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The momentum distribution of nucleons in colliding ' 0+' 0 system is studied with the Vlasov

equation in the incident energy region of 20—100 MeV/nucleon. A shift of the momentum distribu-

tion to higher momenta is observed until the time of fu11 overlap of two nuclei. It is attributed to
the acceleration of the colliding nuclei, and discussed in terms of the newly defined potentials acting
between two excited nuclei. The acceleration of colliding excited nuclei is even larger than that in

the elastic channel at 40-100 MeV/nucleon. This is due to the dynamical change of the density dis-

tribution avoiding high density.

I. INTRODUCTION

The momentum distribution of nucleons in colliding
nuclei is an important quantity in the intermediate-
energy heavy-ion collision, for instance, for the study of
the high-energy particle emission such as the hard pho-
ton production. To calculate the momentum distribution
in colliding nuclei, we need a specific theory that is mi-
croscopic and is able to include excitation of nuclei. The
time-dependent Hartree-Fock (TDHF) method and the
Vlasov equation' which is the classical limit of the
TDHF are the candidates of such theories and succeeded
at low energies. In the intermediate-energy region where
the effect of the residual interaction or the two-body col-
lisions becomes important as the incident energy in-
creases, the extended version of the TDHF and the
Vlasov-Uehling-Uhlenbeck (VUU) equation ' become
more adequate.

Although these theories are one-body theories, namely,
they describe the time evolution of the one-body density
matrix or the one-body phase-space distribution function,
we consider that it is important to investigate the results
by these theories from the viewpoint of the nucleus-
nucleus relative motion in the intermediate-energy
heavy-ion collisions. For example, in the initial stage of
the collision, if the energy does not dissipate strongly, it
seems to be plausible to expect that the attractive inter-
nucleus potential causes the shift of the momentum dis-
tribution to the higher momentum side. However this
problem, namely, the effect of the nucleus-nucleus in-
teraction on the momentum distribution, has not been so
much investigated previously.

In this paper we report the results of the study with the
Vlasov equation of the momentum distribution of the
' Q+' 0 system in the incident energy region of 20—100
Me V/nucleon.

For this study we have introduced a new definition of
the potential between two colliding excited nuclei. In or-

der to define the nucleus-nucleus relative motion, we have
to define the center of each nucleus. The use of the test
particle method in solving the Vlasov equation gives us
one definition to define the center of each nucleus.
Namely, we can define the excited nucleus A by the ag-
gregate of the test particles which originally belonged to
the nucleus A, and the center of mass of these test parti-
cles gives the center of nucleus A. This definition is
meaningful when the number of exchanged test particles
are not so large. We will see later in this paper that this
condition is satisfied even in the strongly overlapping re-
gion.

This definition to separate two nuclei gives us the
canonically conjugate relative coordinate and momentum
IR, P). By the use of these canonical conjugates, it is
reasonable to consider that the acceleration of colliding
nuclei can be estimated by the potential P'defined as fol-
lows:

p2
+ p'

2p

This calculation procedure to get the acceleration poten-
tial f' is analogous to the canonical moving wave-packet
method, ' which gives the nucleus-nucleus potential in
the elastic channel. Whether the acceleration of colliding
excited nuclei is larger than that in the elastic channel or
not is not a trivial problem. The dynamical change of
density distribution works to lower the potential energy
and increases the acceleration, while the excitation of the
colliding nuclei results in the energy loss of the nucleus-
nucleus relative motion and decreases the acceleration.
In our calculation, for relatively high energies E;„,=40
and 100 MeV/nucleon, the acceleration is even larger
than that in the elastic channel, and this large accelera-
tion is expected to increase the high-energy particle pro-
duction cross section.

When the two-body collisions are turned on, we cannot
define the canonical conjugates in a straightforward way,
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II. VLASOV EQUATION
AND TEST PARTICLE METHOD

The Vlasov equation, which is obtained by carrying out
the Wigner transformation from the TDHF equation and
taking the limit A~O, is written as follows:

Df of +~ Bf BU tjf
Dt Bt m Br Br Bp

(2. 1)

because the path of each test particle loses sense due to
the two-body collisions. So our definition of the potential
between colliding nuclei is possible for the Vlasov equa-
tion but not for the VUU equation. However, in the
low-energy region where the effects of two-body collisions
are not so large, it is expected that the main features in
the Vlasov dynamics remain and that studying the
momentum distribution of colliding nuclei from the
viewpoint of nucleus-nucleus relative motion will be a
useful tool to understand the VUU analyses of nuclear
dynamics. In order to confirm explicitly that this expec-
tation is reasonable, we will show in Sec. VII an example
of the comparison between the solutions of the Vlasov
and the VUU equations at the incident energy E;„,=20
MeV/nucleon.

This paper is organized as follows. In Sec. II, the
Vlasov equation and the test particle method are re-
viewed briefly, and the utility of the Gaussian packet
which represents a test particle is discussed in Appendix
A. In Sec. III, nucleon momentum distributions in the
colliding ' 0+ ' 0 system are shown and we introduce a
new definition to identify two excited nuclei even in the
situation of the strong overlap of the two nuclei. In Sec.
IV, the acceleration of the colliding nuclei is estimated.
We compare the acceleration in the Vlasov dynamics and
that in the elastic channel calculated by the use of canon-
ical moving wave packet. In Sec. V, we calculate the po-
tential between excited nuclei, and discuss the origin of
the large acceleration. In Sec. VI, we give an energy dis-
sipation formula. Finally in Sec. VII summary and dis-
cussion are given.

Vz(r, —r2)= V2[(1—M) —MP P, ]exp
(r, —r2}

p
t3

VDD(r, —r2}=—(1+P )[p(r, )] 5(r, —r2),

'(2.3)

d pp(r)= f f(r, p),
(2M}

(r —r')
v (r —r') =

—,
' V2exp

p
0+2

16

(2.4)

It is to be noticed that the Majorana exchange mixture
M =0.2 makes the exchange contribution vanish and the
mean field does not depend on momentum.

The Vlasov equation was solved by the test particle
method' by assigning to each test particle a Gaussian
packet with the spatial and momentum spread hr =0.5
fm and bp/R=O. 15 fm ', respectively. Namely, the dis-
tribution function f(r, p} which satisfies the Vlasov equa-
tion is obtained by discretizing it by the test particles and
solving the classical paths of them. The distribution
function f(r, p), and the density p(r) are discretized as
follows,

with V2= —624.46 MeV, M=0.2, IM=0. 6791 fm, and
t3=17270 MeVfm, o.=1, respectively. This force is
constructed such that the nuclear matter properties are
the same as in the case of the Skyrme VII force; namely,
at the saturation point, E/A = —15.77 MeV, k+=1.29
fm ', and the incompressibility E =368 MeV. For the
' 0 nucleus, this force gives a binding energy of —135.62
MeV and a root mean square (rms) radius of 2.63 fm
for the double closed-shell configuration of the harmonic
oscillator bases with the size parameter v =m to/
2fi=0. 1623 fm . From this effective force, we get the
mean-field potential as follows:

U(r)= f d r'v(r r')p—(r')+P[p(r)] +',

Here f(r, p) is the Wigner phase-space distribution func-
tion, and U(r) is the mean-field potential which is the
Wigner transform of the Hartree-Fock potential. Df /Dt
means the increasing rate of the distribution function
along the classical path, determined by the Newton equa-
tion,

32ND

f (r,p)= g d(r —r, , p —p;),Xo,.
32NO

p(r)= g d (r —r, ) .
o i=1

(2.5)

dr ~ dp BU
dt m

'
dt Br

(2.2)
Here d(r, p) and d (r) are the Gaussian packet and the
spatial Gaussian, respectively,

Equation (2. 1) means that f (r, p) is constant along the
classical path —the classical Liouville's theorem. Pauli's
exclusion principle corresponds to f (r, p) ~g (g is spin-
isospin degeneracy) in the Vlasov dynamics, and if this
condition is satisfied at the initial time, the Pauli princi-
ple will not be violated at later time due to the Liouville's
theorem.

The effective nuclear force we used is a modified ver-
sion of the Skyrme VII force or the Bonche, Koonin, and
Negele (BKN) force. Its two-body part and density-
dependent part are given by

d(r, p)=
ArAp

1
exp

2

3

'2

2
'

(2.6)

d (r)= 1

V 2nbr
1 r

exp
2 Ar

and Xo is the test particle number per nucleon. The clas-
sical paths of test particles are determined by Newton's
equations with a modified mean field U,



41 NUCLEON MOMENTUM DISTRIBUTION IN COLLIDING. . . 2149

dr
dt

pi dpi.
m' dt

aU
t)r z,.

(2.7)

g(k, ) (fm1

-25

The need to replace U in Eq. (2.2) by U comes from the
fact that the Wigner function f was discretized by the
Gaussians to get a smooth density and an appropriate
mean field. The explicit form of U is shown in Appendix
A.

For the initial condition of a single ' 0 nucleus, the
Thomas-Fermi distribution was solved self-consistently,
and the phase-space coordinates of test particles were
determined by the Monte Carlo method. The Thomas-
Fermi distribution p(r) of a single ' 0 is shown in Fig. 1.
This distribution gives the binding energy —115 MeV
and the rms radius 2.63 fm. The spatial spread hr =0.5
fm was chosen as to reproduce the rms radius of the har-
monic oscillator closed-shell configuration with
v=0. 1623 fm, the density distribution of which is also
shown in Fig. 1. The number of the test particles per nu-
cleon No was chosen to be 50. We have checked that the
results did not change appreciably when No was chosen
to be 100.

E/A = 20Me

E/A = 40M

-3

E/A =1

0 1

/

0

"15

0 1

3
k (fm )

3
k, (fm )

III. MOMENTUM DISTRIBUTION

(3.1)

Only head-on collisions are treated and k, is the z com-
ponent of the single nucleon wave number where z axis is
along the beam direction. The time evolution is
displayed at three times of which, the first is before the
contact of nuclei, the second is at the complete overlap,
and the last is after the full overlap. For the sake of con-
venience we show in Fig. 3 the density distribution p(z)

Figure 2 shows the time evolution of the momentum
distribution g(k, ) in the colliding ' 0+' 0 system at in-
cident energies F.;„,=20, 40, and 100 MeV/nucleon.

d rdp„dp p,
g(k, )—= I f(r p), k, =—'

(2M)'

FIG. 2. Time evolution of the nucleon momentum distribu-

tion g(k, ) of colliding ' 0+' 0 system for incident energies

E;„,=20, 40, and 100 MeV/nucleon. The dotted, solid, and
dashed lines show g(k, ) at the initial time, at the complete
overlap and after the full overlap, respectively. The times for
the dotted, solid, dashed lines are 0, 40, 80 fm/c for E;„,=20
MeV/nucleon; 0, 28, 56 fm/c for E;„,=40 MeV/nucleon; 0, 18,
36 fm/e for E;„,=100 MeV/nucleon, respectively. Shift to the
higher momentum side at the time of the complete overlap is

clearly seen.
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FIG. 1. Thomas-Fermi density distribution p(r) of single ' 0
(solid line). Density distribution of the harmonic osci1lator
closed-shell configuration with v=0. 1623 fm (dashed line) is
also shown for comparison. Both of these distributions give the
root-mean-square radius +(r') =2.63 fm.

FIG. 3. Time evolution of the nucleon density distribution
p(z) of colliding ' 0+' 0 system. The incident energies and the
time steps are the same as in Fig. 2. The fluctuations are due to
the Monte Carlo sampling of the initial condition.
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gg(k, ) (fm)
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[=p(x =y =O,z)] at the same three times. The number
of the test particles which build up the density p, -0.15
fm can be estimated as

F11= -30, (d ) = —, (3.2)
NOP& 1

2( 2mb, r )

where (d ) expresses the mean value of the density
which is contributed by a single test particle [see Eqs.
(2.5) and (2.6)]. From this number, the density fluctua-
tion is about I /Qn, -0.18, and the fluctuation in Fig. 3
is in this range.

We note two characteristic features of g(k, } in Fig. 2.
The first is that g (k, ) at the full overlap time has an ap-
preciably increased high-momentum component, if com-
pared to g(k, ) before the contact of nuclei. The second
is the appearance of the so-called Pauli pocket ' after
the contact of nuclei, which means the depression of
g (k, ) around k, =0. The study of the first characteristic
is the aim of this paper.

In the case of the Vlasov equation, the use of the test
particle method for its solution allows us to identify at
any time to which nucleus each test particle originally
belonged. Therefore, by grouping all such test particles
which originally belonged to one nucleus A, we can
define at any time the nucleus A which has suffered exci-
tation because of the collision with the other nucleus.
This definition of the excited nucleus may lose its mean-
ing long after the collision on account of the occurrence
of the (many) nucleon transfer. However, if used at least
before the maximum overlap time of nuclei, this
definition, we consider, gives us quite useful information
on nuclear dynamics. On the other hand, if we defined

the excited nucleus A by the aggregate of test particles
which locate spatially on the same side as the original nu-
cleus A with respect to the center of mass, we would
meet a diSculty that this excited nucleus A would not be
able to reach the other side spatial region with respect to
the center of mass by passing through the other nucleus
8.

The distribution function of a nucleus a ( = A or 8) is
given by

f (r, p)= gd(r —r, , p —p, ),1

o isa
(3.3)

and satisfies within the approximation of test particles,

Df df tjf
Dt dt m Br

U ~fa
Br Bp

(3.4)

In Fig. 4 we show the momentum distribution g„(k, )

of the nucleons belonging to one ' 0 nucleus A defined in
the above-mentioned way. Of course there holds
g(k, )=g„(k, )+gs(k, ). The comparison of Figs. 2 and
4 shows clearly that the k, & 0 part of g (k, ) is almost ex-
actly the same as g„(k, } except the region k, =0 at the
time steps even after full overlap of nuclei. This indicates
undoubtedly that our definition of the excited nucleus is
very adequate and useful even after the full overlap of nu-
clei.

IV. ACCELERATION OF COLLIDING NUCLEI

The increase of the high momentum component of
g„(k, ) or even the shift of g„(k, } to higher momentum
side at the full overlap time of nuclei will be naturally at-
tributed to the acceleration of colliding nuclei due to the
attractive force between them. Since we have the
prescription to classify the test particles belonging to
different nuclei, we can calculate the center-of-mass ki-
netic energies of the individual nuclei, the sum of which
is the internucleus relative kinetic energy T„since the
momentum of the total center of mass is zero;

p pA pB
T, = = +

2P 2N~ m 2NB m

E/A = 100MeV

5)

-1

15 -.

10-

t(:, (fm )
-1

3

NBP~ —N~PBp=
N~+NB

d'rd' 1Pa=
2 &

3pfa r&p =N +pi
2vrA 0 iEa

(4. 1)

3
k, (fm )

FIG. 4. Time evolution of the nucleon momentum distribu-
tion of the "single nucleus A" g~(k, ) of the colliding ' 0+' 0
system. The incident energies and the time steps are the same
as in Fig. 2. At the higher momentum side, g„(k, ) is almost ex-
actly the same as g(k, ). This means that the transferred nu-
cleons have rather low momenta.

Here a means A or 8, p=N„Nsm /(N„+Ns) is the re-
duced mass, and in the ' O+' 0 case, N~ =NB=16.
The amount of the acceleration is measured by the in-
crease of the relative kinetic energy, T„—E, where E is
the initial (or incident) relative kinetic energy.

We show in Fig. 5 the quantity f =E—T„as a func-
tion of R (t) instead of the time t Here R (t) is th. e rela-
tive distance at the time t between the centers of mass of
two nuclei, and there of course holds a relation
dR/dt =p/p,
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the shift of the peak points of the momentum distribu-
tions are approximately 0.29, 0.26, and 0.21 fm ' for
E;„,=20, 40, and 100 MeV/nucleon, respectively. Al-
though in Fig. 4 the momentum distributions at the full
overlap time of nuclei are not simply obtained by shifting
the initial momentum distributions, we can say that the
correspondence between t of Fig. 5 and time evolution of
the momentum distribution in Fig. 4 (or Fig. 2} is good.

V. POTENTIAL BETWEEN EXCITED NUCLEI

Due to the energy conservation, the quantity
P( =E —T„) can be expressed as the sum of the excita-
tion energies (b,e„+b,es ) of two nuclei and the potential
energy V between two excited nuclei;

E = T„+P = T„+V+ he„+b.e~ . (5.1)

R=R~ —R~,

R = tf (rp)= gr. .
(2M) NoN, , ~

(4.2)

The point R (t)=0 corresponds to the full overlap of nu-
clei. In Fig. 5 only the collision process until the full
overlap of two nuclei is analyzed. For comparison, we
have also displayed in this figure the potential energy
V,~(R) of the ' 0+' 0 elastic channel which is calculat-
ed by the use of the canonical moving wave-packet
method ' adopting the same nuclear force. Needless to
say —V„(R) expresses the increase of the relative kinetic
energy at the internucleus distance R in the elastic chan-
nel.

From Fig. 5 we see the potential 0'is almost the same
as V,&

at the tail region. This is very natural because for
the tail region we can ignore the excitation of the collid-
ing nuclei and the potential f'becomes the usual double-
folded potential, as V,] does. When the overlap of nuclei
is large, we see the acceleration of the nuclei is nearly
equal to that in the elastic channel for E;„,=20
MeV/nucleon, and even larger for E;„,=40 and 100
MeV/nucleon. This point is discussed later in Sec. V.

At the time of the full overlap of nuclei, the depth of f'
which is about —160 MeV means the acceleration is
about 20 Me V/nucleon. If we simply convert this
amount of acceleration into the shift of the momentum
distribution to higher momentum side, the amount of the
shift is about 0.20, 0.16, and 0.10 fm ' for E;„,=20, 40,
and 100 MeV/nucleon, respectively. In Fig. 4 we see that

FIG. 5. The acceleration potential energy O'=E —&, of the
relative motion of the colliding ' 0+ ' 0 system for incident en-

ergies E;„,=20 and 100 MeV/nucleon (solid line). t}' for

E;„,=40 MeV/nucleon is very similar to that for E;„,=20
MeV/nucleon and so is not shown here. The elastic potential

V,&
calculated by the use of canonical moving wave-packet

method is also shown for comparison (dotted line).

d'rd'p p' f (r, p)—
(2M}3 2m 2N m

+—,
' '~ r'p r U r —r'p r'

+— f d3r[p (r)]2+&

d p
p (r) =f,f (r, p) = g d (r —r, ),(2M} No, .~

(a=A or B) . (5.2)

The explicit form of V can be written as

V= f13r d3r'p„(r)v(r —r')pz(r')

+ 2+ fd'rI[p(r}]" —[pA(r}]"

(5.3)

In the case of 0.=1, this form reduces to the usual
double-folding potential;

V= f d rd r'p„(r)p (rs')[v(r —r')+Pp(r)5(r —r')] .

(5.4)

The absence of the exchange potential here is of course
due to our choice of effective nuclear force with Majora-
na mixture M =0.2. In Fig. 6 we show the potential Vas
a function of R (t) instead of the time t, like in Fig. 5.

An important property of V is shown in the following
relation stating that V gives the driving force of the rela-
tive motion,

dp BV
dt BR '

a Na a
BR N„+N,. „Br, N„+N~, .~~ Br,

(5.5)

a proof of which is presented in Appendix B. Equation
(5.5) does not result in the conservation of the quantity

The excitation energy of the nucleus a is the increase of
the internal energy,

Lie =e (t) e(t =——Do),
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—100-
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full overlap of nuclei even at E =20 MeV/nucleon.
Are these large excitation energies reasonable? To

check this, we estimated the excitation energy in the
asymptotic region (R ~ oo ) after the collision. Long
after the collision, our definition to separate two nuclei is
different from the natural definition because some test
particles are necessarily exchanged or transferred. So we
have to adopt another definition to separate two nuclei
after the collision. A natural way to define the total exci-
tation energy of nuclei long after the collision is to adopt
the following definition given, for example, in Eq. (6.40)
in Ref. 11;

—200-
Ekin

tot coll

m d3 [J(r)]
coll (5.6)

—300-- d pJ(r)=J,~f(r, p) .
(2m')' m

FIG. 6. The potential energy V between two excited ' 0 nu-
clei for incident energies E,„,=20, 40, and 100 MeV/nucleon.

E'"' can be considered to be the total excitation energy.
In our calculation E,",'ll is approximated as follows:

T„+V. This is because the dependence of V on r; is not
only through R (which is a special linear combination of
r, 's [see Eq. (4.2)]) and hence the time dependence of Vis
not only through R.

The reason why the acceleration in the Vlasov dynam-
ics is even larger than that in the elastic channel in the
relatively high-energy region (40 and 100 Mev/nucleon),
may be due to the (time-dependent) change of the densi-
ties of nuclei which avoid becoming so high as in the elas-
tic channel. In the treatment of the elastic channel by the
use of the canonical moving wave-packet method, al-
though the Pauli principle has, in the low-scattering ener-
gy region, an effect to make the density of the system
lower than the simple sum of the densities of two nuclei,
the restriction to keep the nuclei in their ground states
makes the density of the system necessarily high especial-
ly as the scattering energy gets higher. Due to the densi-
ty dependence of this stiff nuclear force, a high nuclear
density gives us a less attractive potential between nuclei.
On the other hand, in the present Vlasov equation, by ex-
citing the colliding nuclei, the system can avoid getting
the density high, and thus we get the deeply attractive
potential between the excited nuclei. This deeply attrac-
tive potential V makes the acceleration potential P'deep.
Figure 3 indeed shows that the density of the system ac-
tually avoids becoming high. The maximal density at the
full overlap time is at most 0.21 fm even at E =100
MeV/nucleon, while the density in the elastic channel,
calculated by the use of the canonical moving wave-
packet method, reaches 0.239, 0.256, and 0.298 fm at
E =20, 40, and 100 MeV/nucleon, respectively.

By definition ( V = V he „—b,—es ), V is always deeper
than P' in Fig. 5. We see from the difference O' —V that
the excitation energy of one ' 0 nucleus reaches about 55
MeV, namely, about 3.4 MeV per nucleon at the time of

Ek'll= d3r™pr V r 2

The results are E'"'=86, 112, and 142 MeV for E;„,=20,
40, and 100 MeV/nucleon, respectively, in the asymptot-
ic region. These results do not contradict the previous
TDHF calculations. For example, in Ref. 12, for the im-

pact parameter b =4 fm, E'"' are calculated to be 149
and 168 MeV for E;„,=24 and 36 MeV/nucleon, respec-
tively, and in Ref. 13, for the angular momentum I =0,
E'"'=64 Mev for E;„,=12 Mev/nucleon.

The large excitation energies at the time of full overlap
of the nuclei calculated by the use of our definition are,
we consider, partly due to the following reason. The
Vlasov equation is a classical equation and lacks the con-
cept of channel. It should be noticed that in the Vlasov
dynamics we cannot distinguish the deformation of the
phase-space distribution function f according to the an-
tisymmetrization from that to the real excitation. The
former occurs even in the elastic channel. Thus the exci-
tation energy calculated with our definition contains the
contribution due to the deformation of f caused by the
antisymmetrization effect.

VI. ENERGY DISSIPATION

The dissipation of the total (kinetic and potential) ener-
gy of the internucleus relative motion which is the How of
the energy from the relative motion to the excitation (or
heating) of the colliding nuclei can be analyzed by using
the following formula:
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dbe de BU& (r)
ar

= fd r[J (r) p—(r)V ]

dR P
dt Nm

d pJ (r)= f 3
~f (r, p),(2M)' m

U& (r)= f d r'u(r —r')p&(r')

V =
a

+0[[p(r}]"' —[p.(r)]"'],
(a,P}=(A, B) or (B, A) . (6.1)

Xpp(r'), (6.2)

which is of the form of the folding potential generated by
the nucleus P. But the density which is used in the
density-dependent effective nucleon force is not p(r) but
p(r)+p (r). At present we do not know the meaning of
this additional density p (r).

VII. SUMMARY AND DISCUSSION

In this paper we 6rstly calculated the momentum dis-
tribution of nucleons in the ' 0+ ' 0 colliding system in
the framework of the Vlasov equation in the incident en-
ergy region of 20—100 MeV/nucleon. We found that, un-
til the full overlap time of the nuclei, the momentum dis-
tribution continues to shift to higher momentum side.

In order to analyze this calculated result, we intro-
duced a new prescription to identify two colliding nuclei
even in the strongly overlapping situation. This prescrip-
tion therefore enables us to trace how two nuclei move
and change during the collision process. We calculated
the kinetic energy of the internueleus relative motion and
found that two nuclei are accelerated during the collision
process until the time they overlap fully. The accelera-
tion energy is about 160 MeV at the time of the full over-
lap of the nuclei in the center of mass system for all the

A proof of this formula is given in Appendix C. J (r) is
the nucleon current of the nucleus a and p (r}V is the
collectively (or uniformly) translational part of J (r). If
we regard U& (r) to be the one-body force generated by
the nucleus P, this formula means that the excitation of
the nucleus a is due to the one-body force generated by
the nucleus P that acts on the nucleonic motion of the nu-

cleus a which is not collectiuely translational. The nu-
cleonic motion which is not collectively translational can
include not only the thermal random motion but also the
collective motions like vibrations and rotations. Thus
Eq. (6.1) presents a quite reasonable formula for calculat-
ing the energy dissipation.

Here, however, there is a question whether the inter-
pretation of U& ~(r) is fully acceptable or not as the
one-body potential generated by the nucleus P. This
question comes from the part of U& (r) due to the
density-dependent force. For example, in the case of
tr =1, Utt (r) takes the following form,

Up (r)= fd3r'ju(r —r')+P[p(r')+p (r')]5(r —r')]

incident energies 20—100 MeV/nucleon, and it is con-
sistent roughly in magnitude with the amount of the shift
of the momentum distribution to the higher momentum
side. We calculated the acceleration energy in the case of
the elastic scattering by using the same effective nuclear
force in the framework of the canonical moving wave
packet, and found that it is at most 200 MeV at the time
of the full overlap of the nuclei for E,-„,=20
MeV/nucleon and that it decreases as E;„,gets higher.

Because of energy conservation, the potential V be-
tween two excited nuclei is obtained by substracting the
relative kinetic energy and the excitation energies from
the incident energy. Thus the value of —V is the sum of
two terms; the increase (or the accelerated amount) of the
relative kinetic energy from its incident value and the ex-
citation energies of two nuclei. In the present case where
the density-dependent part of the effective nuclear force
is due to the zero-range three-body force with 0.=1, this
potential V was found to be expressed just in the form of
the double-folding potential. An important property
which V possesses is that it actually gives the driving
force for the internucleus relative motion; namely, the
negative of the gradient of V with respect to the internu-
cleus relative distance vector is equal to the time deriva-
tive of the internucleus relative momentum vector. At
the full overlap time of the nuclei, since as mentioned
above the increased amount of relative kinetic energy is
about 160 MeV and the sum of the excitation energies is
about 110 MeV, the depth of V is about 270 MeV. The
reason why V gets very deep was attributed to the
dynamical change of the density of the system in the
Vlasov dynamics. Namely, the density of the system for
calculating Vis fairly lower compared to that in the elas-
tic channel, since the excitation of nuclei works to make
the density lower than in the elastic channel. This deep
potential V causes the acceleration effect which remains
large even for relatively high incident energies.

Finally, we derived a formula which shows that the ex-
citation of each nucleus is due to the force by the one-
body potential generated by the other nucleus acting on
such nucleonic motion that is not collectively translation-
al.

In discussing the production of hard photons in the
intermediate-energy heavy-ion collision, Yabana and
Horiuchi assumed that the colliding excited nuclei are ac-
celerated by the internucleus potential which has similar
depth as the elastic scattering potential and argued that
this acceleration of the internuclear relative motion
causes the increase of the high momentum component of
the momentum distribution. The present results of our
study by the Vlasov equation gives a strong support to
their basic assumptions.

The results that the increase of the high momentum
component of the momentum distribution is largely due
to the acceleration of the internucleus relative motion,
suggests strongly that the momentum distribution is
largely influenced by the property of the effectiv nuclear
force whether it gives a deep internucleus potential or
not. This viewpoint has not been discussed before in
selecting the e8'ective nuclear force to be used in the
study of the intermediate-energy heavy-ion reaction. The
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effective nuclear force we adopted here gives the volume
integral per nucleon pair jz of the ' 0+' 0 elastic chan-
nel potential to be 267, 263, and 234 MeVfm for
E;„,=20, 40, and 100 MeV/nucleon, respectively, while

recent optical model analyses of the ' 0+' C elastic
scattering give jz to be about 300, 230, and 170 MeV fm

for E;„,=20, 40, and 100 MeV/nucleon, respectively. '

Thus we consider that at least for E;„,=20 and 40
MeV/nucleon, the efFective nuclear force we adopted is

not so much unreasonable, but for E;„,= 100
MeV/nucleon it is too attractive. On the other hand,
simplified local Skyrme interaction whose matter proper-

ty is the same as Skyrme VII,

U(r)=a +Pp(r} p(r}
Po Po

a= —119 MeV, P=68.2 MeV, o =1,
gives jv of the ' 0+' 0 elastic channel potential to be
179, 176, and 136 MeVfm, for E;„,=20, 40, and 100
MeV/nucleon, respectively, and these values are too
small. (This point is discussed in detail in Ref. 15.)

A distinctive character of the effective nuclear force we

adopted is that this force does not give rise to the ex-

change potential in the Hartree-Fock potential whose

Wigner transform is the mean-field potential of the
Vlasov equation and does not depend on momentum vari-
able. Although this character is quite unsatisfactory in
the standard sense of nuclear physics, most studies of the
heavy-ion reaction were made by the use of effective nu-
clear forces with such character. The exchange potential
is indispensable when the energy dependence of the mean
field makes an important contribution. The very weak
energy dependence of jv of the calculated elastic channel
potential discussed above is mainly due to the character
of the present effective nuclear force that does not yield
the exchange potential. It is one of our future tasks to
make similar studies as the present one by using such
effective nuclear force which yields proper exchange com-
ponent of the mean-field potentials.

The density dependence of the effective nuclear force
we adopted may be too strong. This force is usually
classified to be a stiff force since it gives E=368 MeV for
the incompressibility of the nuclear matter. As we dis-
cussed in Sec. V the potential between excited nuclei de-
pends strongly on the action of the density-dependent
term of the effective nuclear force. Thus it is also one of
our future tasks to investigate the effect of the stiffness of
the effective nuclear force on the dynamical process we
studied here.

Our analysis of the dynamical process in this paper
largely depends on the newly introduced prescription to
identify two colliding nuclei even in the strongly overlap-
ping situation of two nuclei. The introduction of this
prescription was made possible thanks to the fact that we
can trace the whole trajectory of every test particle in the
case of the Vlasov equation. However, when we treat the
Vlasov-Uehling-Uhlenbeck (VUU) equation, ' the two-
nucleon collision term makes it impossible to trace the
identify of a test particle after the collision with another
test particle. Therefore we need some new idea in order

y(k ) (fm)

-- 20 Vlasov equation

VUU equation

I
1

-3
I-2

k (fm )
3

FIG. 7. Comparison between the Vlasov equation and the
VUU equation is made by showing the nucleon momentum dis-
tributions g(k, ) of the colliding ' 0+' 0 system for the in-

cident energy E,„,=20 MeV/nucleon at the reaction time step
t =40 fm/c when the two nuclei are completely overlapping.
The solid line and the dashed line show the results of the Vlasov
equation and the VUU equation, respectively.
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APPENDIX A: EQUATION OF MOTION
FOR TEST PARTICLES

Test particle with delta function

When the Wigner function is given by the sum of delta
functions whose centers satisfy the Newton equation,

to extend our prescription to the VUU equation. Even if
this extension is difficult, when we analyze the momen-
tum distribution of nucleons in colliding nuclei in the
framework of the VUU equation, our present analyses in
the framework of the Vlasov equation are well expected
to provide us with very important knowledge about nu-
clear dynamics at least in the relatively low-energy re-
gion.

To demonstrate this fact, we calculated the momentum
distribution by the use of the VUU equation for
' 0+' 0 system at the incident energy 20 MeV/nucleon.
The result at the time of full overlap of the nuclei is
shown in Fig. 7. The momentum distribution calculated
with the Vlasov equation at the same reaction time step
for the same incident energy is also shown for compar-
ison. The characteristic features of the Vlasov dynamics,
the existence of Pauli pocket and the acceleration of the
colliding nuclei, are somewhat weakened but clearly seen.
This is because two-body collisions are suppressed by the
Pauli blocking in the low-energy region. Like this calcu-
lation, it is a challenging problem to study the two-body
collision effect in the low energy region, namely, to com-
pare the results of the VUU and the Vlasov equation for
fusion and deep inelastic collision problems. '
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f(r, p)= +5(r—r, )5(p —
p, ),(2M)

0 i

dt
Pl dp, - gU

dt Br;
(A2}

+ d r[ (r}]2+cr Ttot+ @tot
2+~

d'r d'p
(2+4)

(A3)

A proof of the energy conservation is as follows. The
Vlasov equation (2.1) [and Eq. (Al)] can be written by the
use of Poisson bracket (P.B.} with the single-particle
Hamiltonian h which is given by the functional derivative
of Etof.

={h,f)pa, h= = +U(r) . (A4)

this Wigner function satisfies the Vlasov equation (2.1)
exactly, and if the number of the test particles is infinite,
to solve Eq. (A2) is exactly the same as to solve the
Vlasov equation because the initial condition of f can be
reproduced by Eq. (A 1 }.

Of course, the Vlasov equation (2.1) conserves the total
energy:

2E'"=f di f(r, p)+ ,' f d r—d r'p(r) U(r —r')p(r')

d(r —r, , p —p;)=F, XG, ,

1
F; =d (r —r, )= exp

(&2~dr )

(r —r, )

2(b, r )
(AS)

'3
&2eA'

bp
exp

2(&p )'

A proof of this is as follows. Dd, /Dt becomes

Dd; a dp; aU a
Dt t}r dt t}r t}p

aF, dp; aU
m Br ' dt t}r t}p

dli + 0

dt m

dr; +

(A9)

When we integrate Eq. (A9) over r, the first term becomes
the surface term and vanishes, and the second term be-
comes

Dd; Dd,f d r =0, d p =0, d. =d(r —r. , p —p. ) .
Dt ' Dt

(A7}

This is largely due to the fact that the Gaussian packet is
the product of F; and Gi, spatial and momentum Gauss-
ians.

=f deaf Ih h Jp a =0 (A5)

From Eq. (A4), we get the energy conservation formula:

dE tot QE tot df= f d~ =fdrh[h, f ]pa
BG;

Bp

a(U)
dt Br

=0.

Dd; t}G; dp; gUfd'r = — .fd r + d (r —r)
Dt t}p dt t}r

(A 10)

The replacement 2 [B C I p a ~B [ C A I p a in the in-

tegration with the phase-space measure dr is shown by
the integration by parts.

In the numerical calculations, however, in order to get
the smooth density distribution and proper mean field we
have to treat the Gaussian packet, or it becomes neces-
sary to average them over neighboring cubes in the phase
space.

Simlarly,

Dd,fd'p

BF;= (2M)
t}r

dr l + Pl

dt m
(Al 1)

By the use of Eq. (A7), we get the Vlasov equation in a
weak sense:

dr i pi d pi

dt m
' dt

a(U)
iver

( U)(r)= f d r'd (r —r')U(r') .

The weak sense means that following relations hold:

(A6)

Test particle with the Gaussian packet

If we replace the delta functions in Eq. (Al) with the
Gaussian packets as in Eq. (2.5), the resulting distribution
function cannot satisfy the Vlasov equation exactly, but it
satisfies the Vlasov equation in a weak sense if ri and p;
are the solutions of the Newton equation with the Gauss-
ian averaged mean field,

3p 2

d3+ f U(r) fd pIh, f jps(2trh)

= fd~h[h, f)„=O. (A13)

[Equation (A6) is the same as that of Ref. 3.]
Iff is given by Eq. (2.5) and if o' = 1, E'o' is written as

(A12}

and the total energy is conserved as in the Eq. (A5) be-
cause we can replace t3f IBt by j h, f ] p B in the integral,

dE'"
fd hdf

dt t3t
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E"'=To+ g + gu(r, —r, }+ g 13(r;,r, rk ),

(Q 2

To =3(N„+N~ }X

2

u(r; —r )=—,
'

Vz
p +4(hr)

3/2
(r, —r, )

exp
p, +4(br)

(A14)

(r, —r, )~+(r, —r„) +(rk —r, )

6(hr )

1
d3(r;, rj, rk ) = g exp

[2 3m(hr ) ]

and the Gaussian averaged mean field ( U) is written as

(A15)

Vlasov equation with the Gaussian modifiied interaction

We can get Eq. (A6) from another point of view. When the distribution function of test particles f '~ is given by the
sum of delta functions, and the interaction which test particles feel is averaged by the Gaussian, namely,

f' (r, p)= +5(r—r, )5(p —p;), p' (ur)= +5(r—r;),(2M), 1

(A16)
V"'=

—,
' f d rd r'p' (r)u(r r')p' (r—')+ f d r, d r2d r3p' (r, )p' (r )p' (r )p' d3(r, , rz, r3),

the mean field 5V"'/5p'u becomes the same as ( U), and we get the Vlasov equation with the Gaussian averaged in-
teraction:

~ af" a(U) af"
at +m ar ar ap

From this equation we get Eq. (A6) again. In summary the correspondence is as follows:

f (r, p)~f'~(r, p), U(r)~( U)(r),

f (r, p)= fd~'d(r —r', p —p')f' (r', p') .

(A17)

(A18)

(A19)

However, in the actual calculation of Eq. (A6), we have a problem of the computational time. Because of the three-
body interaction in Eq. (A6}, double-loop sum over all test particles for each test particle is necessary, and the number
of the terms to be summed amounts to a few billion for each time step. To avoid this problem, we adopted the follow-
ing Gaussian modified interaction,

V"'=
—,
' f d r d r'p' (r)u(r —r')p' (r')+ f d r, d r2d r3p'~(r, )d (r&

—r2)p'~(r2)d (r2 —r3)p' (r3)

1
gu(r; —r )+ gd (r; —r )d (r; —rk),

2N0 l j 3N0l Jk

f' (r, p) = +5(r —r; )5(p —p; ), p'~(r ) = +5(r —r; ),(2+4), 1

N0

where d is the spatial Gaussian of test particle [Eq. (2.6)], and d (r,. —rj ) is its Gaussian folding,

(A20)

1 (r, —r, }
d (r, —r )= exp

(&4n b r )' 4(b, r )
d rd r; —rd r —r (A21)

From this Gaussian modified interaction, single-particle Hamiltonian is given as

2

h (r, p) = + U(r),
2m

U= gu(r —r, )+ g[d (r —r )d (r —r„)+d (r —r)d (r —
rl, )+d (r —rz)d (r, r)],

0
J 3N02 k

P J P

and the classical paths of test particles are determined by Eq. (2.7):

(A22)
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«Pt dPt BU(r)
dt m

'
dt t)r r,

(2.7)

We have checked that Eq. (2.7) is a good approximation of Eq. (A6) in the case of one-dimensional slab-slab collision.
All of our calculations were carried out by Eqs. (A20) —(A22), and Eq. (2.7), and we considered that the distribution

function of nucleon is given by Eq. (A19). For example, the Thomas-Fermi distribution was solved self-consistently
with p' and U, and the nucleon distribution was given by

p(r)= fd r'd (r r')—p' (r') . (A23)

This nucleon distribution function f satisfies Eq. (Al 1), but Eq. (A10) does not hold. Namely,

Dd; Dd,
fd r '%0, fdp '=0.

This is because U cannot be expressed in the form of ( U ) .

(A24)

APPENDIX B: POTENTIAL OF NUCLEUS-NUCLEUS RELATIVE MOTION

From Eqs. (3.4) and (4.2) we get d R /dt as follows:

Ra 1 ~ fa t)U fa 1 ~ Pa

dt N, m Br Br t)p N m ' N, m

From this equation we have

(81)

dR
dt N~m

Pa p
Nam p

(82)

Similarly, from Eqs. (3.4) and (4.1) there holds

dp
dt

= fdr—
If we define the density from the center of the nucleus a

p'"'(r —R )=p (r),
t)/Br in Eq. (83) can be replaced by t)/BR:

(83)

(84)

t)pa
ittt tot

f d r U(r)= —f d r
g Vtot

BR
(85)

Recall that the mean field U(r) is given by the functional derivative of V"' with respect to p(r ):

g y'tot g @tot gytot
U(r)=

5p(r) 5p (r) 5p'"'(r —R )

In V"' the intrinsic potential energy,

Vz'= ,' f d r d r'p (r—)u(r—r')p (r')+ f d r[p (r)] + (y=A or 8),
does not depend on R and can be subtracted from V"' in Eq. (85):

y Vtot Vint pint
A B

From Eqs. (83) and (85) we get Eq. (5.4) describing the nucleus-nucleus relative motion:

(86)

(88)

dp
dt

av &~ av+
N +N BR„N +N BR

av
BR

(89)

Even when we use the test particle method, Eq. (89) is exact if we solve Eq. (A6), because thanks to Eq. (A7) we can
use the Vlasov equation for single nuclei Eq. (3.4) in the integral like in Eq. (A13). When we use Eq. (2.7) instead of Eq.
(A6), Eq. (89) is also exact. In order to prove this we have to replace f by f' and V'"' of Eq. (87) by the following:

V'"'= g U(r, —r )+ g d (r, —r )d (r; —rt ) .1

p i,j Ea p i j,kEa
(810)
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APPENDIX C: ONK-BODY ENERGY DISSIPATION IN THE VLASOV EQUATION

The internal energy of nucleus a is written as

2 p2
P & +ynt (C l)

To calculate d eldt, the following formula is useful:

Bp~(r) BJ~
J (r)= f ~f, (r, p) .

dt Br (2~}3 m
(C2}

BJ /t)r means the divergence of J,. Since J means the local current of nucleons belonging to the nucleus a, this is the
continuity equation and can be obtained from Eq. (3.3).

By the use of this equation, we get Eq. (6.1),

de p gU "r)f P dP BJ 5V'"'
d7 d r

dt 2m Br Bp N, rn dt t)r 5p,
BJ dP= —fdr~f —fd r U —V .

m Br Br dt

rJ U r —U r +V rp r

=f d r[J (r) p(r)V—,] ~

BUp „(r)
(C3)

where U and U& are given by

g pint
U (r) = =fd r'U(r r')p —(r')+P[p (r)] +'

5p (r)

U&
= U(r) —U (r) .

(C4)

Even when we use the test particle method, Eq. (A7) or Eq. (A24) guarantees Eq. (C2) to hold and hence the formulas

in this Appendix remain exact.
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