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B.L. Clausen, ' J. T. Brack, M. R. Braunstein, J. J. Kraushaar, R. A. Loveman,
R. J. Peterson, and R. A. Ristinen

Nuclear Physics Laboratory, Department ofPhysics, Uniuersity of Colorado, Boulder, Colorado 80309

R. A. Lindgren
Institute ofNuclear and Particle Physics and Department ofPhysics, Uniuersity of Virginia,

Charlottesville, Virginia 22901

M. A. Plum
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 24 July 1989)

Inelastic scattering of 162 MeV ~ and n. + was used to study the previously known J =8
stretched transitions in Ni. A consistent analysis of data from electron and pion scattering to
stretched states using both harmonic oscillator and Woods-Saxon wave functions (unbound as
necessary) was performed for Ni and three other nuclei: ' C, "Si, and ' Fe. The experimental

pion scattering cross sections were reproduced by distorted-wave impulse approximation calcula-
tions using wave functions from (e, e ) with a normalization factor N that generally varied from 1 to
5. The ratio of the total isoscalar to the total isovector strength ranged from 0.2 to 1.2. The use of
Woods-Saxon wave functions in the analysis did not significantly improve the fits to the angular dis-

tributions.

I. INTRODUCTION

It is well known that nuclear models based on the nu-
clear mean field theory have failed to explain the experi-
mental strength of magnetic excitations in nuclei, ' in-

cluding high-spin "stretched" excitations. In these exci-
tations the one-body spin transition density is basically
composed of a single particle-hole configuration such
as (d5/2p 3/p )4 in ' C, (f7/2d 5/p }6 in Si, and

(g9/pf 7/p )g in Ni. Although the strength is incorrect-
ly predicted, the she11 model in the framework of the
distorted-wave impulse approximation (DWIA) does pre-
dict the correct q dependence of the electron scattering
cross sections. By varying the strength of the stretched
configuration until the calculated form factor fits the
electron data, we can extract the strength of the transi-
tion in terms of a single isovector spectroscopic ampli-
tude. This amplitude, which is deduced from (e, e ) in a
unique and unambiguous way, serves as a benchmark not
only for comparison with results from more refined mod-
el calculations, but also for comparison with amplitudes
deduced from other experiments using spin-sensitive
probes for exciting the same transition.

In this study we are particularly interested in using in-
elastic pion scattering at energies near the A3 3 resonance
to provide a test of the DWIA model for pion scattering
and a test of our knowledge of the strength of the pion-
nucleon spin-orbit interaction in the nucleus which al-
lows us to predict pion-nucleus scattering cross sections.
Previous pion studies using harmonic oscillator (HO) ra-
dial wave functions for stretched excitations in self-

conjugate nuclei, required a normalization of the total
calculated cross section by factors that ranged from 1.1
( Si) to 1.4 (' C), ' in order to obtain the same strength
as in electron scattering. The fact that these normaliza-
tion factors vary from unity suggests that there are still
inadequacies in the model of pion scattering from the nu-
cleus and/or in the nuclear structure of the proton and
neutron wave functions. Although the radial transition
density is taken from electron scattering which is sensi-
tive to the entire radial distribution, there still may be
difticulties because the HO wave functions do not take
into account effects due to differences between the proton
and neutron wave functions. This is particularly impor-
tant for unbound states, because differences in the radial
wave functions are large at the nuclear surface where the
pion scattering amplitudes are strong. Such effects can
be accounted for using a Woods-Saxon (WS} poten-
tial, ' including continuum effects as noted in the
past, "but not thoroughly tested. To improve our under-
standing of the pion-nucleus scattering model, we present
systematic analyses of previous ' C, Si, and Fe data
and include new Ni data. Several specific objectives are
discussed next.

The first is to conduct a systematic analysis of elec-
tron' and pion excitations of the pure isovector and iso-
scalar stretched transition in the Si (Refs. 8 and 13)
self-conjugate nucleus using both HO and WS wave func-
tions in the DWIA model of pion scattering, and includ-
ing effects due to the unbound nature of the states. The
sensitivity of the extracted Z, and Zo coefFicients and the
overall normalization to these radia1 wave functions wi11
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be studied.
The second objective is to deduce the isovector (Z, )

and isoscalar (Zo) contributions for magnetic transitions

to To states in the '4C (Refs. 4 and 14-16}and Fe (Refs.
17 and 18}non-self-conjugate nuclei by using the ratio of

+and n cross sections to give Zo lZ, and the electron
cross sections to give essentially Z, . (This includes the
one To+ 1 state in Fe.) The advantage of this technique

is that the two sets of solutions for Zo and Z, are essen-

tially independent of the absolute strength of the pion-
nucleon interactions, but dependent on the mell knomn

ratio of the isoscalar to isovector part of the pion-nucleon
interaction near resonance. This is particularly comple-
mentary to electron scattering, since the pion cross sec-
tion is 4 times more sensitive to isoscalar states than iso-
vector states having the same internal structure.

The third objective is to present and analyze the small,
inelastic pion scattering cross sections for exciting the
stretched 8 transitions in Ni by pion scattering (see
Ref. 19 for more details). These data together with Ni
electron data are used to extract Zo and Z, and, conse-
quently, can be used to make isospin assignments for the
8 states in Ni. Work on this nucleus is of special in-
terest because this is the first published report for pion
scattering on a nucleus with T, =2 in contrast to
T, =O jl for nuclei used in earlier studies. As a result,
the simple shell model sum rule for the isovector strength
predicts that the To strength is twice that of the To+1
strength, unlike T= 1 nuclei, where it is evenly divided
between T = 1 and T =2 states.

stretched states. The energy calibration of the summed
spectrum utilized peaks corresponding to the ground
state and the strong 2+, and 3 excited states in Ni
(1.333 and 4.040 MeV) and ' C (4.439 and 9.641 MeV).
The resulting energies of the 8 states are shown in Table
I. These energies are equal within uncertainties to those
found previously in electron scattering and proton strip-
ping. In the five individual nickel spectra, the stretched
state peaks were fit using the excitation energy from the
summed spectrum, the width and skew of the elastic
peak, and a linear background. An acceptance correction
and a pion survival fraction correction were done bin by
bin on the histograms before any peak fitting was done.

The 8 cross sections were normalized to previously
known ~+@ and ~+' C elastic scattering cross sec-
tions. ' The normalization factor was 0.90 smaller for

cross sections at a given angle than for ~+ cross sec-
tions, which is similar to results of Seestrom-Morris at
160 MeV. As a further check, we found that the ' C in-
elastic scattering cross sections were in agreement with
previous work. Moreover, the Ni cross sections for
low lying states (see Table I} were similar to those in

Ni. The total systematic error is about 10%, with 7%
due to uncertainties in the absolute normalization. The
errors listed in Table I include statistical as well as these

60 —.

II. THE Ni (n, m') DATA

A. Experimental details i~IJ~,H& t}II

The experiment was performed by bombarding an en-
riched Ni target of areal thickness 94.3+2 mg/cm with
a beam of 162 MeV pions from the energetic pion chan-
nel and spectrometer (EPICS) at the Clinton P. Anderson
Meson Physics Facility (LAMPF), which has been de-
scribed in previous work. ' Inelastic pion scattering
cross sections were measured at spectrometer angles of
65', 80, and 90 for m+ and 65'and 80 for m. with an
energy resolution [full width at half maximum (FWHM)]
of 190 keV and with the spectrometer field set so that
pions causing an excitation energy of 12.8 MeV (the aver-
age energy of the known stretched states) would be
detected at the center of the focal plane.

A three-quarter frame target of Ni and a one-quarter
frame target of CH2 were initially used for m+ and m

runs at a scattering angle of 80 to insure that the energy
calibration of the Ni spectra was done correctly. Once
the calibration seemed satisfactory, a fu11 frame Ni target
was used to expedite data acquisition and a full frame C
target was inserted occasionally as a calibration check.
During the data analysis, it was found that all carbon
calibration runs at a given scattering angle were similar;
therefore, they were added together to give one summed
spectrum at each angle.

The individual nickel spectra are shown in Fig. 1 along
with a summed spectrum used to facilitate finding the
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FIG. 1. The ~ and m+ spectra from Ni as well as the
summed spectrum. The 8 stretched transitions observed in
electron scattering are labeled along with several other prom-
inent states. Each channel is 50 keV wide.
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TABLE I. Measured excitation energies and center-of-mass cross sections for the states observed in

Ni pion scattering. Energies with uncertainties are from this experiment. The scattering angles are

given in the center-of-mass frame. The listed cross section uncertainties include both statistical and sys-

tematic errors. The 8 assignments are those of Lindgren et al. (Ref. 20).

0+
2+

3
8

0+
2+
3
8

E„(MeV)

0.00
1.33
4.04
5.11+0.02
5.7020.04
6.22+0.02
6.9120.02
7.5720.02
8.96+0.03
9.21+0.03

13.9120.04

0.00
1.33
4.04
5.11+0.02
5.70+0.04
6.22+0.02
6.91+0.02
7.57+0.02
8.96+0.03
9.21+0.03

13.91+0.04

65.3 '

3100 +300
33 2 4

250 4 20
61 k 6
30 4 4
23 k 4
26 k 4
9.9+ 3.6
4.2k 3.3
9.2k 3.6

15 k 4

1500 %100
91 2 6

180 + 20
44 1 3
19 + 2
20+ 2
22 2 2

8.4+ 1.6
6.7k 1.5
8.4+ 1.5
3.0+ 1.6

ca+—{pb/sr)
80.3 '

76 k7
140 +20
30 +3
38 +4
11 +2
16 +2
l& +2
6.7k 1.5
3.3+ 1.5
5.0+ 1.7
5.7+ 2.3

230 +20
100 +10

19 k2
34 k3
4.1+ 0.8
8.9k 1.1

5.9k 1.0
9.5+ 1.1

6.6k 1.1

4.6+ 1.0
4.5+ 1.2

90.3 '

110 +10
18 k2
35 k3
25 +2
6.3+ 0.9
6.1+ 0.9
8.7+ 1.1

6.3+ 1.1

5.8+ 1.0
6.7k 1.1

3.3+ 1.1

systematic uncertainties.
The pion cross section measurements are given in

Table I and angular distributions are shown in Fig. 2. Of
the ten states identified as stretched states in electron
scattering, only the 7.5, 9.0, and 9.2 MeV 10 states and
the 13.9 MeV To+1 state were observed in pion scatter-
ing. Our ability to distinguish the other six states from
background is questionable. 100

I I I I I I I I I I I I

Ni(7T, vr') 8 states

7.5

WS

B. The 5.1MeV state

Four peaks between 5 and 7 MeV were also analyzed in
the hope of finding new 8 isoscalar stretched transitions
not observed in electron scattering. Their cross sections
are listed in Table I. Unfortunately, the angular distribu-
tions in this experiment are not complete enough to make
definitive assignments of multipolarity. However, from
the angular distributions listed in Table I, the 5.7 and 6.9
MeV states do not appear to be 8 candidates. A recent
EPICS experiment by Oakley et aI. using 180 MeV
pions on Ni was able to add to our angular distribu-
tions. A 6.22 MeV state was observed with a cross sec-
tion of at least 40 1Mb/sr at 30 and 35' for both pion
signs, thus removing it as a possible 8 candidate.
Another state was observed at 5.24 MeV with a cross sec-
tion of 250+40 pb/sr at both angles and pion signs. This
is probably the 5.24 MeV 4+ state mentioned by Ronsin
et al. (They also mention a 5.106 MeV 4+ state. ) If
the 5.24 MeV state found by Oakley et al. is assumed in-
stead to be a doublet, any 5.1 MeV state appears to have

9.0
x
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40 60

.9 MeV
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I I I I

80
I I I I

100
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FIG. 2. Pion angular distributions calculated with HO and
%'S wave functions are compared to data for the 8 stretched
transitions in Ni. Open diamonds are the m data; solid dia-
monds are the m+ data.
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III. ANALYSIS

A. Inelastic scattering di8'erential cross sections

The inelastic pion-nucleus scattering cross sections for
exciting unnatural parity states at pion energies near the
63 3 resonance are calculated in the distorted-wave im-

pulse approximation (DWIA) using the formalism de-
scribed by Petrovich, Carr, and McManus. In this mod-
el the pion-nucleus coupling is given by the usual central
and spin-orbit terms, but only the latter contributes to
unnatural parity states. We have also neglected the
higher order, presumably weaker spin-current and

10

4

I I I I I I I I I I I I

"» ( . ')

5.1 MeV

101

a negligible cross section, but at most could have 2OO

Iub/sr for n+. at both angles, 120 Iub/sr at 30' m. , and 36
pb/sr for 35 n. .Figure 3 compares the 5.1 MeU data
from both experiments with HO theory curves for 8 and
4+ angular distributions. (For the small difference be-
tween 180 and 162 MeV pions, the shift in scattering an-
gle is negligible for our purposes. ) The HO parameter
used was b =1.95 as found to fit the other Ni stretched
transitions. The data are more consistent with an 8 as-
signment, so the 5.1 MeV state is tentatively included as
an 8 stretched transition in this paper. Also note that
for the 5.1 MeV state, 0. =0.+ as expected for a pure
isoscalar transition.

current coupling terms associated with nonlocalities aris-

ing from the energy dependence of the spin-orbit term
and nuclear Fermi motion. Although these higher order
terms are small in general, their weakness is also justified
on the important assumption that the one-body transition
density does not contain any significant EN=3Aco or
higher particle-hole configurations. From core polariza-
tion calculations in Si, calculated values of Z for
b,Ã ~ 3 are less than 1% near the peak of the form factor.
In addition, there is no experimental evidence from the
shape of electron scattering form factors for stretched
transitions to indicate that higher order configurations
are required to fit the data near the peak of the form fac-
tor. In fact, form factors calculated from the pure lfico

configuration fit the data well past the maximum for all
of the strong transitions; therefore, any effects requiring
orbital coupling densities, including the known depen-
dence, can be neglected.

The ratio of the n+ and n. isoscalar to isovector
strength near resonance of the dominant spin-orbit cou-
pling term is well known from m*-p scattering, and we
have assumed that the uncertainties in this ratio are
much less than the large fluctuations observed in the ex-
tracted values of the overall normalization N. This also
implies that the overall normalization factor is the same
in n+ and m. scattering. Any multistep process in the
interaction is assumed to be included in the optical model
parameters used to describe the distorted waves.

For purposes of illustrating the important features that
relate pion scattering and electron scattering for
stretched transitions (0+T;~J Tf) we write the cross
section in plane-wave Born approximation as a sum over
the product of a spectroscopic coefficient Z„ the trans-
verse spin density pj„and the pion- (electron-) nucleon

G, (G',) coupling factor:

ZrPzrGr
7=0, 1
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10~

b
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I I I I
I I I
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I I I I

I I I I

I I I I I I

I I I I I I-

"NI (~',~')
5.1 MeV

where

J+1
2J+1pj', (q) = p,(r)jz I(qr)r dr,

0

G, =&4m(2J+1) t,j,
L

Z, = (Jf, Tf I I (,'. &&,, )"I I J;=0, T, ),
1/2

(2)

(3)

(4)
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FIG. 3. The 5.1 MeV data are compared to DWIA calcula-
tions using the HO parameter b =1.95 fm for 8 and 4 states.
The curves have been adjusted to fit our large angle data. The
30 and 35 upper limits are from Oakley et al. (Ref. 28).

where t,~(q) is the spin-orbit pion-nucleon interaction
near resonance, p,(r) is the spin transition density, and J
is the total angular momentum.

The transition density p,(r) was calculated from HO
and WS wave functions. The WS wave functions, includ-
ing those for unbound states, were generated by the corn-
puter code DwUCK4, ' as defined in previous work on
stretched transitions. ' This transition density was used
as input to the general inelastic scattering potential code
ALLWRLD (Ref. 32) to generate pion form factors for in-

put to the pion distorted-wave code MSUDwPI (Ref. 33).
The optical potential in MSUDwPI is based on the one de-
scribed by Stricker, McManus, and Carr.
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The ground state density parameters used in both
codes and listed in Table II were based on the charge ra-
dius and taken from previous fits of elastic pion scatter-
ing data. ' We checked these parameters in our
codes by fitting elastic pion scattering data from ' 0, Si,
and Ni and found our c and a to be the same within
about 5%. Using these different ground state density pa-
rameters would change the normalization for the
stretched states by 1% or less. The spin-orbit force pa-
rameters used in ALLwRLD were SO=0.24+0.48i and

S, =0.14+0.24i for 162 MeV pions. Optical potential
parameters ' ' used in MSUDwPI are listed in Table III.
When these values for the spin-orbit force and the optical
potential were replaced by another set of values, ' the re-
sulting theoretical matrix element for the 11.7 MeV state
in ' C was about 5% smaller. These parameters gave
DWIA calculations that fit the elastic scattering pion
data reasonably well at forward angles in Si.

In calculating the single-particle wave functions, the b
for HO and the ro, a, and A, for WS, were taken from fits
to the electron scattering cross sections for stretched
states. ' The WS wave functions used the potential

U = —Vof + VoA, (R/2Mc) (cr"l)r 'df Idr,
where

f =
I 1+exp[(r ro A —' )/a]j

In DwUCK4, ' the potential we11 depth is allowed to vary
and was not an input parameter.

For calculational purposes in Sec. III B, we write Eq.
(1) for rr scattering in the DWIA for transitions where
both isoscalar and isovector terms contribute as

(5)

where M,+—=pJ,G, . Note that (M,—) is the DWIA cal-
culated cross section for pure isoscalar or isovector tran-
sitions. We have also included a factor N +f, com-—
posed of a center-of-mass term f, and an empirical
normalization N +—defined such that the pion DWIA cal-
culated cross section agrees with experimental strengths
known by electron scattering. In this work it is assumed
that the empirical normalization factor is the same for

TABLE II. Ground state density distribution parameters
used in ALLWRLD and MSUDWPI. All quantities are in units of
fm.

m. + and m scattering, i.e., N+ =N
The center-of-mass correction is included in the HO

analysis of pion scattering by using a modified parameter
b'=b[(A —1)/A]'/ in the wave function calculations,
where b is the usual HO parameter. The final theoretical
cross section is then adjusted by the c.m. factor, ' '

f, =[A/(A —1)] . In the WS calculations it is not
clear how to make the c.m. correction; therefore, the final
theoretical cross section is adjusted by this same c.m. fac-
tor f,

In electron scattering plane-wave Born approximation,
the cross section is written as

2 2Z 0I
&+tan 8/2 FT(q),

1+(2Eo/Mr )sin 8/2 2q

where the form factor FT(q) is now written in exactly the
same form as Eq. (1) with Z, and pz, defined as in Eqs. (2)
and (3) and the electron-nucleon coupling factor G', is
defined as

G', =&4rr(2J +1)/Z —g', ,
qadi 1

2mc 2

where go (g &) is the sum (difference) of the neutron and
proton magnetic moments.

Again for calculational purposes, we write the electron
scattering fortn factors in a form analogous to Eq. (5):

M' '2

F =(M) ) Zo+Z) (8)
1

where nucleon finite size and center-of-mass factors are
contained in the isovector and isoscalar electromagnetic
matrix elements I& and Mo as defined in Ref. 12.
Distorted-wave Born approximation effects are included
in the standard q,z approximation.

B. Determination of spectroscopic amplitudes Z& and Zo
and normalization factors N

We use the experimental pion and electron scattering
cross sections at the peak of the angular distribution as
determined using a g fit of calculations to the data. For
pion scattering, the cr +/(M f ) ratio was va—ried for each
state independently. The resulting 0.+—at the peak of the
form factor and used in Eq. (5) are listed in Table IV.

Nucleus

14C

28S

'4Fe

Ni

(r2)1/2

2.56
3.12
3.70
3.80

( 2)1/2

2.43
3.02
3.61
3.71

2.52
2.86
3.84
4.00

ab

0.39
0.55
0.55
0.55 Incoming Outgoing

TABLE III. The optical potential parameters used in
MSUDwPI (see Refs. 15, 35, 40, and 41) for 162 MeV incident
pions.

'The charge radius is from electron scattering (Ref. 36) and the
nuclear matter radius is from ( r') „=( r'),„—(0.8)'.
The ground state distributions were assumed to have a Woods-

Saxon form p(r) ~ (1+e'" " ') '. The radius c and diftuseness
a are taken from previous pion scattering analyses (Refs. 27, 37,
38, and 39) and use the relation —', ( r') „=c'+', n'a'—

bo (fm)

bl (fm)

eo (fm )

cl (fm )

Bo (fm )

Co (fm )

—0.083+0.029i
—0.125+0.003i
+0.37 +0.67i
+0.21 +0.33i
—0.15 +0.28i
+1.29 +2.95i

—0.079+0.027i
—0.126+0.002i
+0.56 +0.62i
+0.31 +0.31i
—0.13 +0.26i
+1.15 +2.55i
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TABLE IV. Experimental cross sections {in pb/sr) at the top of the angular distribution arrived at
by doing a least-squares St to the data. For comparison, form factors from electron scattering are also
given (Ref. 12).

14C

28S'

'4Fe

Ref.

43

17

E„(MeV)

11.7
15.2
17.3

11.6
14.4

8.3
8.9
9.8

10.0
10.7
11.6
13.3

5.1

7.5
9.0
9.2

13.9

0 (pb/sr)

67* 4
14+ 3

&16

31+ 4
17+ 4

13.7+ 1.6
3.7+ 0.3
7.7k 1.3
4.3k 1.1
7.8+ 2.3
5.5+ 1.1

15.6+ 1.9

55.0+11.0
8.7k 1.2
4.2k 0.4
6.9k 1.9
9.3k 4.9

e+ (pb/sr)

&6
3022

123+4

35+2
23+2

0.9+0.6
2.7%0.5
5.6+1.5
8.1+0.6

17.7+1.0
2.1+0.5

13.2+1.1

42.0+8.0
10.0+1.0
7.7+0.8
7.0%2.1

4.6+0.1

F' (X 10-')

21.6+1.4

26.0+2.6

10.0+0.2

0.29+0.02
0.26+0.02

0.31+0.01
0.29+0.03

1.34+0.07

0.34+0.02
0.18+0.01
0.17+0.01
0.31+0.02

For electron scattering, the FT was determined in Ref. 12

by a similar procedure. The resulting FT, including
meson exchange current (MEC) effects, used in Eq. (8) are
listed in Table IV.

The (M +—

, ) (=o +—

,Dw, for ZO=O and Z, =1) cross sec-
tions were calculated by ALLWRLD and MSUDWPI using
both HO and WS wave functions and some representative
results are given in Table V. The matrix elements are
much smaller for m+ than for vr in cases where the un-

bound proton has been treated correctly by using
different WS wave functions for the unbound proton than
for the bound neutron. In the past, the use of equal pro-
ton and neutron HO wave functions has predicted ap-
proximately equal m+ and m matrix elements. This
difference is important in determining whether a
stretched transition is to a pure isovector To+ 1 state

based on a comparison of the m+ and m. cross sections.
The (Mt) were calculated as in Ref. 12, but included
MEC effects.

The Mo/M; ratio in Eq. (8) for electron scattering is
small ( —0.187 when using HO wave functions) and thus
magnetic electron scattering mainly probes the isovector
transitions. When using WS wave functions, the neutron
and proton wave functions are not equal and the Mo/M;
ratio is explicitly calculated. ' On the other hand,

Mo /Mf =+2 in Eq. (5) for pion scattering near the
Lak 3 3 resonance and thus pion scattering is more sensitive
to isoscalar transitions. From ALLWRLD and MSUDWPI

calculations this ratio was found to be 1.93 for 162 MeV
incident pions, when using HO wave functions. When
using WS wave functions the ratio varied from 1.7 to 2.2
for different transitions, but for a given transition, the ra-

TABLE V. These representative DWIA pion cross sections, (M
&

)', at the peak of the angular distri-

bution were used in Eq. (5) and were calculated by ALLwRLD and MsUDWFI.

(MeV)

Binding energy

n

(Mev) (MeV)

(M~ )z

{pb/sr)

HO
(MK )2

(pb/sr)

(M'rr )2

(pb/sr)

WS
(M7T )2

(pb/sr)

14C

'4Fe

Ni

11.7
15.2
17.3

11.6
14.4

8.3
10.7
13.3

7.5
9.2

13.9

—0.16
+3.34
+5.44

—5.59
—2.81

—5.07
—2.70
—4.38

—7.77
—6.12
—4.83

—9.13
—5.63
—3.53

0.00
+2.78

—0.54
+ 1.83
+4.41

—2.01
—0.36
+4.38

62.7
60.7
59.0

73.4
70.9

49.4
47.7
46.4

41.9
41.0
38.7

69.1

66.7
65.0

64.8
62.4

42.2
40.8
39.4

37.0
36.1

34.0

72.9
82.3
99.8

64.2
70.7

48.6
54.5
49.6

38.6
38.9
40.3

38.9
47.9
34.0

65.8
45.8

42.5
28.6
31.6

38.9
39.1

29.7



2252 B.L. CLAUSEN et al. 41

(9)

For M+ =M, we see that the Zo/Z
&

ratio is dependent
only on the Mo/M, ratio and not on the actual value of
the matrix element. The Zp and Z, coefficients are deter-
mined by simultaneously solving Eqs. (8) and (9) (where
we arbitrarily use the positive square root for Z&). Since
there are two solutions for Zo/Z, , there will be two sets
of Z coefficients independent of the pion normalization.
After the Z coefficients are known, Eq. (5) can be solved
for the normalization factor N; one for each Zo/Z, solu-
tion.

(ii) In some cases only two of the three cross sections
are well known, and it is necessary to assume some nor-
malization in the absolute method. We then have two
equations and two unknowns:

Z= (10)
M"M' —M"M~

J I J

where i and j (with i Wj ) are 0, 1 for isoscalar and isovec-
tor components and x and y are any two of the three
scattering reactions such that R, =+F and

R =Qo +/N+f 2—
In all the calculations, the ZI coefficient is mainly

determined by electron scattering, so that the ZI calcu-
lated here, with pion scattering cross sections included, is
not appreciably different from that calculated previously
(~F/MI ~ ) using only electron scattering cross sections. '

The magnitude of Z, is inverse1y proportiona1 to the size
of the electron scattering matrix element. The magnitude
of Zp, on the other hand, is determined relative to Z„
from the well known ratio between sr+ and vr cross sec-
tions as defined in R =o.+/o . Thus, the magnitude of
Zp is not proportional to the pion scattering matrix ele-

ment; on1y the norma1ization X is proportiona1 to this
matrix element.

tio varied by less than 10% over the range of scattering
angles. In ' C however, Mp and M, peaked at scatter-
ing angles that were about 15 different, making it
impossible to use some average Mp/M& ratio. In this
case the angular distribution of the data was fit
using M„=(MO+M, )/V'2 for the 11.7 MeV state,
M =(Mo —M, )/&2 for the 17.3 MeV state, and Mo for
the 15.2 MeV state.

Using these known values, Eqs. (5) and (8) are solved
for Zp, ZI, and N, where we assume that N=N+=N
Two different computational methods were used depend-
ing on what cross sections were known.

(i) If all three experimental cross sections are known
for a given state, we have three equations and three un-
knowns: Zp, ZI, and N. The Z coefficients can be deter-
mined independent of our ability to calculate absolute
pion scattering cross sections as long as the relative

and n. strengths are known. The following
ratio method is dependent only on the well known rela-
tive rr+/m cross section and Mo/M, ratio near b,3 3 res-
onance energies. The Zo/Z, ratio is found in terms of
R =cr+/cr from Eq. (5). The two possible solutions are

Zo M,++M, V'R

Z, M~+ yM, VR

IV. DISCUSSION OF RESULTS

Pion angular distributions calculated from MSUDwpI

using best fit parameters are compared to pion data for
stretched 8 transitions in Ni in Fig. 2 and for selected
stretched transitions in ' C, Si, and Fe in Fig. 4. Us-

ing peak cross sections from the fitted angular distribu-
tions, the Z coefficients tabulated in Table VI were ex-
tracted using transition densities calculated from HO and
WS wave functions. The quality of the data is insufficient
to resolve differences in the angular distributions, and
therefore we conclude that the data are fit equally well
with HO or WS wave functions. We also notice that the
extracted Zo and Z, coefficients are independent (within

experimental error) of whether HO or WS wave functions
were employed.

We used the pure T=1 transition to the J =6
E„=14.4 MeV state in Si as a check of our pion
scattering calculations. Using the oscillator parameter
and Z, coefficient determined from fitting the electron
transition to this state resulted in a normalization factor
of 1.0+0.1, which is consistent with other work where a
factor of 1.15 was found.

As discussed previously for T =1~T=1 transitions,
two solutions for Zp and ZI are always possible. In ' C
the ratio method yields two values of Zp and Z, for each
of the 11.7 and 17.3 MeV states. One set has normaliza-
tions of 1.1 and 2.6, respectively. (The other set, yielding
more unfavorable factors of 4.5 and 9.3, was rejected. )

103

$02 . +

I I I I I I I—

HO

WS

10'

100

& 10-'
b

14C

Si 14.
x

40

13.3 MeV
10
l h I l t t

8060
8, (deg)

100

FIG. 4. Pion angular distributions calculated with HO and
WS wave functions are compared to the data for stretched tran-
sitions in ' C, Si, and Fe. Open diamonds are the m data;
solid diamonds are the n. data.
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Because the m+ data is poor for the 11.7 MeV state, and
the m. data is poor for the 17.3 MeV state, the absolute
method was then used with an average normalization of
N =1.7 to determine the Z coeScients. The normaliza-
tion factor of 1.7 is different from the N = 1.4 determined
previously ' ' for ' C because a different harmonic os-
cillator parameter and ground state density were used in
the theoretical calculations. In addition, shell model cal-
culations by Millener and Kurath' predict two strong
T = 1 J"=4 states at 12.1 and 16.4 MeV. The lower ex-
cited state is calculated to be primarily a neutron
particle-hole excitation while the upper state is primarily
a proton excitation. This is also consistent with the ex-
perimentally extracted values of Zo and Z& shown in
Table IV and inconsistent with the rejected set based on
the large normalization factors.

In Fe, mixed isoscalar and isovector M8 transitions
from the T = 1 ground state to the excited states at 8.3,
8.9, 10.0, and 10.7 MeV also have two solutions. Since
we know the M8 transition to the E„=13.3 MeV state is
purely isovector (T =2), we assume that a normalization
of 2.1 is typical for Fe. Shell model calculations per-
formed for 8 states in a (g9&2fzzz) basis' predict the
lowest excited state to be predominantly a neutron excita-
tion which is consistent with the solution for the 8.3 MeV
state in Table VI, but in disagreement with Geesaman
et aI. ' We believe that our second solution which corre-
sponds to an almost pure isovector transition is unreason-
able, because it leads to a larger normalization factor of
2.9 and is in disagreement with results from shell model
calculations which generally predict the lowest state to be

almost pure neutron. For the 8.9, 10.0, and 10.7 MeV
states we reject the solutions with normalization of 0.1,
0.3, and 8.8, respectively.

In Ni the interesting feature is that most of the tran-
sitions are dominantly isovector with the exception of the
5.1 MeV state, which is dominantly isoscalar. However,
nuclear structure calculations are not available for com-
parison. A serious concern here is that the extracted nor-
malization factor is about twice as large as in ' C and

Fe. Even though the background is large compared to
the peaks shown in Fig. l, the uncertainties on the peak
cross sections are still much less than that needed to
bring the large normalization factor into agreement with
the light nuclei.

An interesting observation for purely isovector or
purely isoscalar stretched states is that the calculated
o(m )/o(~+) ratio is approximately equal to unity only
when using HO wave functions (see Table V). Experi-
mentally, this ratio is significantly different than unity in
a number of cases as shown in Figs. 2 and 4 and listed in
Table IV. In particular, the experimental m and m. +

cross sections for the 13.9 MeV state in Ni are definitely
not equal. (This observation is only important of course
if the 13.9 MeV stretched state is in fact a To+1 state,
which we have assumed. ) This feature can be attributed
to having the proton much more unbound for this high-
spin state than the neutron. When the unbound nature of
the nucleons is included in the WS wave functions, the
relative cross sections are better reproduced. This asym-
metry seen in the Ni data has been previously demon-
strated for giant quadrupole resonances.

TABLE VI. A tabulation of Z coefficients for stretched states extracted from simultaneous analysis of both electron and pion
scattering. The Z] coefficients have arbitrarily been chosen to be the positive solution. The states denoted by an asterisk were only
observed in pion scattering. In these cases, the Z coefficients were determined by the absolute method using an average N from the
other states in that nucleus, except in ' Fe where the N from only the strong 13.3 MeV state was used.

14Ca

28Sib

54Fec

E„(MeV)

11.7
15.2
17.3

14.4

8.3
8.9
9.8*

10.0
10.7
11.6*
13.3

5.1'
7.5
9.0
9.2

13.9

Zp

0.21+0.03
—0.20+0.01
—0.38+0.04

—0.32+0.02
—0.03+0.02

0.19+0.03
0.00+0.01
0.13+0.01

—0.02+0.01
—0.27+0.11

0.10+0.01
0.00+0.01

0.23+0.02
—0.01+0.01
—0.01+0.01

0.00+0.01
0.01+0.01

HO
Z]

0.30+0.01
0.07+0.03
0.22+0.02

0.03+0.04
0.49+0.01

0.21+0.01
0.16+0.01
0.01+0.02
0.18+0.01
0.12+0.02
0.04+0.02
0.37+0.01

0.02+0.03
0.20+0.01
0.15+0.01
0.14+0.01
0.20+0.01

1.7+0.3
1.7+0.3
1.7+0.3

1.0+0.2
1.0+0.2

0.8+0.2
2.3+0.3
2.1+0.3
3.9+0.6
0.9+0.6
2.1+0.3
2.1+0.3

5.5+0.6
5.2+0.6
6.5+0.9
7.9+2.8
4.2+1.1

Zp

0.19+0.03
—0.21+0.02
—0.39+0.04

—0.34+0.03
—0.05+0.03

0.18+0.03
—0.01+0.01

0.14+0.01
—0.03+0.01
—0.27+0.11

0.10+0.01
—0.02+0.01

0.23+0.02
0.00+0.01

—0.01+0.01
0.00+0.01
0.01+0.01

0.29+0.02
0.08+0.03
0.22+0.02

0.03+0.05
0.55+0.01

0.21+0.01
0.17+0.01
0.00+0.03
0.19+0.01
0.14+0.02
0.04+0.02
0.4120.01

0.02+0.03
0.20+0.01
0.14+0.01
0.14+0.01
0.21+0.01

2.0+0.3
2.0+0.3
2.0+0.3

1.0+0.2
1.0+0.2

0,8+0.2
2.4+0.4
2.0+0.3
3.9+0.7
1.1+0.7
2.0+0.3
2.0+0.3

5.7+0.6
5.5+0.6
6.5+0.9
8.0+2.6
3.8+1.1

'See Refs. 15 and 43.
bSee Ref. 5.
'See Ref. 17.
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The wide variation in normalization factors observed
in Table VI is not understood, suggesting that we do not
completely understand pion scattering from nuclei. In
general, there could be ambiguities associated with the
transition density, the optical model potential, the
strength of the spin-orbit interaction in the nuclear medi-
um, or even the DWIA itself. Since the transition density
is taken from electron scattering measurements and
AN ~36'co contributions are negligible as discussed ear-
lier, uncertainties associated with the spin density are
much smaller than that required to account for the large
normalization factors, particularly for Fe and Ni.
Moreover, from a comparison of results using HO and
WS wave functions shown in Table VI changes in the ra-
dial wave function due to the fact that the proton and
neutron wave function are different, particularly for
states unbound to protons or neutrons, cannot account
for the large variation in the normalizations. Reasonable
changes in the optical potential parameters in Table III
did not affect large changes in the total cross section. Al-
though the total pion cross section is sensitive to the os-
cillator parameter b, values were taken from fitting the
electron scattering data in all cases. The parameters
defining the ground state matter distribution were taken
from fitting the pion elastic scattering and the ground
state charge radius from elastic electron scattering. Al-
though the total cross section is sensitive to these param-
eters, we have deduced them in the standard way and em-
ployed them in a systematic manner.

The remaining uncertainty is the strength of the spin-
orbit interaction in the nucleus, but it still would be
surprising to see such large variations in the strength due
to the nuclear medium in passing from Fe to Ni ~ Al-
though, the quality of the pion data is not good, it is
sufficient on the average to conclude that there is an
unexplained enhancement of the observed pion cross sec-
tion for these transitions.

In a shell model space where the stretched transitions
are excited by a one-body operator and invoking closure,
the square of the isoscalar and isovector amplitudes sepa-
rately obey certain sum rules. ' For the To states the
sum rule is

1.0

0.8
0S

S0.6

0.4

0.2

0,0

S0

A
t

s,' S,

Se

Sp

14C 60 Si Fe Ni

1.00

tions. Note that in general n =2J for a full orbital.
Equation (13) is also the sum rule for the isoscalar Z
coefficients, g;(Zo ), to To states only.

The sums of the squares of the Z coefficients derived
using WS wave functions and the limits given by the sum
rule from Eqs. (11), (12), and (13) are tabulated in Table
VII. We have also tabulated in Table VII the ratio
S,=g(Z, ),„ /g(Z, ),h„. As shown graphically in Fig.
5, the total isoscalar and isovector strength is
significantly less than that predicted by the sum rule
(S &&1), with the isoscalar strength quenched even more
than the isovector strength. Including MEC effects for
electron scattering increases the calculated matrix ele-
ments by 15% to 20%, which increases the quenching in
all cases. '

The isoscalar strength in Ni was found to be only
22% of the isovector strength. If the questionable new
8 isoscalar state of 5.1 MeV (not observed in electron
scattering) is not included, the isoscalar strength would
be less than 1% of the isovector strength.

To —1
g(Z', ) = n„+ nz

For To+ 1 states the sum rule is
r

0.75
M

0.50
M

g(Z', ) = 1 2

2J To+ 1
(12) 0.25

The total sum rule for the isovector Z coefficients is then 0 00

14C 180 a8S' 54F 60N.

g(Z', ) = (n„+n )= (13)

Further constraints on the Z coefficients are g;(ZOZ'i )

=(n„—n )/2J, g, (Z„') =n„/J, and g, (Z') =n /J.
We define n„and n as the number of neutrons and pro-
tons respectively in the orbital j& from which the nucleon
is promoted and n =n„+n, To as the isospin of the nu-
clear ground state, and J=2j&+1 for stretched transi-

FIG. 5. A bar graph showing the quenching of isoscalar (So)
and isovector (Sl) strengths for the six nuclei where both elec-
tron and pion scattering to the stretched states have been car-
ried out. No quenching corresponds to 1.0. The HO values
plotted are total So and total S, from Table VII. Also plotted is
a display of the ratio of isoscalar to isovector quenching, where
So /S 1

is from Table VII. Equal quenching corresponds to 1.0.
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TABLE VII. Sums of Z coefficients squared. The experimental values are sums for HO wave func-
tions from Table VI. The theoretical values are calculated from the sum rules of Eqs. (11)-(13). The
ratio of experiment to theory is defined as S2 =g(Z', )„~/g(Z2 ),q„. For completeness, we have includ-
ed the two other even-even nuclei, ' C and ' 0, where the stretched states have been studied by both
pion and electron scattering (Refs. 6, 7, 45, and 46).

Experimental
yz' yZ'

Theoretical
gZ' gZ' S2 S S'/S'

12C

14C

16p

28S1

54Fe

0
1

Total

1

2

Total

0
1

Total

0
1

Total

1

2

Total

2

3

Total

0.65

0.23

0.19

0.10

0.14

0.05

0.56

0.14

0.17

0.31

0.42
0.42

0.24
0.24

0.12

0.14

0.26

0.10
0.13

0.23

0.65

0.23

0.19

0.10

0.16

0.05

0.56

0.29
0.34
0.31

0.42
0.42

0.24
0.24

0.24
0.37
0.29

0.15

0.39
0.23

1.16

0.74

0.44

0.42

0.53

0.22

V. CONCLUSIONS

The normalization factor for acceptable solutions to
the pion scattering and electron scattering data varied
from 1 to 5 for the four nuclei studied. The observation
that this normalization factor departs from unity by such
large factors suggest that there are serious discrepancies
with the model. Although we understand the pion-
nucleon interaction in free space quite well, it appears
that the DWIA model of the pion-nucleon interaction in-
side the nucleus is more uncertain. However, the extrac-
tion of Zo and Z& from the ratio of m. + to m cross sec-
tions is independent of this ambiguity, since it is only the
relative cross section that matters. It was determined
that the ratio of the total isoscalar to the total isovector
strength ranged from Sc/S, =0.2 to 1.2.

The use of WS wave functions in the pion scattering
analysis did not substantially change the Zo/Z, ratio
from that found using HO wave functions. However, the

actual magnitude of Zo is larger, since it is based on the
larger Z& calculated using WS wave functions on electron
scattering data. ' For all nuclei, the use of WS wave
functions predicts unequal m+ and m cross sections for
unbound isovector states and better reproduced the
asymmetry in the isovector 13.9 MeV state of Ni. The
prediction of asymmetric cross sections suggests a need
for care in making isospin assignments based on equal m+

and m. cross sections.
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