
PHYSICAL REVIEW C VOLUME 41, NUMBER 5 MAY 1990

Separable nucleon-nucleon potential with delta isobar degrees of freedom
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A separable representation of the Argonne U» potential is presented. The potential includes delta
isobar degrees of freedom within a coupled channel formalism. The separable potential was
developed mainly for applications to nuclear matter. A quite high degree of accuracy was then
reached to fulfill the requirements set by such calculations. The expansion was also extended above
the Nh threshold to allow for the evaluation of the average nuclear potential felt by the delta inside
nuclear matter.

I. INTRODUCTION

Phenomenological nucleon-nucleon potentials, which
explicitly include the delta isobar degrees of freedom,
have recently been introduced. The intermediate range
part of the nucleon-nucleon potential has been described
by the exchange of two pions (TPE). In such TPE pro-
cesses, displayed in Fig. 1, nucleon resonances can be ex-
cited in the intermediate states, and these terms have
been found to give a considerable contribution to the in-
termediate range attraction. The virtual excitation of the
6 is also of considerable relevance in many-body systems
where it produces two major effects. The first one, the
Pauli effect, comes from the fact that the Pauli principle
for the nucleons excludes certain NA intermediate states
in the computation of the two-body reaction matrix in-
side the nuclear medium. The second one, the dispersion
effect, is related to the difference in the denominators for
the intermediate NA and hh states, in the many-body
system and two-body scattering between two isolated nu-
cleons. These modifications of the two-body reaction ma-
trix are absent if the medium range attraction is treated
phenomenologically.

The intermediate excitations of the delta degrees of
freedom have also the effect of introducing three-nucleon
forces as illustrated in Fig. 2. These three-body forces
can be derived in a natural way in the framework of the
coupled channel formalism, where the delta is treated as
an elementary particle and the delta components are gen-
erated by a generalized one-pion exchange (OPE) poten-
tial containing transition operators with explicit n.Nb
couplings. Along these lines the Argonne group has
presented a nucleon-nucleon potential, the U28 potential,
which explicitly introduces NA and AA channels and
gives an excellent fit of the deuteron properties and two-
body scattering data up to an energy of 400 MeV. This
appears as an extension of the works of Ref. 3. The Ar-
gonne v28 is modeled on a conventional nucleon-nucleon
potential with standard basic operators, the Argonne v, 4,
by adding terms which contain generalized spin and iso-
spin operators acting on the delta state (—'„—,'), in a total of
28 component operator potential. The possible processes
are depicted in Fig. 3. Since the delta has spin and iso-

spin —,, this introduces many possible couplings between
partial waves in each channel, as displayed in Table I.

More recently the Bonn group has presented an exten-
sion of the previous Bonn meson-exchange nucleon-
nucleon interaction, which includes Nb and hh box dia-
grams above pion production threshold, including the in-
elastic channels.

Unfortunately, the use of these potentials for the
many-body system is quite involved because of the large
number of components for each channel, even within
simple approximations like the Brueckner scheme for nu-
clear matter. A possible way of overcoming this prob-
lem, can be the use of a separable form of the original po-
tentials, which greatly simplifies the many-body equa-
tions. The techniques to achieve such representations
have been extensively studied in the last decade and have
reached such a level of accuracy that they can be safely
used in few or many-body calculations.

In this work we study a separable form of the Argonne
v28 potential, which is specially deviced to be used in nu-
clear matter calculations. The method is described in
Sec. II. In Sec. III, the results for the most relevant
channels of the Argonne U28 potential, are presented and
discussed individually. Section V is devoted to the con-
clusions.

II. THE MODEL

Following Adhikari and Sloan a rank N separable ex-
pansion of a given interaction V, can be constructed ac-
cording to the ansatz

N

V = g V~u)D„"'&v ~,
n, m =1

(D ')„=(v ~u„) n, m =1,%,
where ~v„), ~u„) are a set of given functions with the re-
quirement that D is a nonsingular matrix. Then by con-
struction

V~ ~u„) = V~u„) n =1,X;
that is, the action on the basis function ~u„) of the separ-
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FIG. 1. Two pion exchange process contributing to the
nucleon-nucleon interaction. The full, double, and dashed lines
represent the nucleon, the delta and the pion, respectively.

s being the threshold energy in the component a, equal
to zero for the NN sector, 295 MeV for the Nh and 590

:x X

able potential V~ equals the one of the original potential
V.

Choosing the kets
~ u„) as some selected eigenstates,

bound or continuum, of the full Hamiltonian and
( U„~ = ( u„~ V, in order to make the potential symmetric,
one recovers the Ernst, Shakin, and Thaler (EST}
method. From Eq. (2), it follows that in the EST method,
the selected bound and scattering states are exactly repro-
duced by the separable potential Vz.

The alternative method developed by the authors, the
Gamow separable expansion, which was proved to be
quite accurate for conventional realistic nucleon-nucleon
potentials, encounters some difficulties with potentials
which possess thresholds. In fact, it is numerically
cumbersome to calculate Gamow vectors for coupled
channels with thresholds like the search for resonances in
a many-body problem. The approximation scheme
developed in Ref. 10 for calculating Gamow vectors can-
not be applied in this case.

If the potential couples different partial waves, the ra-
dial Schrodinger equation for the two-body wave func-
tion may be written for a given channel A, ,

2 2 I (I + I)
qgiL( )+y Vk, yA, (

2 & &P P 2p 2

=(E —s }+"(r) (3)

FIG. 3. Processes contained in the v28 model. The curly line
represents the exchange of different mesons.

MeV for the b 6 one. More explicitly, the channel index
A, and component index a denote the set of conserved
quantum numbers {JzTzPz{ and the set of quantum
numbers {1 S p { respectively, with Jz the total angular
momentum, Tz the total isotopic spin, Pz the parity, l
the relative orbital angular momentum, S the total spin
and p the reduced mass. The quantity V is the two-
body potential V projected into the channel A, .

For a given positive energy E, the system of coupled
differential Eqs. (3} has a set of linearly independent
scattering state solutions. Their number equals the num-
ber of components a for which E )s; that is, the num-
ber of open channel components. Each one of these solu-
tions can be speci6ed by a set of linearly independent
boundary conditions. The functions u„, used to con-
struct the form factors V~ u„) of the separable potential
of Eq. (I) will then be chosen as these scattering states
solutions. The deuteron wave function will also be in-
cluded in the case of the S&

—D
&

channel.
In order to obtain an Hermitian and time-reversal in-

variant potential, real form facators are needed. The
standing wave boundary conditions must then be used in
solving Eq. (3). Furthermore, for the N open channels we
specify each of the N linearly independent wave solutions,
by assuming that only one of its components has an in-
coming free wave part P& (r). The others will only have

a
the spherical outgoing part.

In order to solve Eqs. (3), we transform them into a set
of coupled integral equations. For the component a
above threshold, a, they read,

TABLE I. NN, Nh, and hh partial waves ( +'lJ) con-
sidered in the separable expansion.

NN

FIG. 2. Diagrams which contribute to the three-nucleon
forces. Notation as in Fig. 1.

'S,
1D

Po
3p

3D
1p

'S2'D~'D2'G2
'po
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P2 P2 F2 F2

Po Fo
Pl Fl
P2 P2 F2 Fp H2
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D2 D2 G2

1p, 5p 5F
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2-+",(r)=P~(k, r)5(a, i)+g dr'G' '(k;r, r') — V &(r')4@~.(r') .a~
t 1

P 0
(4)

(5)

with the momentum k =[2p, /fi (E —s )]' for E &s
and the positive purely imaginary root otherwise. The in-

dex i specifies the boundary condition, that is the com-
ponent a for which the incoming wave is different from
zero. In writing Eq. (4) and Eq. (5) we followed the con-
ventions of Ref. 11 for the normalizations, principal
value and outgoing Green's functions 6 and 6'+', re-
spectively.

The choice of the Green's function 6'+' and the
definition of k guarantees that when a channel com-
ponent is closed, the corresponding wave function com-
ponent 4 is decaying exponentially to zero for large ra-
dius.

The set of integral Eqs. (4) and (5) couples the com-
ponents a and a since the summation over the index P
on the right-hand side runs over all components below
and above threshold.

Having solved the coupled equations for a given local
interaction at a set of definite energies E„and boundary
conditions, including possible bound states, the corre-
sponding wave functions U„=4; (E„)can be used to con-
struct the separable representation,

N

V~= g Vlu„)D„(u
n, m =1

(6)

Here the form factors V~u ) have the explicit form in

coordinate space,

Similarly for the possible components a below threshold
CX

2-qI, (r)=g f dr'G'+'(k;r, r') V &(r')qi&, (r')

terested only in energies below the N4 threshold where
only nucleon-nucleon components are presented, and
these are never larger than two for each channel.

III. SEPARABLE REPRESENTATION
OF THE ARGONNE upas POTENTIAL

The Uz~ model uses the basic 14 operators in the NN
channels, which have been proved to give satisfactory fits
to the data. In order to introduce delta degrees of free-
dom, other 14 operators were added to include all possi-
ble ~Nb and mAA couplings plus a central repulsion in
the NA and AA channels. Some restrictions have been
imposed to the transition operators to simplify the struc-
ture of the potential, and make it specially suitable for
nuclear structure calculations. The m.Nh coupling con-
stant was fixed to the phenomenological value in the
framework of the Chew-Low theory. The mhA vertex
was taken from the quark model. This fixes the long-
range part of the Nb and Ab interactions. The short and
intermediate range parts were obtained by fitting the NN
scattering data up to E~,b =400 MeV, and deuteron prop-
erties.

In Table I the channels for which we construct a separ-
able representation are reported together with corre-
sponding components. They are the dominant channels
in nuclear matter calculations. To obtain the scattering
states, we solved the set of coupled integral Eqs. (4) and
(5) by discretizing the relative coordinate r, in a grid of
128 points in the interval O~r &6.5 fm '. This interval
was divided into 16 subintervals of 8 Gaussian points
each. For the calculation of the deuteron wave function,
we solved directly the coupled differential Eqs. (3), by the
Runge-Kutta method, according to the procedure de-
scribed in Ref. 2. Once the scattering states are calculat-
ed, the exact reaction matrix K can be computed from

(r;a~ V"~u„) =g V"&(r)%&;(r) .
p

K;"(k;,k )

z' g f dr'p& (k;, r') V, (r')qI (r'),
For a given energy E„one would choose various kets
~u„) corresponding to different boundary conditions. In
practice it turns out that it is sufficient to consider for
each energy only one scattering state with a specific
boundary condition. It follows from Eq. (2) that at the
given selected energy E„, the EST method ensures that
the reaction matrix I(:, calculated from the separable po-
tential, reproduces both on- and half-off-the-energy shell
the ones calculated from the original potential along the
row and the column specified by the boundary condition.
One must then carefully choose a set of energies and
boundary conditions in such a way that the original I(

matrix is well reproduced by the separable potential in a
wide energy interval. This can be a difficult task above
threshold where the number of open channels corn-
ponents can be quite large. However, one is usually in-

where i,j indicate the components above threshold.
Analogously, the corresponding K matrix computed from
the separable expansion for a generic energy, can be writ-
ten

IC,',"(k„k,)= y (y',
~
V'~u„)A'„(k, )(u. ~

V'~y", ),
n, m =1

(A )„=(u„iv [u )+(u„i V"G(k, )V iu ),
where 6 is the free Green's function, diagonal in the
channel components, with the boundary conditions
defined according to the preceding section.
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TABLE II. Selected energies and boundary conditions for the separable potential in the isospin trip-

let channels. The number indicating the boundary conditions follows the order in which the partial
waves are reported in Table I.

Channel Selected energies in MeV and boundary conditions

's,

'D„'P,

3p

3p 3F

3
1

30
1

30
1

30
1

30
1

83
1

83
1

83
2

83
1

212

212
1

163
1

212
1

332
1

332
1

212
2

332
1

478
1

478
1

332
1

478
1

651
2

651
3

402
2

651

850

850
3

478
1

750
2

1075
2

1075
3

651
4

904
2

850
4

1075
2

A. Spin singlet isospin triplet channels

These channels contain both Nh and b 5 components.
However, in Ref. 2 it was shown that by a small readjust-
ment of the parameters one can get an equally good fit of
the experimental data, by neglecting the hh components.
We have followed this parametrization and the chosen
energies and boundary conditions for the EST procedure
in the 'So and 'D2 channels are reported in Table II.

It has to be noted that the energy range considered in
the expansion is larger than the Nb threshold. The
reason for this large energy domain is that the separable
representation is devised specially for nuclear matter cal-
culations where one needs to average the potential Uz
felt by the b inside nuclear matter. The latter requires

the calculation of the Nh —NA scattering matrix above
threshold. ' This can be seen from the explicit form of
the average potential, namely

Ua(k) =
—,', g Q (2J~+ 1)(2T~+ 1)

Aa k'+kF

X (kk', La~ 6& (e)~kk', la), (lo)

where 6& is the Brueckner reaction matrix in the Nh
sector, k' the momentum of a single nucleon confined by
the Fermi momentum kF, and k the momentum of the A.
Notice that only the diagonal part of the reaction matrix
appears. The latter has to be evaluated on-the-energy
shell @=ok+ok.

If only the region below threshold has to be con-

sidered, then one can reduce considerably the rank of the
separable potentials without any appreciable change in

the phase shifts and mixing parameters, by restricting the
set of EST states to the ones below the threshold. Above

40

0.4—

0.2

E 0

0.4-

0—

I I I

200 400

E( b(MeV)

I

600

FIG. 4. The 'So and 'D2 phase shifts calculated with the se-
parable potential (full line), compared with the ones obtained
from the original local U» potential {full dots) as a function of
the total kinetic energy attached to the NN channel in the labo-
ratory system.

-0.2—

0.6
I I

0.8

Eieb (GeV)

FIG. 5. The on-shell scattering K matrix above Nh threshold
for the 'So and 'D2 channels calculated with the separable po-
tentia1 (full line), compared with the ones obtained from the
original potential I',full dots). Here we display the Nh com-
ponents 'Do and 'S2, respectively. The latter is the dominant
one for the 'D2.
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FIG. 6. Kowalski-Noyes function in the NN and Nb, sectors of the 'So channel as a function of the total kinetic energy in the NN
channel at a fixed energy E~,b. The full dots and fu11 line correspond to the exact and separable calculation, respectively.

threshold, the number of linearly independent solutions
increases. There are two for the 'So channel and five for
the 'D2 one. It is therefore important to select properly
the boundary conditions without increasing too much the
rank of expansion. Fortunately it turns out that among
the components of the NA sector only one for each chan-
nel gives the dominant contribution to the 6 potential.
They are the Do component for the 'So channel, and the
S2 component for the 'D2 channel. This dominance of a

single AN component, holds for the T =1,S =1, channels
too. The inclusion only of these dominant components in
the calculation of the 5 potential should give the correct
result within 10%. We should emphasize that, in solving
the coupled channel equations for the scattering states
and scattering matrix, all the possible components of
each channel were included.

20

In Fig. 4 we compare the NN phase shifts for these two
channels, calculated with the separable potential and the
original one. This excellent reproduction of the original
on-shell reaction matrix can be obtained using a rank 5
potential for both the 'So and the 'D2 channel. The ener-

gy range where this separable expansion is performed is
quite sufficient for conventional nuclear matter calcula-
tions, even in the framework of the continuous choice of
the single-particle potential. We extended the expansion
also to energies above threshold going to rank 10 and 9,
respectively, for the previous channels. The correspond-
ing K matrices are compared with the exact ones in Fig. 5
for the above-mentioned dominant components.

Finally, the half-off-the-energy shell behavior of the K
matrix was checked by comparing the Kowalski-Noyes
function

F(k, k')=E(k, k')/K(k, k)

of the original and separable potentials, at energies
different from the selected ones. As an example, we
present in Fig. 6 the Kowalski-Noyes function for the 'So

-20
04-

-20

5-

Q

e

5p
I

-40

I I I

200 400
E ) b (MeV)

600

ee

-5

0.8
F ~~ (GeV)

1.0

FIG. 7. As in Fig. 4 for the Po and P, channels.
FIG. 8. As in Fig. 5 for the 'Po and 'P, channels. Here the

dominant components in each sector are the 'Po and 'P, .
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FIG. 9. As in Fig. 4 for the 'P2 —'F2 channel.

channel in the diagonal NN component, the 'So, up to
the Nh threshold, and the Nh component, the Do,
above the Nh threshold. As it can be seen, the off-the-
energy shell behavior is very well reproduced. The same
accuracy was also observed for the other channels includ-
ing the ones analyzed in subsections B and C. Conse-
quently only the on-the-energy shell behavior will be dis-
cussed there.

FIG. 11. As in Fig. 4 for the 'S& —'D& channel.

selecting for the dominant Nb components above thresh-
old the Po and P&, respectively (see Table I). In Fig. 7
the phase shifts obtained with the separable potential are
compared with the exact ones. This expansion requires
rank 5 for both channels. The exact and approximate re-

B. Spin triplet isospin triplet channels

In these channels one has to include both the Nh and
hh components. For the Po and P& channels we fol-
lowed the same method of the preceding subsection

20

0 -20

= -2

I

I

0.8

Ei b (GeV)

1.0

-40

l I

200 400

E) b(MeV)

600

FIG. 10. As in Fig. 5 for the 'P2 —'F2 channel. Here the
dominant component is the 'P&. FIG. 12. As in Fig. 4for the D, and 'P, channel.
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Channel

S —D

'D„'P,

—2.26

30
1

30
2

83
1

53
1

212
1

83

332
1

120
1

487
1

212
2

651
1

332
1

TABLE III. The same as in Table II for the isospin single channels.

Selected energies in MeV and boundary conditions

402
2

561
1

action matrices above threshold, are compared in Fig. 8.
This extension of the expansion requires an increase of
the rank to 8. The corresponding EST parameters are
displayed in Table II. In the P, channel we found that
the P, NA component produces a diagonal K matrix
with a singularity around a total energy of 1 GeV. In
general the K matrix can have singular behavior, for ex-
ample if the phase shift passes decreasing through tr/2,
which does not imply the existence of a resonance. We
think then that this singular behavior has no physical
meaning.

The P2 —F2 channel has 11 components. The phase
shifts and mixing parameters obtained with a rank 7 ex-
pansion for this channel are reported in Fig. 9, in com-
parison with the exact ones. Finally in Fig. 10 the K ma-
trix of the separable potential above NA threshold for the
dominant component P2, is compared with the exact
one. For this extension rank 9 was required.

C. Isospin singlet channels

For these channels besides the NN part, only the Ah
components are present. Consequently they will not con-
tribute to the 5 averaged potential in nuclear matter.
Having in mind such calculations, the expansion was
then restricted essentially up to the NA threshold for the
T=1 channels. The ranks of the expansion for the
S

&
D

& D2 and 'P
&

channels are 9, 6, and 6, respec-
tively. Since the S, —D, channel is one of the most
contributing ones to the nuclear matter binding, we have
used a high rank in the expansion in order to get a very
high degree of accuracy for both phases and mixing pa-
rameters of this channel, in the relevant energy range.
They are reported in Fig. 11. In Fig. 12 we report the

phases for the D2 and 'P& channels. The corresponding
EST parameters are included in Table III.

IV. CONCLUSIONS
We have presented a separable representation of the

Argonne Uz8 potential which includes 5 degrees of free-
dom through the coupling of the NN channel to both the
Nh and hh ones. The separable representation is spe-
cially devised for nuclear matter calculations in particu-
lar for Bethe-Brueckner calculations where one needs to
compute the mean nuclear potential felt by the 6 particle
inside nuclear matter. These calculations are in progress
and will be presented by the authors elsewhere. Prelimi-
nary results can be found in Ref. 13.

The separable potential is determined by the strength
parameters D„and form factors V~u„) of Eqs. (6) and
(7). The latter were calculated numerically in a set of
discrete points between zero and 6.5 fm as described in
Sec. II. No fitting of these form factors to analytic forms
was attempted. We feel that, with modern computing fa-
cilities they can be handled directly in numerical form.

In view of the large number of components for each
channel, the rank of the potential has been chosen large
enough to get the high degree of accuracy needed in nu-
clear matter calculations for a wide energy range. In this
way, we were able to construct a separable potential
which incorporates the 5 degrees of freedom suitable for
practical applications and compatible with all experimen-
tal data of the two-nucleon system.
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