons are expected to be
different in size or shape or both in particular for NWZ
nuclei. Since the ~ and one.ar the (3,3) resonance are
known to interact differently with protons and neutrons,
it would be interesting to see, as suggested by Bohr and
Mottelson, ' whether or not the 132 values given by m+

and n. are different from each other, and in the present
context to see if the SAM parameters, obtained from the
corresponding elastic scattering, are sensitive enough to
display this effect. Work on this is under way as men-
tioned above.
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