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Phenomenological analysis of double charge exchange scattering of pions sho~s that there is a

sizable isotensor term in the optical potential at resonant energies. In an earlier paper we proposed
that this term could be expected to reflect coupling of the elastic and analog channels to particular
nonelastic channels with specific isospin structure. In this paper we present detailed models for this

channel coupling, based on pion absorption and correlated double scattering. It is shown that any

of the models could contribute to the isotensor potential with the appropriate phase. New predic-
tions of isospin dependence of the potential are given.

I. INTRODUCTION

U = Uo+ Ui(p. T)+ U2(p T) (1.2)

based on isospin invariance alone. The term U2($ T) is
the quadratic or "isotensor" term.

This term is the subject of this paper. The main in-
terest in the U2 term is that it involves many-body effects,
that is, two or more correlated nucleons in the nuclear
target. In the multiple-scattering theory of the optical
potential' for pions, Uo and U, are both largely deter-
mined by one-nucleon properties of the target, e.g. , the
nucleon density p(r), and the neutron excess density
hp(r), respectively, while U2 depends on (at least) two-
nucleon properties.

For the present work we are interested in pion energies
near resonance, in particular for T = 164 MeV, for
which there has been a systematic study by Greene et al.
of the optical potential, using elastic, SCX, and DCX
data. In the phenomenological analysis of Greene et al. ,
U2 is taken to have the p-wave form

(1.3)

quadratic in the neutron-excess density, with po the stan-
dard nucleon density I', —:0. 16 frn ), and a strength pa-
rameter A.(T). Following Johnson and Siciliano, A, (T) is
assumed to be independent of target A, but has the fol-
lowing T dependence:

gJs(T)=g /T(27 —1)+g /7 (1.4)

Elastic scattering of pions on nuclear targets, together
with single charge exchange (SCX) and double charge ex-
change (DCX) scattering to analog states may be treated
by use of an optical potential U, to be used in a wave
equation (e.g. , Klein-Gordon)

(V +k )P=Ug.
In the isospin space of the pion (operator P) and the tar-
get analog states (operator 7), this potential may be writ-
ten in the form

in terms of two parameters: A, z
' fit to data, and k4

' cal-
culated. The data used are heavily weighted by T =1 nu-
clear targets; therefore, we shall interpret their fit param-
eter as determining only the T = 1 combination of (1.4)

(1.5)

In addition, we shall also consider an s-wave isotensor
potential of the form

(1.6)

where XG —=X(1), in analogy with (1.5).
The assumed dependence of U2 on b p in (1.3) or (1.6)

follows from multiple-scattering theory: this would be
the lowest-order term (in bp) of the form (P T) . How-
ever, the requirement that U2 be proportional to bp (r),
and not, say to hp(r)hp(r') (nonlocal) is a zero-range as-
sumption. In Johnson and Siciliano, this simplification
comes about as a result of the strong optical absorption,
which restricts the scattering to the nuclear surface. The
zero-range form also obtains as a limiting approximation
for any mechanism contributing to U2 for which short
distances are favored on dynamical grounds. In the
present work we consider pion absorption, and scattering
from correlated pairs, for which this is usually assumed,
and consider only the zero-range limit, so that we can
compare our results with the analysis of Ref. 2.

The main result of Greene et al. , for our purposes, is
the determination of A, z, which they find to have a large,
positive imaginary component, and a smaller, less well
determined real component, as we discuss in Sec. VIII.
Although the precise value of A, G depends on other as-
sumptions in the parametrization, the qualitative result
seems to be required to produce the experimental forward
DCX cross sections (to which A, G was fitted), and the in-
terference minimum seen at -20 in the angular distribu-
tion for several targets (see Ref. 2, Fig. 4). It is these ex-
perimental features which give the best evidence for the
existence of the isotensor potential U2. In an earlier pa-
per we gave a qualitative argument for the phase of U2
(or A.G).
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There have been several previous attempts to under-
stand the dynamics behind the magnitude and phase of

Johnson and Siciliano gave an estimate based on
correlated multiple scattering, which gave an effect of the
right magnitude but wrong sign. (We discuss this result
further in Sec. IX.) Oset et al. estimated the contribu-
tion of meson exchange currents, finding them to be out
of phase with the multiple-scattering results, which is
equivalent to a prediction A, G be real. Similarly, at-
tempts ' to explain A, a by a b, model in which a b, pro-
duced in m+ scattering charge exchanges in the target be-
fore emitting a final m. , also predict a A, G essentially real.

Our picture of the underlying mechanism of U2 follows
from the observation that Imk, G &0 can be related,
through unitarity, to loss of Aux to other open channels
with appropriate isospin structure. The unitary argu-
ment was given in Ref. 5, where we also derived an in-

equality relating DCX amplitudes to nonelastic cross sec-
tions. In the present paper we give three specific models
for such nonelastic reactions, spelling out the conse-
quences for DCX.

The paper is organized as follows: In Sec. II we
characterize the isospin structure of any model based on
two-body correlations, in the zero-range limit. In Sec. III
we derive the density forms (1.3) and (1.6), under restric-
tive assumptions about the target structure. This allows
us to make a connection with the work of Refs. 3 and 4.
We also find different isospin dependence of U2 than

given in these papers. The isospin algebra is reduced by
projection methods in Sec. IV. The three models are
developed in Secs. V, VI, and VII. Relations to the phe-
nomenological results of Greene et al. are given in Sec.
VIII, and further consequences of the models in Sec. IX.
Conclusions follow.

II. ZERO-RANGE MODELS

In this section we discuss the general features of two-
nucleon operators which represent inelastic processes
coupled to the elastic-analog channels.

We may represent a general local two-nucleon operator
in the form

M(r, r')= g Q, 5(r —x;)5(r' —x;), (2.1)

where Q; is a spin-isospin operator, and x;,x; are nucleon
coordinates.

We shall assume in this work that the processes of in-
terest take place at short distances, and therefore
represent them by zero-range operators,

A

M(r)=g Q, 5(r —x;)5(r—x;) . (2.2)

We shall also include p-wave (nonlocal) operators ob-
tained from (2.2) in the usual (Kisslinger) derivative form:

M'(r)=V M(r}V . (2.3)

Since we are interested in operators which can contrib-
ute to DCX, we restrict the isospin to that for T = 1 pairs
only. Since M(r) is zero range in (2.2) and (2.3), the spin
is automatically restricted to S =0 pairs, and Q," may be
written without spin dependence, in the form

Q~
= AOP; + A, p (r;+~ }+A ~B J (2.4)

in terms of the pion isospin operator P and the nucleon
isospin operator —,'~;, where P,, is the T=1 projection
operator

P; =
—,'(3+r; r, ) (2.5)

and B," is a scalar product of second-rank tensor opera-
tors in P and T space, given by

B~) =(P r)(P r, ) 3r; ~, —. - (2.6)

Equation (2.4} gives the isospin tensor decomposition of
M(r) into (iso}scalar, vector, and tensor components.

Consider the expectation value of M(r) in the target
ground state, for a neutron excess n, T =n/2, T3= —T.
We assume that the isospin is carried entirely by the ex-
cess neutrons; the core has zero isospin. We are not con-
cerned about the contribution of the core particles, since
they do not contribute to the isotensor term. Therefore,
we consider the expectation value for the neutron excess
only:

n

TIM(r) I

—T ) = ( T, —Tl g Q 15(r—x;}5(r—x;) l T, —T ) .i'
The isospin structure is easily evaluated, since all pairs have the same isospin structure, yielding

TlQ,, l
T—) =[n(n ——1)]-' y ( —TlQ«l —T&

k&1

=[n(n —1)] '( —
Tl[Aon (n —1)+A &(n —1)4($ T)+4A2B]l —T),

where

B=(Q.T) + —,'(P T) 'T——

(2.7)

(2.8)

(2.9)

is the isotensor operator for the target. By simple Wigner-Eckart arguments, (2.8) must hold for off-diagonal matrix
elements (in $3,T3) as well. Then (2.7) may be expressed in the isospin matrix form

[M(r)]„=p„(r,r)I4AOT(T —
—,')+8A &(T —

—,')(P T)+4A2B I, (2.10}
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where we use n =2T, and [. . . ]„ is a matrix (operator) in P3, T3. We have introduced the two-neutron correlation func-

tion
n

p„(r, r') = [n (n —1)] '( T, —
T~ g 5(r—x;)5(r' —x,. ) ~ T, —T )

l&J

(2.11)

for the neutron excess, which is normalized to unity:

J drdr'p„(r, r')=1 .

2A2nF ~p'. (r)
[M2(r)]„= B .

n —1 n
(3.7)

The contributions to [M(r)]„ from core particles may
also be calculated in terms of correlation functions, but
will not include an isotensor contribution, B. (Note: for
simplicity we have excluded the case of valence protons
as well as neutrons outside a T =0 core. )

III. CONNECTION WITH THE DENSITY FORMS

AznF/2T (2T —1) . (3.8)

The result is that the T dependence of the isostensor term
in a zero-range model, with the excess neutrons fully
paired (seniority zero) in a single shell, is given by

The coefficient of hp„(r)(P T) may be written (with

n =2T)

J dr bp„(r) =n . (3.1)

The correlation function in (2.10), and its p-wave ana-
log in (2.3) can be related to the assumed density depen-
dence of Johnson and Siciliano, and of Greene et al.
[see Eqs. (1.3) and (1.6)] for the special case that the ex-
cess neutrons are in a single valence shell, with the same
radial wave function R„&(r). We now denote the
neutron-excess density by hp„(r), with the normalization

T (2T —1}
(3.9)

with g independent of T [and similarly for A, (T)]. This
may be compared to the different T dependence obtained
by Johnson and Siciliano, shown in (1.4}, which comes
about as follows. These authors assume that the excess
neutrons can be treated as if they were in a closed shell
that is subject only to Pauli correlations, but not pairing.
This is equivalent to using (3.4}for each n:

Consider only 1=0 (even n) target ground states, for
which bp„(r) is a scalar function of r, in fact,

p'„(r, r) =Ap„(r}/2n (n —1), (3.10)

which gives the T dependence (with n =2T}
(3.2)bp„(r)=(4n) 'nR„&(r} .

A, '(T)=Aq '/T(2T —1) . (3.1 1)
It is easily shown that the correlation function (2.11) at
r=r' is proportional to the square of (3.2):

p„(r, r) ~ bp„(r), (3.3)

which is the only possible scalar function of the wave
functions. The coemcients may be calculated directly
[see the Appendix] for a filled neutron shell (n =nr ):

This accounts for the first term in (1.4), which can be as-
sociated with p„(r, r) The second. term in (1.4) depends
on T, in contrast to (3.8) and (3.9); it is associated with
a correction term in double scattering, as will be ex-
plained in Sec. VII.

pF(r, r) =bp~(r)/2nF(nF 1), —

and for n =2:
(3.4)

IV. PROJECTION OF TWO-BODY
ISOSPIN CHANNELS

p2(r, r) = (nF —1)pF(r, r) =nF b p2(r)/8 . (3.5)

For any even n, if the ground state has good seniority
zero (U =0), it can be shown that the general relation be-
comes n(n —1)p„(r,r)~n This can .be seen from the
linear n dependence of a 5 function potential in U =0
states (see the Appendix}. Then,

The isospin structure of the two-body operators of Sec.
II is given by the operator Q;. of (2.4). Now we concen-
trate on a specific nucleon pair (ij = 12) with T = 1 and
rewrite Q&2 using (2.8}and (2.9)

Q,2=AO+2A, (p T}+2A2B

(nF 1) nFhp„(r)
p„(r, r) pF(f, r)—

n —1) 2n 2(n —1)
(3.6)

=(Ao ——,'A~)+(2A, + A2)(p T)+2A2(Q. T)

(4.1)

The result is that for a single valence shell of neutrons,
the zero-range theory of Sec. II does give the hp„density
dependence of Siciliano and Johnson, and Greene et al.
However, the isospin dependence predicted is not as
given in those papers, as we now see.

Combining (2.10) and (3.6), keeping only the isotensor
term of [M(r)]„

Qiz =XRePe (4.2)

where

It is useful to reexpress the operator in terms of the total
isospin (8=/+ T) of the m+2K channel, by means of
projection operators P& with 0=0, 1,2:
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Po= —,'[(P T) —1],
Pi =-,'[2 —(4'» —(4 7)']

P2= —,'[2+3(p T)+(p T) ] .

Equating coefficients in (4.1) and (4.2), we find

(4.3)

2 ImRp (3 ImR
&
(0, (5.6b)

which constrains the relative strength of the 8=0, 1 chan-
nels.

As an example, consider absorption in a pure 0=0
mode (and which therefore has no b,N component). Then
R, =0, and, from (4.3),

A p
=

—,'Rp+ —,'R, + —,'R2,

12 Rp —
—,'R

& +,4 R2

2 6 p 4 1 ]p 2

(4.4)

This allows us to characterize the isospin structure of
M(r) of Sec. II by the contributions of specific 8 chan-
nels.

Ro
Qi2=ROPO= [(p T) —1] .

3

From (4.4) we find the coefficients

9Ap= 12A i =6A2 =Rp

VI. DELTA ABSORPTION MODEL

(5.7a)

(5.7b)

V. DIRECT ABSORPTION MODEL

In this model we assume that pion absorption on pairs
of valence neutrons takes place at zero range, and con-
tributes a term to the optical potential of the form U(r) = —V [Go(r)]V, (6.1)

First, we characterize the optical potential in a b, mod-
el with no nuclear medium effects (and no recoil) as in
(2.3},in isospin matrix form

U, (r)=[M(r)]„ (5 1) with

with [M(r)]„given by (2.10). Using (3.7) and (3.8), the
"isotensor" optical potential becomes

A2nF
U2(r)= bp„(r) .

2T (2T —1)
(5.2)

The coeScient A 2 can be related to the parameter k&
of (1.5) for a T = 1 target, by

A2nf

2 Pp
(5.3}

The phenomenological fits to DCX of Greene et al. give
Imi. & &0, which in turn requires ImA2 &0, if we assume
XG-—A, G. (See Sec. VIII for discussion. ) This has conse-
quences for which isospin channels contribute to U„
which can be seen as follows.

Consider absorption by a T = 1 nucleon pair, with the
final nucleon pair isospin Tf ..

(5.4)

Now Tf = 8, the total isospin in this channel (see Sec. IV),
and Tf =0, 1 only for (NN).

Now write U, ( r ) for the n =2 case, in the form [see
Eqs. (2.10), (2.11),and (4.1)].

U, (r)=2pz(r, r)Q, 3 . (5.5}

—,
' ImR p

—
—,
' ImR, &0, (S.6a)

or

Using the 8-channel decomposition of Q&2 in (4.2), we
have R2—=0 (no 8=2 channel). In addition, ImU, (r) &0
for an absorptive potential, which must hald far each 0
channel separately. Since p2(r, r}& 0, it follows that
ImR p (0 and ImR

&
(0.

From (4.4) we have, from the requirement ImA2 &0,
with R2=0,

[Go(r)]= [ V (r) V(r)]/Do . (6.2)

Here V(r) is the mN~b transition operator at point r,
for a p-wave pion; the expectation value is in the target
state, where [ ] now includes the core particles, as well as
the neutron excess. The (free) resonant denominator is
given by

D =co co„+iI /2—, (6.3)

where co is the pion c.m. energy, co„(=268 MeV) is the
resonance energy, and I is the full width (actually a func-
tion of e). The one-body operator V V may be represent-
ed in the form [in analogy with (2.1)]

V (r)V(r)=y g Q3&3(i)5(r —x, ), (6.4a)

with the T ( m.N ) = ,'projector:—

Q3/3(i)= —,
' [2+/ r(i)] (6.4b)

(We have omitted the nucleon spin-term here. } The tar-
get expectation (in isospin matrix form) can be expressed
in terms of p( r ) and b p„(r ) (note: p =pa+ b p ):

[V (r) V(r)]= —,'y p(r)+ —&p„(r)($.7')1
(6.5a}

(6.5b}

with an amplitude factor

y =4m. l /x (1+coL/M),

where ~ is the pion momentum in the m.N c.m. and coL is
the lab pion energy. This, with (6.1)—(6.3), gives an opti-
cal potential of the conventional form with isoscalar and
isovector terms. As in Sec. II, we have assumed the iso-
spin to be carried entirely by the neutron excess. The
term of (6.5a) due to the excess can be written
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Now we introduce higher-order effects due to the nu-

clear target by introducing a 6-nucleus interaction, modi-
fying (6.1)—(6.3) as follows:

y W[nF
U2(r)=

~
V.bp„(r)V .

6n (n —1)Do
(6.14)

U(r)= —V [G(r)]V,

[ G(r)]=[V (r)D '(r) V(r)],

with a modified denominator

D(r)=DO —W(r) .

(6.6)

(6.7)

(6.&)

W(r) is the b, interaction with the residual target at the
point r, which we take to be the location of a second nu-
cleon (the first having transformed into the b). Again, we
make a zero-range assumption by associating both nu-
cleons with point r. We work to first order in W(r), ex-
panding (6.1)—(6.3):

If we compare this form with that given in (1.3), for
n =2, we have

y W, nF

Po 24D0
(6.15)

On resonance, Do=(iI /2) &0. Thus, from (6.15), with
ImW, (0 (above), the model predicts Iml, (1)&0, con-
sistent with the empirical findings of Greene et al. [See
Eq. (8.3)].

Another way of interpreting the result (6.14) is to con-
sider the potential W(r) to be a linear function of the nu-
clear density in the form

U(r) = U(r)+AU(r), (6.9a)
V)

W(r)=vop(r}+ hp„(r)(P T)
n

(6.16)

b, U(r) = V[5,G (r—)]V,
[bG(r)]=[V (r)W(r)V(r)]/Do .

(6.9b)

(6.9c)

The target expectation value in the numerator of (6.9c)
is of a two-nucleon operator V (r) W(r) V(r), which we
may treat by the methods of Secs. II and IV.

Again, we concentrate on the contribution of the neu-
tron excess only. First, take n =2. We rewrite (6.5b) in
terms of the projectors P; (i =0, 1,2) of (4.3):

2$U )U~= V b,p'„(r)V,
3n D

(6.17)

which, by comparison with (6.14), gives

with isoscalar and isovector strength parameters Uo, u, .
(Note: we refer to the pion, not the b, isospin here. )

Then, expanding U(r) as in (6.9), and keeping only the
coefficient of (P T), we obtain

[ V (r)V(r)], =yap, (r)[ ,'P, +P, ]—. (6.10) W)nF
U

4(n —1)
(6.18)

The right-hand side of (6.10) gives the relative contribu-
tion of the 8=1,2 channels (m. +2N) in the b, model.
[Note that 8=0 is forbidden, since 8(EN) = 1,2 only. ]

Turning to the numerator of (6.9c) (for n =2), we write

[V (r)W(r)V(r)]2=ypz(r, r)[ —,
' W~P, + W~P2 j . (6.11)

The coefficients W„W2 give the relative strength of
W(r) in the two 8 channels. Using (2.10) and (4.4), one
may obtain the explicit form of 6 U(r).

To be specific, consider a model of pion absorption
through the transition hN~NN. In this case, only the
8=1 channel contributes. Then (6.11)becomes

Note that the elfective strength v, varies as (n —1) ', be-
cause of the correlations, as in (3.6).

VII. CORRELATED DOUBLE SCATTERING

In the fixed-scatterer (or closure) approximation, dou-
ble scattering contributes a second-order term to the opti-
cal potential of the form (nonlocal)

U(2)(r r )

=(4n. ) g f,f 5(r x;)(1 Po)5(r—' —x„) —G(r, r'),

[V (r)W(r)V(r)]2= W, p~(r, r)P, . (6.12) (7.1)

The form of the optical potential is given by (6.9a) and
(6.9b), with

@WE
[b G (r)]„= p„(r, r) }—,T( T —

—,
'

)

0

—(T ——')($ &)—&], (6.13)

using (2.10) and (4.4). We find that the isospin structure
of BU(r) is completely determined by assuming the b,

model, with hN~NN, and the form is now specified
(with the zero-range assumption) up to one (complex) pa-
rameter, W, . Since W(r) is assumed to be an absorptive
interaction, we require ImW, &0.

The form of the isotensor potential U2 can be obtained
from (6.13), using (2.9) and (3.6),

f; =fo+f i4 r, (7.2)

with ~; the nucleon isospin operator.
We can use the notation of Sec. II to reexpress (7.1)

U' '(r, r'}=(4m) [N(r, r')]„G(r, '), (7.3)

where

where f; is the vrX scattering amplitude, G(r, r') the pion
propagator in the target, the projector (1 Po) operates-
on nuclear states, and removes the target ground state
(and analog states) from the intermediate state spectrum,
and [ ] denotes an isospin matrix in the analog space, as
in (2.11). (See, e.g. , Ref. 1, Sec. 4.3b). With further as-
sumptions, this potential term becomes local (below).
The mX amplitudes have the standard isospin form
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and

(7.4) U' '(r) =(4n) II(fo+ ', f—i)T(T —
—,')

+8fof, ( T ,'—)P—T+4f,8 j (7.10)

Q, .=fo+ ',f,—~, 7 +fof, P(w;+rj. )+f iB;~ . (7.5) from which we extract the isotensor term, in two forms;

[See Eqs. (2.1), (2.4), and (2.6).] Then, restricting con-
sideration to the excess-neutron space (as before), we find,
as in (2.8)—(2.10) (with n =2T} or

U()= f R
(r)

2 k 1 ~2 c (7.11a)

[N(r, r')]„=Ip„(r, r') bp„(—r)bp„(r')/(2T) ]

X I(fo+ —', f, )T(T —
—,')

+8f0f i ( T —
—,
'

)P T+4f 2 B] . (7.6)

—8n.
U2(r) = f i [4ap„(r, r) Pb—p„(r)/T ] . (7.11b)

Finally, using the form (3.6) for p„(r, r), we relate the two
forms in (7.11) for the case of a single shell, by

The two terms in the curly brackets come from the two
terms in (1 Po): —the first term is the two-body correla-
tion, as in (2.10) and (2.11), while the second is simply
quadratic in the neutron-excess density. The isospin
form (in square brackets) is identical with that of (2.10)
for Q; of (7.5).

We shall assume that the range of nonlocality of the
potential (7.1) or (7.3) is small compared to the nuclear
size. This is only partly due to the correlation structure
of (7.6}, when we include shell model (pairing) correla-
tions, which are not necessarily of short range. But since
we are considering pions of resonant energies, the propa-
gator G(r, r') should include damping due to optical ab-
sorption (this is a higher-order effect} with a mean free
path of the order of 1 fm. Therefore, we replace (7.3) by
the local approximation

U '(r)= f dr'U '(r, r')

=(4m)' f dr'[N(r, r')]„G(r,r'), (7.7)

where the integral is understood to be limited to the
domain of 1-2 fm about r. The integral can be per-
formed in the high-energy approximation, using an
eikonal form for G (see Ref. 1, pp. 162—164), obtaining

I= r' p„rr' —pr hpr' 2T 6 rr'

i bp (r—)
2k (2TP

(7.8)

anF

2(2T —1)
(7.12)

Since we have evaluated U2 in a strictly local form (us-
ing the eikonal approximation), we can relate (7.11a) to
the parameter X( T) of (1.5), by

8nif 2R'

ky2 1 c
k A(T)

po
(7.13)

a
T(2T —1} hp„(r),T2

(7.14a)

or

QT
(2T —1)

(7.14b)

This indeed gives the T dependence quoted in (1.4), where
A,z

' ~ a and A,4
' ~ —P.

At resonance, f, is pure imaginary, so that (7.12) gives
ImA, ( T) & 0 (as required by Greene et al. ) only if R, & 0.

The optical potential of (7.11) is approximately
equivalent to that obtained by Johnson and Siciliano,
who follow a somewhat different treatment of the integral
I without the eikonal and forward-scattering approxima-
tions. They do, however, obtain a zero-range result simi-
lar to (7.11), with complex parameters equivalent to a,P.
As discussed earlier, their treatment of the shell-model
correlation function leads to (3.10) instead of our result
(3.6},from which the factor I ] in (7.11b) takes the form

where R, (a real quantity with dimension of length) is a
measure of the efFective range of the integral (7.7). It is
assumed that bp(r) varies slowly over that range.

A more illuminating representation of (7.8) is obtained
by separating it into two terms

P&p'„(r)I= 'ap„(r, r)
2k " ' (2T)'

(7.9)

where p„(r, r) represents the shell-model correlation (at
r'=r). The coefficients a,P are positive quantities (of di-
mension of length) which include the optical damping.
Any additional short-range correlation effect appears in
a. The form (7.9) makes explicit the T dependence of
(7.7), as we discuss later.

Combining terms, we write (7.7)

VIII. RELATION OF MODEL RESULTS
TO OPTICAL ANALYSIS

We now connect the models of the previous sections to
the isotensor potential determined by Greene et al. As
we discussed in the Introduction, the optical-model
analysis of Greene et a/. fits free parameters to a large
data set for 164-MeV pions. We are most interested in
the coefficient A.G of (1.5), which fixes the strength of the
isotensor potential U2 of (1.2) for T =1 targets. As men-
tioned earlier, A, z

' is fit to data. Using two different sets
of assumptions, these authors calculate two different
values of A,4 ', and therefore obtain two different fits to
A, z

', or to A, G (all in fm ):
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and

2(2) 1.66+ 10.8l fm3

A.
' '=2. 89—1.13i fm

A, ~ =4.55+9.7 fm

A.
' '= —5 5+8.3i fm

=5.3+2.6i fm

A, &
= —0.2+10.9i fm

(8.1)

(8.2)

It is clear that Rek, G is not well determined, and in any
case, smaller than ImA, o, which is consistently fit by these
two procedures, to an average value of

where n~ is the number of neutrons in the (assumed) filled

valence shell. [Note the constraint of (5.6).] This value
fixes the size of the absorption cross section for the s-
wave absorption model, as discussed in the following sec-
tion.

For the delta absorption inodel, we evaluate (8.5) at
164 MeV, using co+ =268 MeV, I = 105 MeV, and

Do = (
—0.321+i)I /2, which yields

Im( W, n~ }= —23.3 fm (8.8)

This sets the scale of the absorption cross section for the
delta model, as discussed in Sec. IX, Eq. (9.5) and follow-
ing. We can also use (8.8) to fix the strength (6.18) of the
imaginary part of the isovector b, -nucleus potential (6.16),
(6.18},taking n =2.

Imi, o =10.3 fm (8.3)
ImU& =5.83 fm (8.9)

The actual values of A, G are, of course, sensitive to all the
other fitting assumptions: densities, isoscalar potential
strengths, etc. However, the sign and order of magnitude
of (8.3) are more or less fixed by the interference in the
DCX angular distribution.

Each of the three models discussed in Secs. V —VII is
characterized by one free complex parameter, which can
be chosen to give a positive value of Imk, G. For the local
models we shall simply assume that A, G=A, G, which is
equivalent to assuming that the local potential (1.6) gives
the same contribution to DCX as the nonlocal one of
(1.3). This is a good first approximation for forward
scattering, for which the parameter fitting was done. A
better treatment would require a refitting of A, G using
(1.6). Only one component of the free parameter for each
model is determined by the value of Imk, o or (Imk, o)
given by (8.3). As seen above, the value of Rek, o is not
well determined; for what follows we shall take Rei, G

=—0.
Then we can fix the value of the undetermined parameter
for each model in turn, assuming it gives the total contri-
bution to A, G.

For the direct s-wave absorption model, we found in
(5.3):

Combining (6.3), (6.8), and (8.9), we can write (6.16) as a
density-dependent correction to the delta width I of the
form

6I = Im( u, po)( b p„ /po)

=0.933 fm ' (bp„(r)/po) . (8.10)

For Ap/po=0. 1 as in Ref. 4, this gives AI = 18.4 MeV.
Last, for the correlated double scattering model, we

use the resonant formula for the forward (laboratory) iso-
vector scattering amplitude

kf )
= —— —=0.502+ l. 562i

2 I k

3D, ~

to evaluate (8.6). Then, with (8.3), we find

R, = (
—l. 188—0.852i) fm .

(8.11)

(8.12)

Note that R, is complex; it would be real exactly at reso-
nance (for Rei, o =—0). The order of magnitude of R, (1
fm) is not unreasonable for a nuclear correlation. We
cannot choose among the three models without further
information given in the following section.

po

A2nF AG

2k
(8.4) IX. FURTHER CONSEQUENCES

OF THE MODEL RESULTS
where A2 is a free parameter.

For the delta absorption model, (6.15) gives

y W)nF AG

24Do po
(8.5)

with W, the free parameter (with ImW, (0). Lastly, for
correlated double scattering, using (7.13) with T = 1,

8n i p~
~o

1 c
Po

(8.6)

Im( A2n~)= —241 fm (8.7)

with R, the free parameter.
To match coe%cients to (8.3), we use pa=0. 16 fm

(Greene), and k =1.37 fm ' (laboratory momentum), to
get for (8.4)

o, (n)= —k ' f Im(U, (r)) ~1('+'(r)~ d r, (9.1)

where (U, ) is the isospin expectation of the potential
given by (5.1), and P'+' is the elastic optical wave. [See

We now discuss some specific features of the three
models which make possible further tests of the dynamics
of the isotensor potential. First, consider the two absorp-
tion models of Secs. V and VI which have the following
aspects in common: (1) They imply a connection between
the isotensor potential Uz and the cross section o, (n ) for
absorption of a pion on the excess neutrons. The direct
and delta models have different connections, as we shall
show. (2) Both models predict a T dependence of U2 as
given in (3.9).

For the direct absorption model, the absorption cross
section o, (n ) is given by
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Ref. 5: Note that in the present paper, U is defined by
(1.1}, i.e., U =2coV, where V is the potential of Ref. 5.]
We wish to compare this to cr,' ', a closely related quanti-
ty introduced in Ref. 5, which enters into the inequality
(18) of that paper. In our present notation, dropping the
superscript (2) for clarity,

o, = —k ' f ImU2(r)&(P T) &lg'+'(r)l d r . (9.2)

This quantity defines the contribution to the reaction
cross section due to the isotensor potential alone. To
compare the two, consider the ratio, which may be ob-
tained from (2.9) and (2.10):

g, (n) 1m[4 AOT(T —
—,')+8A, (T —

—,')&P T&+4A~&B &]

&c 41mA2&(p T) &

(9.3)

For example, for a T=1 target with absorption only in
the 8=0 mode, given by (5.7), for a pion of charge c,

2,Acr = —
cr& '. Finally, the relation of 0, to 0., for T =1

becomes

o, (2) [—I+&cl(P T)'c&]
&cl(P T)'c &

For c = 1 (m+ ), & cl(P T) lc & =2, so that

(9.4) p2
o, = —2o, (2) 1—

2lD l'
(9.12)

o ) =2o, (2) (9.5)

in this case. (See Ref. 5, footnote 13.)
For the delta absorption model, the connection of 0.,

and o, is less direct than (9.3) or (9.4), because of in-
terference effects in EU(r) of (6.9). In this case, the ab-
sorption cross section can be shown to be

o, (n)=k ' f Im& V (r)IV(r)V(r)]& d r .
Do

(9.6)

In contrast, the change in reaction cross section due to
AU is given by

bo'=k ' f Im&bG(r) &lVQ(r)l d r, (9.7)

where b, G(r) is given in (6.13). The cross section o, is
defined to be only the U2 contribution to ho. , i.e.,

o, =k ' f ImU2(r)&(P T) &lVQ(r) d r . (9.8)

In all three expressions, we have integrated by parts to
obtain the Vgl forms.

The ratio of (9.6) to (9.7) is easily seen to be (for W,
pure imaginary)

o, (n) r'
=[lDol Re(D )] '= 1—

2lD l'
(9.9)

[—', T(T —
—,')—(T —

—,')&(y. T) &
—&B &]

~c —&(y T}'&
(9.10)

For a T = 1 target, this ratio becomes

bo 2 —&cly. Tlc &
—&cl(y T)'lc & (9.1 1)—

& cl(P. T}'lc &

For 7r+ (c =1}, &(P.T)&= —1, &(P.T) &=2, so that

which goes from a value of 1 far off resonance, to a value
of —1 at resonance (where b,o is negative). The ratio of
(9.7) to (9.8) is given by the isospin ratio, as in (9.3), but
using (6.13) for this model:

The result for other T is obtained immediately from (9.8}
and (9.9). This result for the delta model (8=1) may be
compared to that of (9.5) for the direct absorption model
with 8=0. Note that cr, is always positive (as a true
cross section for absorption), while o, is not.

We turn now to the model of correlated double scatter-
ing (Sec. VII}. We noted following (7.13) that at reso-
nance, to obtain Imk, o )0 requires R, & 0 [or ReR, &0,
near resonance, as in (8.12)]. This means that the P term
of (7.12) must exceed the a term, which would be the case
if the repulsive anticorrelation is sufficiently strong at
short distance. It is not clear that this should be the case,
since the repulsion competes with the attractive correla-
tion due to pairing, as in (3.6). In fact, the model calcula-
tion of double scattering by Johnson and Siciliano shows
the problem: they find (Table I, Ref. 4, first paper, 180
MeV)

A, 2
= —3.64 —8.01i,

X4=3.45+5.52i,
(9.13)

which results in Imk, o &0, even with a repulsive correla-
tion, and no pairing effect [since they use (7.14), not
(7.12)]. This suggests that the correlated double scatter-
ing is not likely, by itself, to explain the origin of isoten-
sor potential.

In principle, the contribution of correlated double
scattering to U2 should also be measurable as a cross sec-
tion (o, of Ref. 5). In this case, the nonelastic reaction
would be the double knockout, (n, n'2N) Since we. are.
assuming that short-range effects dominate (zero-range
approximation), one might expect the relevant kinematic
region to be p&+p2 =—q, where p&, p2 are the recoil nu-
cleon momenta, and q =k —k' the momentum transfer of
the pion.

A further point is the T dependence: if the P term (A,4)
dominates, the dependence will be nT, rather than
T (2T —1) ', as in (3.9), which is predicted for the ab-
sorption models. The consequences are discussed in the
following section.
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X. CONCLUSIONS

We have proposed three models for channel coupling
as a dynamical mechanism for the isotensor term Uz of
the pion optical potential. Each of the models can give
the value of the phenomenological (complex) parameter
A.G, by the adjustment of one parameter, as we have
shown in Sec. VIII. For the two absorption models, the
parameters will necessarily give Imi, z &0, as required;
for the correlated double scattering model, this condition
imposes a restriction on the correlation length, ReR, (0.
However, it is not immediately clear that the magnitudes
of these parameters are physically reasonable, that is,
how much the proposed processes actually do contribute
to DCX through Uz.

The method discussed in Ref. 5 leads to a somewhat
model independent test for the case of absorption, by use
of the inequality (18),

o, & Imhf„) 4m.
(10.1}

in which the quantity defined in (9.2} is compared to the
DCX amplitude (up to a factor) contributed by U2 (to
lowest order). In Ref. 5, we found for the case of ' 0,
that the right-hand side of (10.1) is 4.8 mb for the calcula-
tions of Greene et al. An estimate of absorption gives o,
=1.5 —1.8 mb. In Sec. IX we have derived the relation
of cr

&
to 0, for the two absorption models. The direct ab-

sorption model (s wave) gives o, =2o, =3.0—3.6 mb,
from (9.5}, which is a substantial part of the right-hand
side of the inequality (10.1). For the 6 model, the ratio is

given by (9.12), which at 164 MeV gives cr, =1.626o,
=2.4—2.9 mb. [See Eq. (8.8).] So, at least for the case
of ' 0, it is not unreasonable to conclude that a substan-
tial fraction of (-—,) of the isotensor contribution to
DCX may be due to absorption, based on either model.
We expect that, e.g., correlated double scattering supplies
the rest of the inequality.

However, on other physical grounds, we expect the b,

absorption to be suppressed relative to the s-wave absorp-
tion, at least at short range. The reason is that the bN s
wave does not contribute to absorption, because of selec-
tion rules. Therefore there should be little effect in the
zero-range NN limit; the contribution would be zero, ex-

cept to 6 recoil.
We have already argued that correlated double scatter-

ing give a reasonable order of magnitude effect, as seen in
(8.12). However, here it is least clear that the zero-range
assumption is justified. This effect seems to require a del-
icate balance between the attractive effect of pairing
correlations (in a) and the repulsive effect of short-range
correlations (in P) in (7.9) and (7.11b}. A better treatment
of this mechanism is probably required.

That brings us to the limitations of the present work.
We have taken the zero-range assumption from the be-

ginning, and restricted the nuclear structure to a single
j"-shell model of the neutron excess. These approxima-
tions did allow us to compare our results directly with
those of Greene et al. , as shown in Sec. III. They also
lead to the simple T dependence predicted for absorption
models, in (3.9), and for correlated double scattering, in

(7.11). For finite range, as might obtain in more realistic
treatment of these mechanisms, the changes are not so
great for nuclei for which the j" and good seniority as-
sumptions are valid. For these cases, the nonzero range
introduces a finite "monopole" contribution to the corre-
lation, which vanishes in the zero-range limit. The
correction will have the "monopole" T dependence of
(3.11). (The monopole and zero-range terms correspond
to the A, B terms of Ref. 9.) The j" model for nuclear
structure is probably not adequate for all aspects of the
DCX problem, and should be improved by including
configuration mixing. One would expect this to change
the spatial dependence of U2, both through changes of
the form [e.g., in (3.7)], and in the densities themselves.
The T dependence, however, is less likely to change, as
long as the effective seniority scheme does not break
down. The extension to include valence protons can also
be made, although the forms are more complex.

The question of T dependence is under further investi-
gation, to see that the effects are predicted to be under
different assumptions given in this paper. The calcium
isotopes seem obvious candidates for study, but angular
distributions at resonant energies are not measured. A
prediction of the zero-range models is that the interfer-
ence minimum should change with T for different iso-
topes.
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APPENDIX: CORRELATION FUNCTIONS
FOR SINGLE jSHELL OF NEUTRONS

Write the single-particle wave function for the orbit

[ ntj m ) in the coupled form

(r) }=g(l —,'Mp~ jm )QM(r)~p) (Al)

with

(A2)

The correlation function is directly calculated from
(2.11), for r=r', for a simple antisymmetric state:

CM(r ) ~ l( ~) ~IM( ~ )

and ~p) a spinor (p=+ —,').
For a filled shell, n =nF =(2j+ 1), the neutron density

is easily obtained
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nF(nF —1)pF(r, r)= g (P (r)P (r)[P (r)P (r)) —P .(r)P (r))J
mmmm'

r r ~ r ~ r — r ~ r ~ r r
m, m'

(A3)

This is simply the sum of two-body matrix elements in orbits (m, m ) of the operator in (2.11), written in the conven-
tional direct minus exchange form. The first term equals bpF(r}, from (A2). The second term may be evaluated as fol-
lows:

(r))(Pt (r}=g g (I ,'Mp—~jm)(I,'M—'p'j~m)1lst(r)g~(r))p)(p'~ .
m p, 'M'

pM

It follows from the reAection relations:

(I,'Mpjl—m)(I,'M'p—'Ij m ) =(I—,
' —M pjl——m)(l —,

' —M' —p'Ij

and

1 M(r)eM'(r) ( 1) P M( )re ——M'(r}

that the coefficient of
~ p ) (p ~

in (A4) is

(p~P (r))(P (r)~p) = g(l ,'Mp~jm—)~/st(r) = g (I ,'M' p—j~m'—) ~QM(r)~
m'M'

that is, independent p. Therefore

(p~P (r))(P (r) p) =
—,
' g (I ,'Mp~jm) ~—/st(r)~ = ,'bpF(r) . —

pmM

By a similar argument, using (A5), the coefficient of ~p ) ( —
p~ in (A4) vanishes. Then (A3) becomes

pF(r, r)=[ttF(rtF 1)] 'I&—pF(r) —
—,'&pF(r)I =&pF(r)/2nF(nF —1),

(A4)

(A5a)

(Asb)

(A6a)

(A6b)

(A7)

which gives Eq. (3.4).
The correlation function (at r=r') for the n =2 paired state is calculated directly from the (J=0) coupled wave

function

g(r, r')=gP (r)P (r))( —1)~ IV2j +1,

= g (I 'Mpj~m )(I—,
' ——M pj~—m)( ——1)~ QM(rg M(r)~p, —p)/&2j +1 .

Mpm

(Aga)

(Note that only S =0 contributes for r=r'. ) Then using
the reAection properties of the Clebsch-Gordan
coeScients and spherical harmonics for —M ~M, etc., it
can be shown that

1 )
( +I/2 —P

f(r, r)=g p, —p) g(l ,'Mpj~m—) ~PM(r)~+2J +1

=pip, p)( 1)'+' "bpF(r)I2&2J +1,

the n even, U =0 ground state [see (2.11)]:

(S&„—:—,'g 8(x; —x, )
n

J drp„(r, r) .n(n —1)
(A 10)

The result can be expressed as follows [see Ref. 10, Eqs.
(20.34}, (28.63), and (28.66)]:

(A8b)

where we use (A6b). Then, using nF =2j + 1, we find

(8}„=—Vo+ (Eo —VO),
n n(n —2}
2 2(2j —1}

where

Eo= . Q(2J+ 1)VJ
2

(2j+1) J

(Al 1)

(A12)

=&pF( r) /2nF . (A9)

The two forms given in (3.5) follow immediately from
(A9), (A7), and (3.2).

The n dependence of (3.6) may be obtained by calculat-
ing the expectation value of a 5-function interaction in

and VJ are the two-body matrix elements in states of
(j,J), which for the 5 function give

2

VJ= A (A13)
2 2
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with A independent of J (J even throughout). Summing
(A12) gives immediately

Eo = Vo = A /( 2j+ 1 ) .

Evaluating (A10) using (A11) and (A14) yields

f dr p„(r, r) = Vo/(n —1) .

This, with (3.3) and (3.4) leads to (3.6).

(A15)
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