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Distribution of cluster sizes from evaporation to total multifragmentation
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A model for studying fragmentation phenomena is proposed and developed. The model leads to a
single, simple, and exact expression for the cluster size distribution function. Various limits of this
distribution function show: (1) evaporation-like behavior, (2) scale-invariant power law behavior,
(3) a broad region with a dependence which is linear growth in small clusters and exponential falloff
of large clusters and, finally, (4) total multifragmentation with an exponential-like falloff of all clus-
ters except the monomer or unit element. The cluster size distribution function in any region is

given by various limits of one expression: Y„(k,x)= I A!/[k!( A —k)!]IxB(x+ A —k, k). Here,
the size k is the number of elements in a cluster taken from a fixed total number of A elements, x is
an evolutionary tuning parameter which determines the various regions, and B (x + A —k, k) is a
beta function. Cellular rules and a particular choice of ~eight function lead to self-similar behavior
on Young s triangular lattice. A scale invariant hyperbolic power law emerges in a row by row evo-

lution of the lattice. A counterclockwise rotation of Ferrer's block diagram of partitions shows a

pictorial resemblance of the present model with recent work on self-organized critical states, and a
comparison is made. The cumulative mass distribution at a critical point of the model is a staircase
function whose continuous limit is analogous to that of a uniform bar. The uniform bar may then
be hammered into various shapes which will be discussed. Some observations on the form of x are
given by comparing the multifragmentation limit of the model with the law of mass action or Saha
equation. The evaporation limit of the model is discussed and evaporation barriers are shown to
evolve into binding energy enhancement factors in the Saha equation.

I. INTRODUCTION

Cascading phenomena, fragmentation processes and
their related inverses, clustering, and connectivity prob-
lems are of current interest in many different fields. As
an example, heavy-ion collisions from low to very high
energies can be used to explore nuclear fragmentation
phenomena and cluster distributions. One of the primary
quantities of interest is the distribution of products of
such collisions in composition space which is called the
cluster size distribution function. The cluster size distri-
bution function is the mean (ensemble averaged) number
of clusters of a given size plotted versus the size of vari-
ous clusters. The size of a nuclear cluster is determined
by the number of nucleons. An evaporation process ap-
pears in the distribution function as a large fragment plus
a small fragment, usually a single nucleon. A critical
point manifests itself as a power law falloff in the cluster
distribution function. Total multifragmentation is here
taken to mean a very high multiplicity plus a much faster
falloff than a power law in the fragment distribution func-
tion. The multiplicity is the total number of fragments
produced in the collision.

The cluster size distribution is of primary interest in
many other studies. Some examples are the following: in
percolation studies on a lattice, in the size distribution of
meteorites, in the size of sandpile slides at the self-
organized critica1 point, and in related models of
avalanches. Other variables besides cluster size can be
considered and, in general, the distribution of a depen-
dent quantity versus another intrinsic quantity can be

studied. Several examples of such distributions are the
number of earthquakes as a function of their energy, and
the spectral decomposition of noise as a function of the
frequency with its interesting low-frequency l /f Aicker
behavior.

One of the remarkable features of these distribution
functions is the appearance of a power law behavior.
That is, the functional behavior of the distribution func-
tion is some inverse power of the cluster size, energy, fre-
quency, etc. Power law behaviors have been seen in clus-
ter size distributions at the percolation threshold, drop-
let sizes at a critical point, and sandpile and avalanche
slides at a self-organized critical point. In linguistics, a
power law, called Zipf's law, is found in the frequency
distribution of words in a book when each word is or-
dered according to its frequency of occurrence. In
economic phenomena, another power law, called Pareto's
law, appears in the distribution function of income plot-
ted versus income. In social phenomena, Lotka's law is
a power law relationship between the number of authors
publishing n papers, as a function of n. A more complete
summary can be found in Refs. 10 and 11. In many
cases, the power law is an empirically observed or tabu-
lated property of the system. One main purpose of this
paper, an initial accounting of which is given in Ref. 12,
is to present an exact power law which arises in
mathematics, and, in particular, in combinatorial analysis
and permutation groups. Then, it is shown how this
mathematical result has a physical significance in frag-
mentation phenomena. A model of a fragmentation pro-
cess is presented and developed. At a particular value of
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some evolutionary tuning parameter, this power law
emerges in the cluster size distribution function. The
scale-invariant power law behavior is interpreted in terms
of the appearance of self-similar structure produced by
cellular rules on Young's triangular lattice of partitions.

Moreover, the model proposed here is exactly soluble
for all values of the evolutionary tuning parameter. As
the evolutionary parameter is changed, a system evolves
through all its modes of fragmentation. At low values of
this parameter, evaporation modes dominate, and at high
values of it, multifragmentation takes place. The behav-
ior near the scalar invariant point can also be easily ana-
lyzed, and results concerning cluster sizes near this point
are presented. A cumulative mass distribution of cluster
sizes is introduced and studied. This distribution is found
to be a staircase function near the scale-invariant point,
and its continuum limit is analogous to the mass distribu-
tion of a uniform bar. The bar is hammered into various
shapes by varying the evolutionary tuning parameter.
Another, more exotic way, turns the cumulative mass dis-
tribution into Cantor's devil's staircase. Finally, some
observations on the form of the tuning parameter x are
given by comparing the multifragmentation limit with a
model developed previously' to describe high-energy
nucleus-nucleus collisions. The fragmentation model
proposed and developed in this paper may have applica-
tions for understanding similar behavior in other systems.
Some discussion of its relevance to other areas is given.

II. A MODEL OF A FRAGMENTATION PROCESS

A. General remarks

The model developed below evolved from some studies
of nuclear fragmentation started in Ref. 13 and continued
in a series of papers. ' ' Considerable interest exists in
the problem of the fragmentation of a nucleus, and this
problem is being actively pursued by many groups. '

Rather than pursuing an approach of increasing com-
plexity and detail, the approach taken below is to simpli-

fy the problem to the point where a simple and
mathematically exact solution emerges. It is hoped that
the exact solution to a simplified approach still contains
the essence of the more detailed models.

Simplified models in other areas have been very useful
for understanding the solution to the behavior of complex
systems. An example of a recent approach is given in
Ref. 28, where specific cellular automata rules are applied
to many different problems. One of the reasons for
presenting the model developed in this paper is to give a
mathematically exact solution to a specific model which,
hopefully, in the future may be linked to these other ap-
proaches. While these other approaches seem to be very
different from that taken here, properties of the cluster
size distribution are very similar indeed.

B. Mathematical framework

1. Partitions

The model to be developed considers the partitioning
of A objects into groups with n composites or clusters of

P(A)=
4n&3A

The number of partitions of A is obtained from a gen-
erating function

g P(A)x"= g (1—x")
A=0 A=1

(2)

The number of partitions of A with a fixed multiplicity m
is P(m, A). The P(m, A) satisfy a recurrence relation-
ship

P(m, A)=P(m —1, A —1)+P(m, A —m) . (3)

Features of P(m, A} in the nuclear case can be found in
Ref. 19 and will not be pursued here.

2. Young 's lattice, cellular generation rules,
and I'errer s diagram

A diagrammatic view of the partitions of A, known as
Young's lattice, is shown in Fig. 1 for A =1,2, . . . , 7.
Each partition is represented by a box or cell. A row in
Young's lattice gives all partitions of the left-most ele-
ment of the row. Rows are connected in a downward
direction by adding a single unit to each cell in a row.
Specifically, adding a single unit to the partition cell

j elements. The j =1,2, . . . , A and spans all cluster sizes
from the monomer or unit cluster to a cluster made of A
elements. A constraint exists which is A = g jn, and
this constraint is a statement that the fundamental units
are conserved. The system considered is therefore a
closed system in A. The partitioning of A objects into
such groupings can be related to a well-known problem in
number theory, which is the decomposition of an in-
teger A into integer summands, and an example is given
in Table I. The notation m„=(l ', 2 ', . . . ,j ', . . . ) is
usually used to specify a particular decomposition. Such
partitioning also appears in the classification of permuta-
tions by cycle classes, with a cycle class being specified
by (n„n2, . . . , nj, . . . ). In the permutation case, the j
specifies the length of a cycle, and the division
(n„n2, . . . , nj, . . . } has n, unit cycles, n2 cycles of
length 2, etc.

The partition n „ is used to classify a given fragmenta-
tion. In the nuclear case, m„=(1 ', 2 ', . . . ,j ', . . . )

corresponds to a fragmentation into n, nucleons, n2 clus-
ters made of two nucleons, and so on to n, clusters made
of j nucleons. The multiplicity of a given fragmentation,
partition or cycle class decomposition is

m =n&+nz+ +nJ+ +7l

Table I groups the various partitions according to m
which can run from m =1 to m = A. The m =1 multi-
plicity corresponds to a giant cluster of all A elements,
the m =2 situation consists of a division of A into two
pieces, while m = A corresponds to a fragmentation into
all monomers or unit elements.

The total number of partitions of A is given, for large
A, by the Hardy-Ramanujan result '
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TABLE I. Partitions and Cauchy numbers M2 for A = 10.

10 10
1,9
2,8

37
4,6
52

1,8

1,2,7,
1,3,6
1,4,5,
2,6
2,3,5,
2 42

3 4
1'', 7

1,2, 6
1,3, 5
12 42

1,2, 5

1,2,3,4
1',3'

'

362 880
403 200
226 800
172 800
151 200
72 576

226 800
259 200
201 600
181 440
75 600

120 960
56 700
50 400
86 400

151 200
120 960
56 700
90 720

151 200
22 400

9
10

2,4
22 3
14, 6
1,2, 5
1',3,4
1,2 4
1 2, 3
1,2', 3
25

1', 5

1,2, 4
14 32

1,2 3
12 24

16

1',2, 3
,4 23
1',3

1,2
1,2
110

18 900
25 200
25 200
60480
50 400
56 700
50 400
25 200

945
6 048

18 900
8 400

25 200
4 725
1 260
5 040
3 150

240
630

45
1

2, I

2,I3 )5
I

5. 1 4.2 32 4.12 3,2. 1 3.13 23 22I2 2 I4 I6

6,1 5,2 4.3 5.1 4g, l 3 I 4 13 3,22 ~i 3,14 23, I 2, P 2,1 I

FIG. 1. Young's lattice. Young's triangular shaped lattice is used to illustrate the various partitions of A, for A =1-7. Each par-
tition of A is a cell or box of the form [1 ', 2 ', . . . , A "].Cellular rules can be used to generate the lattice in a row by row evolu-

tion as discussed in the text. A hidden mathematical self-similarity in this triangular lattice is discussed in Sec. II B4. Self-similarity
in cellular automata models in other problems are discussed in Ref. 28.
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[1,2] connects this partition cell to three other cells in

the next row —[1,3], [1,2 ], and [1,2]. A general

Boolean-like cellular rule is to add one to each integer j
which appears in each partition box in a given row in

Young's lattice to generate the next rom. The cellular
rules are as follows: ifj = 1,

[1 I 2 2 ] [1 1 2 2 ]

and

A FERRERS DIAGRAM

PARTITION OF A = 50 INTO

42 g[ 72 g2

B ROTATION OF FERRERS DIAGRAM BY 90

with the second possibility ruled out if n, =0; if j =2,

and if j =k,

[. . . , k ",(k+1) "+', . . . ]

[ k k (k+1) k+1 ]

A rule for the number of lines entering a box and leaving
a box is as follows: The number of lines going into a box
is equal to the number of different integers in the box,
while the number of lines leaving a box is equal to this
number plus one. Young's triangular lattice can be
developed by following these cellular rules in a downward
direction, row by row. This procedure was used to devel-

op Fig. 1.
Any given decomposition (n&, nz, . . . , nt, . . . )

—:(1 ', 2 ', . . . ,j ', . . . ) can be put in block form using
Ferrer's diagram3 as shown in Fig. 2(a). The number of
blocks in a row is the number of elements in a cluster.
The number of rows with j blocks is n . In the tradition-
al Ferrer's diagram the rows are arranged so that the
smallest row occurs at the bottom and the largest row is
at the top. Here, a rotation of Ferrer's diagram by 90' is
proposed so that a row now becomes a column and the
number of blocks in a column is the number of elements
in a cluster. The proposed new diagram is shown in Fig.
2(b). The reason for proposing this new way of drawing a
given partition becomes clear in Fig. 2(c), where a col-
lision of two nuclei, represented as two columns, is seen
as a tumbling of blocks or collapse of the initial partition.
A possible final collapsed partition after a collision is also
shown in Fig. 2(c). The final distribution can be pro-
duced by slides of single blocks and groups of blocks ofF
the two columns. The total mass of a fragmentation

g knk = A, + A2, the mass of the target and projectile.
A weight function for the slide to the Gnal partition is
given in the next subsection. Finally, Fig. 3 illustrates a
more complex fragmentation partition.

3. Cauehy and Stirling numbers —weight
functions of o soluble model

How a given system fragments is determined by the
weight function that is given to a particular partition.
These weight functions are microstate counting factors.
One procedure is to weight each partition according to
an exponential of the entropy divided by Boltzmann's
constant k for each partition. A model is then taken for
the entropy functional. A possibility for the entropy in

C COLLISION VIEWED AS THE TOPPLING OF BLOCKS

II I 6 4 2 I

L ' JBEFORE ' ' ' — AFTER

INITIAL STATE PROJECTILE t TARGET

FINAL STATE OF A COLLISION

I I I I

] I I I ] I I I Ig

FIG. 2. Ferrer's block diagram. Ferrer's block diagram is
used to represent a given partition cell of Young's lattice. Con-
jugate partitions are obtained by rotation of a given block dia-

gram around a 45' diagonal. The middle elements of the first
seven rows in Young's lattice are self-conjugate and have an as-
terisk; conjugate partitions are placed equidistant from the mid-

dle. In part (b), Ferrer's row form in k is rotated counterclock-
wise by 90' to change its form to a column form in k. Part (c)
shows a collision of two columns of blocks, the target, and pro-
jectile partitions. A collapsed staircase partition, resulting from
this collision, is produced by a toppling or sliding of blocks off
the columns. A pictorial resemblance of part (c) with recent
work on self-organized critical states is seen. However, the
rules of the two approaches are different and the model here is

closed in A. A weight for various fragmentation partitions of
the present model is given in Sec. II B 3.

)
tl ~A gllI PIlA

=n

FIG. 3. A giant Ferrer's block partition in rotated form.
This monstrous partition may arise from the collision of two
heavy nuclei.
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the nuclear case is the Sakur-Tetrode form given in Ref.
17, and generalized to include internal excitations in a
cluster in Ref. 17. Maximizing the entropy subject to
various constraints gives the most probable configuration
which can be approximated by grand canonical ensemble
results. Such approaches to nuclear multifragmentation
can be found in Refs. 13—25. Another possibility is to as-
sume each partition is equally likely.

Here a particular form for the weight function is pro-
posed which leads to an exactly soluble model, and the
possible connection with an entropy weight will be men-
tioned. An un-normalized weight function of a given
partition (n, , nz, . . . , nj, . . . ) which gives rise to an ex-
actly soluble model' is

co „(I n }, x)=M&( t n } )x (4)

The x is an evolutionary tuning parameter and the
Mq(In })is

M~( In, })=
nl n2 n . .

n&!1 'n2!2 ' n!j '

In number theory, the Mz is called a Cauchy number.
First, a model with x =1 is studied in upcoming sub-

sections 4 and 5. With the evolutionary parameter equal
to 1, the weight function leads to a power law behavior in
the cluster size distribution function. Then, in subsection
6, the weight function, with an evolutionary parameter
included, is used to develop a model of a fragmentation
process. The model is still exactly soluble in all regimes
of the tuning parameter. A simple expression is found
which shows a system evolving through all its modes of
fragmentation as this tuning parameter is changed. Be-
fore giving these results, properties of Mz and co„are
given.

When Mz is summed over all partitions n.„,the result
is A!, as first shown by Cauchy. Thus, the normalized
weight function for x =1 is Mz/A!. The values of Mz
for the partition given in Table I are also listed in Table I.
When Mz is summed over a given multiplicity m = g nj,
the result is a signless Stirling number of the first kind:

(
—1)" S„= g Mq(In },A) .

m&(m)

An expression for
~ S~ ~, for m - ln A, ism, (y+lnA)

(m —1)!

The sum in this equation is restricted to the partition of
A at fixed m, m. „(m ), and also the constraint gjn = A is
to be satisfied.

In turn, the Stirling numbers of the first kind satisfy a
recurrence relationship

S7=S„,' —( A —1)S

and they are generated by a factoria1 moment generating
function

x(x+1) (x+A —1)= g( —1)" S x . (&)

where y is Euler's number, and y =0.57722, and is

defined by the limit

1
y —ljm 1+—'+ . +——1nn

2
n ~ Qo n

(10)

Note also

gM~= g (
—1)" S„=A!.

n'A(mj

These results will be used later. Some values of S~ are
given in Table II, which are given in a Pascal-like tri-
angular form, similar to the form used in generating the
binomial coefficients. The normalized weight function
when x%1 is

M~(In },A)x
W„(In },x)= x(x+1) (x+ A —1)

(12)

Moreover, since the sum over Mz at fixed m generates
the signless Stirling numbers of the first kind, the normal-
ized weight function for the multiplicity distribution is

1)A
—mSm m

W„(x)=
x (x +1) (x + A —1)

(13)

The following features of Mz should be stated. The larg-
est M& weight is the case n

&

= 1, n „,= 1 which is a frag-
mentation of A into a monomer plus the remainder, a
cluster of size A —1. The mode of fragmentation is
evaporation-like. A nucleus that is slightly excited usual-
ly evaporates a nucleon so that the Mz weight is in line
with what is to be expected. The Mz is also large for
n „=1, which is here called the fused mode, and is a sin-
gle cluster of all A initial elements. The evaporation-like
fragmentation has multiplicity m =2, while the fused
mode has multiplicity m =1. At x =0, 8'z =0, for all
partitions except the fused mode, where W„(n„=l,x
=0)= l. As x increases, the fragmentation scheme
evolves from fused, to evaporation-like, to more complex
modes with increasingly larger values of x. Table I lists
some complex modes for A =10, but it should be noted
that at A =200, the total number of fragmentation
schemes is -4X10', and the enumeration of the m „(m)
is quite complex except near the end points m —= 1 and
m-=A. At x =1, a scale-invariant power law emerges
out of the complex fragmentation schemes as discussed in
the next subsection. The x acts as an evolutionary tuning
parameter and gives a weight to the multiplicity of the
fragmentation. A fragmentation is a change in multipli-
city.

Finally, one further observation can be made about the
form of the weight function. The n -~ are Gibbs factorials
originally introduced into the Sakur- Tetrode law by
Gibbs to resolve a paradox associated with the entropy of
mixing of identical gases. Such factors also appear in the
Fermi-Dirac and Bose-Einstein microstate counting fac-
tors. Specifically, the number of ways of distributing n;
fermions into g; given levels is g, !/[n, !(g, . n, )!],an. d the- .

(g; n; )! is the —number of permutations of the empty lev-
el (missing particles). In the Bose-Einstein case, the mi-
crostate counting factor is (n, +g; —1)!/[(g;—1)!n;.!],
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TABLE II. Stirling numbers of the first kind SA.

-50 35 -10

-120 274 -225 85 -15

720 -1764 1624 -735 175 -2i

-5040 13068 -13132 6769 -1960 322 -28

40320 -109584 118124 -67284 22449 -4536 546 -36 1

-362880 1026576 -1172700 723680 -269325 63273 -9450 870 -45 1

4. The emergence ofa scale invariant powe-r law
and the appearance of a hidden self similar structure-

in Young's triangular lattice

One of the remarkable features of the weight function
discussed in the previous subsection is that it leads to a
power law in the cluster size distribution function. The
cluster size distribution function is obtained by ensemble
averaging each n. , j =1, . . . , A over all partitions of m „
using a weight function. For x =1, the normalized
weight function is

M2(In, ],A)/A!=8'„(In ],x =1) . (14)

The symbol Y„(k,x = 1 ) is used for the mean number of
clusters of size k in the fragmentation of A:

where the number (g, —1) can be considered (g, —1)
identical objects or partitions. In both cases, the sum of
particles (n; ) plus missing particles (g; n; )

—or partitions
(g, —1) in the denominators equals the number g, or
(n;+g; —1) which appears in the numerators of these ex-
pressions. By contrast, the sum of the n 's in Mz is not
A, but rather A = g jmj. The M2 counts the number of
permutations of A objects into groups with n, of unit
length, n2 of length 2, etc. The M2 is to be divided by the
overall Gibbs factorial A t for proper normalization, and
this division is reminiscent of what is called correct
Maxwell-Boltzmann counting in statistical mechanics.

nl n2The remaining factor 1/(1 '2 ' A ") which appears
in M2 makes the problem of fragmentation completely
solvable and leads to the simple closed form expression
given in the abstract. The origin of such factors may
arise in the nuclear case from internal partition functions
of the nuclear level density as discussed in Ref. 12.
Without further justification, the result of Eq. (12) may be
taken as a rule for calculating ensemble averages in a
model of fragmentation phenomena. Rules appear in cel-
lular automata models and in recent work on self-
organized critical states. '

Y„(k,x =1)=g nMk(Ini], A)/A! . (15)

The Y„(k,x =1) is given by'

1
Y (k x =1)=-

A (16)

for any k with the trivial constraint 1 ~ k ~ A. Thus, the
frequency of occurrence of a cluster of size k, or a cycle
of length k, or an integer k in the partitions of A, is given
by a hyperbolic power law behavior in its size. The fre-
quency of occurrence of a monomer is 1, a dimer is —,', a
k-mer is 1/k, etc.

The power law behavior of Eq. (16) is scale invariant
since no reference to A appears in the 1/k factor except
for the trivial constraint k & A. Thus, as long as k is less
than any A, the frequency of occurrence of k is given by
the hyperbolic expression 1/k and is independent of the
initial A. Each subcluster in the fragmentation of A pro-
duces smaller clusters with a frequency of occurrence
1/k. Returning to Fig. 1, each row in Young's lattice
leads to a fragmentation at the point x =1 with a distri-
bution having the same scale-invariant power law behav-
ior. Every row produces a similar spectrum of fragments.
This feature will be referred to as self-similarity of the
model at x =1. The self-similarity is a characteristic
feature of systems with no length scale. " Figure 4 illus-
trates some of the statements just made.

Thus, the following observation can be made. Follow-
ing the cellular rules stated in subsection 2 to generate
rows in Young s lattice and the weight function associat-
ed with Cauchy's number for each cell, a self-similar be-
havior in every row in the triangular lattice is generated.
The self-similar structure is seen in the frequency of oc-
currence of the integers k in the partition of A into in-
teger summands or its equivalent interpretation in terms
of clusters of size k or cycles of length k. Row by row,
the law Y„(k)=1/k, for k =1,2, . . . , A, evolves as A
increases from 1 to 2 to 3, etc. , and the end point k = A
on the hyperbola is moved one step over when
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A ~A +1.
This subsection is concluded with the following obser-

vations. The cluster size distribution function satisfies
the constraint

A

kY„(k,x =1)=A,
k=1

and is just the zeroth moment of the cluster size distribu-
tion function.

5. Staircase and uniform bar behavior of the model;
hammering a solution into a devil's staircase

with Cantor's rule

The cumulative mass
and its second moment is

k2Y (k 1)
A(A+1)

k=1

[k]+1
m„= g jY„(j,x =1)

j=1
(22)

The zeroth moment of this hyperbolic power law is
A A

Y~(k,x =1)= g 1/k -y+lnA
k=1 k=1

for large A; the third moment is

(19)

The mean multiplicity m at x = 1 is

A

(m(x =1))= g m( —1)" S„
m=1

A!=y+lnA

(21)

3Y (k x 1) y k, A(A +1)(2A +1)
k=1 k=1

(20)

at x =1 is the staircase function shown in Fig. 5. The [k]
is the greatest integer in k which is taken to be continu-
ous. This cumulative mass distribution is analogous to
that of a uniform bar in the continuous limit. Adding
one more unit to A shifts the point ( A, A ) to a new point
( A +1,A +1), thereby adding an extra step because the
system is closed in A. In the one-dimensional sandpile
slide model of Per Bak, the minimally stable state (in
different variables) is also a staircase function, but adding
a block results in the block tumbling down the staircase
and off the table when the system is open. A height
difference or rise between successive steps can be defined
by 5k =mk+, —mk, which is the total mass in clusters of
size k + 1. The staircase function of Fig. 5 has b k =1.

Figure 5 also shows a more complex cumulative mass
distribution. This staircase for a continuous bar would be
Cantor's devil's staircase and would have a mass distribu-
tion which is fractally homogeneous. " Such a distribu-

(A, A)

(0,0)

L LI' I' Q R
II I ~

(A, A)

FIG. 4. Self-similarity in the cluster size distribution func-
tion. A scale invariant hyperbolic power law, Y„(k,x =1)
= 1/k, for the fragmentation of A, is also the fragmentation law
for a subcluster A A of A [Y~„(k',x = 1)= 1/k'] or a subcluster
of A, A, labeled p,kA [Y„~„(k",x =1)=1/k"]. The first hor-
izontal axis is k =1 to A. The second horizontal axis A, A gives
the range of fragment sizes of A, A which, in turn, is k = 1 to A, A.
The third horizontal axis pA, A is again, in turn, the range of
fragment sizes of pA, A which is k =1 to pA, A, and so on. Each
subcluster taken by itself has a fragmentation scheme which is a
reduced version in k of a larger cluster. At x =1, Young's tri-
angular lattice of Fig. 1 has a self-similarity property in its dis-
tribution of cluster sizes.

A
9

(o,o)

FIG. 5. Staircase cumulative mass distributions. The curnu-
lative mass distribution of the critical state is a staircase func-
tion in the model developed here. The analog of this distribu-
tion is a uniform bar in the continuous limit as shown also.
This figure also shows how the distribution may be hammered
into Cantor's devil's staircase by another rule.
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tion is produced by a different rule than the Cauchy one
given here. This uniform mass bar is hammered so that
all of the middle third goes into each outer third uniform-
ly. Then the middle third of each outer third is ham-
mered into their respective outer thirds, and so on at
infinitum. The cumulative mass distribution then has
long Aat regions of no mass accumulation over most of its
length followed by highly clustered jumps at infinitely
many, infinitely small regions. " The lower part of Fig. 5
is drawn to reflect the discrete nature of j in Eq. (22).
The distribution shown in the lower part of this figure is
more of a mathematical curiosity than a situation that is
physically realized, and the mathematical features of a
Cantor-like model of fragmentation will be presented
elsewhere. However, an outcome of the present discus-
sion is the suggestion that the cumulative mass distribu-
tion defined by Eq. (22) be studied experimentally and
theoretically for their staircase features. Other, more
homogeneous and nonfractal ways to hammer the uni-
form bar are obtained by varying x, the evolutionary tun-
ing parameter (see Sec. II C 9). The results on the cluster
size distribution function for all values of x will now be
presented

6. An exact result for the cluster size
distribution function in all regimes ofx

The model of a fragmentation process proposed in the
preceding subsection 3 is exactly soluble in all regimes of
the tuning parameter x. The cluster size distribution
function is given by

Y„(k,x)= g nk W„(In ],x) .
H~

Using

(23)

M ([2n J ], A )x

( +1) '( +A —1)
'

the Y„(k,x) is found to be given by'

xl (x+A —k)
I (x+ A)

A!
k( A —k)!

(24)

(25)

3!Y'„(k,x) = [xB(x + A —k, k)], (26)

where

B(z,~)=r(z)r(~)/r(z+~) .

Other useful forms to be used later are

The gamma functions are given by I (z)=(z —1)!. At
x =1, Yq(k, x =1)=1/k, and the scale-invariant power
law result of the preceding subsection emerges. Other
limiting cases of Yz (k, x) will be given in Sec. II C.

The result of Eq. (25) can be written in various forms.
The form of Eq. (25) explicitly shows the power law be-
havior. The coefficient A!/( A —k)! is part of a binomial
coefficient. Multiplying numerator and denominator of
Eq. (25) by I (k) =(k —1)!gives rise to a form involving a
beta function B (x + A —k, k) and a binomial coeflicient

A! x(x+1) (x+A —k —1)Y (kx)= '
x

k( A —k)! x(x+1) (x + A —1)

(27)

and

Y (k )
~ e

(1 )x+(1/2)
k

A —k k

k!( A —k)!
(29)

The

p =p„(k,x) =k/(x + A —1)

depends on k, x, and A. The term in square brackets has
a random walk-like structure.

The next subsection studies various limiting cases of
the cluster size distribution function as x is varied from 0
to 1 to ~. Also Auctuations away from the mean number
of clusters are easily obtained from the weight function,
and the results will be given in Sec. II C7.

C. Properties of the cluster size distribution function

As the evolutionary tuning parameter x is varied from
0 to 00, the fragmentation mode varies from the fused
(x =0) mode which has multiplicity m = 1, through
evaporation-like m =2 modes, to more complex m =3, 4,
5, etc. modes, to a scale-invariant behavior at x =1 and
finally, as x ~~, to total multifragmentation with a mul-

tiplicity m ~ A. This subsection presents properties of
the cluster distribution function for various values of x.
The division between different regions of m as x is varied
is determined by the signless Stirling numbers
(
—1)" S„and x since the weight function for the

multiplicity distribution is

( —1)" Szx /[x(x+1) (x+A —1)] .

At x =0, m =1 and at x =1, (m ) =y+lnA. If the in-
terval in x from 0 to 1 is divided into equal regions of
length 1/(@+in 3 ), then new modes in m arise in each of
these intervals. A more detailed evaluation of the behav-
ior of the multiplicity distribution will be given below in
Sec. II C 6.

1. Evaporation like region, 0~x ~-1/(y+InA)

As already noted, at x =0, the only cluster present is
the cluster with all elements, Y„(A, x =0)= 1. For small

A! Mn =& a —kx~ A —k( 1)A
—k+nSn n

Y„(k,x) = x
k(A —k)! x(x+1) (x+ A —1)

(28)

The last form will be very useful when the contributions
from various multiplicity modes m to Y„(k,x) are stud-
1ed.

An approximate form for Y„(k,x) can be ob-
tained by using Stirling s approximation for factorials,
n!=n "e "&2mn. With some rearrangement of terms,
the cluster distribution function reduces to the form
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x, x in the interval [0,1/(y+lnA)], the m =2
evaporation-like modes contribute to Y„(k,x). The clus-
ter size distribution function for small x is obtained from
the results of Sec. II B 6. The Y„(A, x) is

can be approximated by

, (y+lnA)"
A —k (33)

Y„(A, x) —1/A",

while the Y„(k,x), for kA A, is

(30)
to evaluate Y„{k,x). The m =2 mode has n =1 because
of the extra power of x in the numerator. To order x in
the numerator of Eq. (28), the Y„(k,x) is

Ax
k(A —k)

(31)
Ax Ax ln(A —k)

k(A —k) k(A —k)
(34)

The last equation follows from ~Sz" k ~

=( A —k —1)!and
using Eq. (28) to obtain Y„(k,x). The Y„(k,x) is a U-

shaped function of x as k varies from 1 to A —1, and is
symmetric around A /2. The frequency of occurrence of
the largest cluster is reduced from unity and is decreasing
rapidly with x. At x =1, Y„(A,x =1)=1/A. The ex-
pression that gives Y„(A, x) exactly for all x is

A! I (x+1)
A r(x+A) (32)

2. The appearance of a logarithmic asymmetry
in Yq (k,x) from multiplicity m=3

fragmentation modes and higher modes

In the next interval in x, x in the range
1/(y+lnA) +x 2/(y+lnA), the m =3 tnodes contrib-
ute to Y„(k,x). The m =3 decay scheme is already quite
complex, as can be seen from Table II. The Y„(k,x) is
reduced further, Y„(k,x)=1/A", since x is now larger
than in the first interval. The Stirling numbers in Eq. (28)

I

Use has been made of the property xI (x)=I (x +1) to
obtain this last result. It should be observed that at
x =0, I (x+1)=0!=1 and at x =1, I (x+1)=1!=1
also. The numerator in Eq. (32) is nearly constant in the
interval x =0 to 1.

Small yx terms have been neglected. The important
feature of this Y„(k,x) is the appearance of an
asymmetric contribution in k which is A ln(A —k)/
[k(A —k)]; for k =1, the asymmetric factor is
A ln( A —1)/[1 ( A —1)], while for k = A —1, it is
A lnl/[(A —1) 1]=0. The small k cluster distribution
is larger than the k —A part. This asymmetry is obvious
at x =1, where Y„(k,x)=1/k, Y„(1,1)=1, and
Y„(A,1)=1/A. The m =2 modes give rise to a sym-
metric cluster distribution in k, but the m =3, and suc-
cessive m =4, 5, 6, etc. modes produce a pronounced
asymmetry. In fact, the contribution of higher multipli-
city modes to Y„(k,x) can be summed to give the follow-
ing approximate form:

Y„(k,x) = = (35)
k ( A —k)' "A" k (1—k/A)'

for x in the interval [0,1] and kA A.

3. Behavior around x=1 and the appearance
of a connnectivity function

Properties of the cluster size distribution around x = 1

can be obtained by substituting x =1+@ into Eq. (28).
When x =1+e is substituted into Eq. (28), the following
expression is obtained:

1+ g„)e"[8„(A—k)+8„)(A —k)]
Y„(k,e) =—

1+ g„)e"B„(A)
(36)

The 8„(A) and 8„(A —k) are binomial moments of the
multiplicity distribution for A and A —k evaluated at
x =1. This multiplicity distribution is determined by the
Stirling numbers ( —1)" S„/A!. Specifically

The multiplicity distribution will be investigated in more
detail in the upcoming Secs. IIC6 and IIC7. When
x = 1+e is substituted into Eq. (25), the

r(1+a+ A —k) = I (1—A —k)+er'(1+ A —k)
mt ~ S

B„(A)=g ',
,

( —1)"
m

and similarly,

mI SA —k(A k) —g m'
( 1)A

—k —m

( m n}!n!—{A —k)!

(37) =I (1+A —k)[1+eg(1+ A —k)],
(40)

to order e in a Taylor expansion. The f(z}=r'(z)/r(z)
is a psi function or digamma function. A similar result is
obtained for

8„(A)=8„(A—1)+A '8„,(A —1} . (39)

(38)

The binomial numbers can be shown to satisfy a re-
currence relationship:

I (1+@+A) =I (1+A)[1+EQ( A)] .

At integer values

p —1

4(p)= y+ g ——

, n

(41)

(42)
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To order e,

where the connectivity function C„ is

(43}

aspect or linkage nature of C„ is illustrated in Fig. 6(b).
Each term, 1/A, 1/( A —1), . . . , —,', 1 in C„" can be asso-
ciated with a link of size 1/A, 1/(A —1), . . . , —,', 1, re-
spectively. The connectivity function C~ satisfies the
sum rule

C = 1+—+ . +—— 1+—+. . +k 1 1 1

2 A 2 A —k

A

C„"=A .
k=1

(48)

X(1—
51, „) . (44)

1C"=1+—'+ +—=y+lnAA A

and C~ is large; similarly

(45}

The 5k „ is 0 for kA A and is 1 for k = A. The connec-
tivity function is smallest for k =1, where the two sums
essentially cancel, C„'=1/A; for k =2, C„=(1/A)
+1/(A —1)-2/A and for k « A, C„"—k/A. On the
other hand, at k = A,

The result of Eq. (48) can be obtained by noting that
there are A terms in the sum with a contribution or link
size 1/A, A —1 terms with a contribution or link size
1/( A —1), . . . , 2 terms with a contribution or link size
—„1term with a contribution or link size 1. It is impor-
tant to realize that as k increases both the number of
links and the link size increase. But, for k ((A, only the
number of links contributes since the link size is —1/A
for large A. The sum rule on C~ guarantees that

A

g Yq(k, e)k = A

C' '='+'+ +-
A

(46)
since

C" '='+'+ +-
A

(4&) g [1+a(1—C„")]=A+eA—eA =A .

The Cz is plotted in Fig. 6(a). The physical significance
of C~ is that a small cluster is easy to form, requiring less
connections, while a large cluster is harder to make, re-
quiring more connections. This result is reminiscent of
paths on a Bethe lattice or Cayley tree. ' The connectivity

1 k
Y (k, e}=—1+@ 1 ——

A A

1+a k
1 —o-

k A

The result of Eq. (43) is exact to order e. For k « A,
C„"-k/A and

10—
A

(49)

thus

1.0 1.0
Y„(k «A, e«1)= e

1+

The Y„(k,e) is no longer scale invariant if eAO.

(50)

0.1

O.ol
10

O.OI
IOO

4. Regions of linear growth to exponential fallo+

Above x = 1, properties of the cluster size distribution
function are easily evaluated using the gamma function
or factorial representation of Y„(k,x). At integer values
of x, x =n, the evaluation of the gamma functions are
straightforward. For x ((A, the large clusters decrease
quickly with n:

B LINKAGE INTERPRETATION CA
I 2 3

—I-c
A—

I CI

4 A- I A
I I I t 3—y—+—~ C'

4 4- I A-2 CA

A-I I I=—+—~ + —+-~
A A A-I 3 2~

a-I ——+—+-. + —+ —+I
4 A A-I 3

FIG. 6. The connectivity function C& and a linkage interpre-
tation of C&. A break in the linear behavior of C„occurs a&hen

k becomes comparable to A.

Y ( A n) +2~n e
—n(lnA —Inn+1) (52)

Similarly,

Y„(A —l, n)= n
A n!

A —1 A(A+1) . . (n+A —1)
A

n Y„(A,n), (53}

n! n!Y„(A, n) = (51)A(A+1) . . (n+A —1)

Then, using Stirling s approximation n!=n "e "&2~n,
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Y ( A —2, n) = —n(n +1)Y ( A, n),A 1

A —22~ (54) For k =1, Y„(l, x ~ ~ )~ A. The above equation can
be rewritten as

and in general

Y„(A —m, n)

A n(n+1) . (n+m —1)
YY„A,n

A —m m!

Y (k x » A ) e
—(k —(nil(x/A)

A (63)

which is an exponential falloff with k for all k except
k =1. Taking the ln of both sides of Eq. (63) leads to the
following result:

(55)

The result of Eq. (52) is essentially an exponential de-
crease with n. By contrast, the small clusters increase
with n. For k =1,

ln Y„(k,x » A) =(k —l)ln —+ln —.A A

x k

6. Multiplicity distributions

(64)

A! I (n+ A —1)
( A —1)! I (n + A)

which reduces to

Y„(l, n) =n A

n+A —1

(56)

(57)

The multiplicity distribution is easily obtained from its
weight function

W„(x)=(—1)" S„x /[x (x +1) (x + A —I)] .

(65)

and for k =3,

n A(A+1)
2 (n+A —1)(n+A —2)

' (58)

Y (3 )
n A(A+1)(A+2)

(59)
3 (n + A —1)(n + A —2)(n + A —3)

The Y„(l,n) thus increases linearly with n, for n « A.
For k =2, The mean multiplicity &m &

= g mW&(x), and is evalu-
ated by noting mx =x(B/Bx)x . Thus

x (()/Bx)D„(x)
&m&=

D ()

In general,

n A (A +1) (A +k —1)
k (n+A —1)(n+A —2) . (n+A —k)

(60)

=1+ + + +x+1 x+2 x+ A —1

Here

D„(x)=x(x+1) . (x+A —1) .

(66)

Y„k=m, x = A

m —1

A 1+ 1

m (rn —1) m —1

(61)

Thus, the model predicts linear growth of small clusters
with x and exponential falloff with x of large clusters.
The small clusters grow at the expense of large clusters.
For A =200, the maximum values are Y„(2,x =A)
=25, Y„(3,x = A /2)= 10, Y„(4,x = A /3)= 5, Y„(5,x
= A /4)=3.

5. Region of total mnltifragmentation

When x ))A, the dominant cluster is the monomer.
The cluster size distribution function is

I~
—1

Ai 1 1 A AY„(k,x» A)—
(A —k)! kx" ' k x

(62)

The small clusters thus grow linearly with n =x for
x « A. The k =2 cluster reaches a maximum at x = A

and Y„(2,x =A)= A/8. The k =3 cluster reaches a
maximum at x = A /2 and Y„(3,x = A /2) =4A /81. In
general the small clusters, k =m && A, reaches a max-
imum at x = A /(m —1) and

—m

At x =0, & m & =1 since only one cluster of A elements is

present; at x =1,

&m &=1+-,'+ ' ' '+1/A =y+lnA,

and at x ~ ao, & m & ~ A since the fragmentation mode
approaches individual units or monomers. For A =200,
&rn &=5.88 and for A =10, &m &=53 at x =1. How
rapidly the mean multiplicity changes with x is deter-
mined by

1 2 A —1&m&= + + ~ ~ ~ +(x+1) (x +2) (x+ A —1)

(67)

The rate of change of & m & decreases uniformly with x.
Consequently, unit changes in m, hm =1, are stretched
out in x with increasing x since d & m & /dx —1/b, x,
where Ax is the interval size for producing a hm =1.
Also, the change in m, hm, per unit change in x, Ax = 1,
is decreasing with x since d & m &/dx —b, m/1 is decreas-
ing as already noted. In the interval from 0 to 1 in x,
Am =@+1nA, and the spacing in x for unit changes in m
is approximately
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Qx —1/( y+ ln A ) —1/ln A .

If this spacing were maintained from x =0 to x = A, the
multiplicity at x =A would be A lnA, which already
exceeds the limiting value m ~ A. Again, the appearance
of new modes of fragmentation requires larger changes in
x as x increases.

7. Fluctuations in the model

Fluctuations in various quantities can be obtained from
their respective weight functions. For example, rnultipli-
city functions can be obtained from W„(x). The mean
square multiplicity fiuctuation is & m ) —

& m ) and is
simply

&m'& —&m)'=x rn(x)=x, +,+ +d 1 2 A —1

(x+1) (x+2) (x+ A —1)2
(6g)

where m(x)=&m ) is given in Eq. (66). At x =0 and
x =ao, fluctuations in m vanish. At x =1, the fluctua-
tions are large and of the order of & m ) -ln A +y.

8. Cluster recombinations, growth, and coagulation

The domain of x is from 0 to ~. At x =0, the only
cluster present is the fused mode and at x = 00, mono-
mers only exist. A simple transformation can be made to
interchange the x =0 and x = 00 point. A specific choice
for such a mapping is

x =t, /t, (69)

t, I [A —k+(t, /t)]
Yq(k, t)=

k(A —k)! t I [A +(t, /t)]

and the multiplicity is

(70)

&m)=1+ + + + . (71)t+t t+2t t, +(A —1)t

Some specific properties of Y„(k,t) for the mapping of
Eq. (69) are

Y„(A,t &t, )= 1

A ' (72)

which will put the fused mode at t = ~, the x =1 point
at t =t„and the monomer point at t =0. The behavior
of Y„(k,t)= Yz (k,x = t, It), with t varying from 0 to co,
then shows a system evolving from single units to increas-
ingly more complex cluster configurations. With increas-
ing t, the smaller units go into making bigger clusters,
and clusters combine with other clusters and monorners
to make even bigger clusters. Since M2 favors
evaporation-like modes, this reverse process favors
single-unit pickup by clusters. However, a weight is
given to all cluster-cluster recombinations. At some
point (t =t, ) in the evolution to a fused mode, a scale-
invariant behavior emerges from the chaotic complexity
of recombination processes. In t space, the cluster size
distribution function is

and, in reduced t and near the self-similar point t, /t = 1,
this rate is

dY„(A, t &t, )

d(tlt, )

lnA

A
(75)

Other mappings such as x =(t, lt) only change this last
result by a multiplicative factor a, but have a more pro-
nounced effect away from t =t, . This last point will be
discussed elsewhere, as well as mappings onto a percola-
tion framework. Percolation studies of nuclear multifrag-
mentation have been studied in Refs. 35, 36, 37, and 38.

9. The cumulative mass distribution in diferent regions ofx

The cumulative mass distribution of Eq. (22) can be ob-
tained in different regions of x from the results of Eq.
(25). As already noted in Sec. IIB5, the x =1 solution
for the cumulative mass distribution is a uniform stair-
case function. Each rise of each step in Fig. 5 is the
same. Varying x will change the rise of each step, but the
end point of the staircase is still at (A, A). Changing x
also hammers the uniform bar of Fig. 5 into various
homogeneous forms. Some obvious limits for the cumu-
lative mass distribution are at x =0 and x~00. The
x =0 solution is a fused mode, and all the rise occurs in a
giant last step as shown in Fig. 7(a). The mass in the bar
is hammered so that all the mass is squeezed into the
right end. The x ~ ~ limit corresponds to all the mass
in rnonomers or single units, and the cumulative mass
distribution has all the rise at the beginning as shown in
Fig. 7(b). The bar is hammered so that all the mass is
now squeezed on the left end.

The evaporation-like region of Sec. II C 1 has a distri-
bution shown in Fig. 7(c), where the last step is a signal
from the remaining fused mode. Figure 7(d) is the result
for the cumulative mass distribution at x -2, which cor-
responds to the region of linear growth of small clusters
and exponential falloff of large clusters. For the case of
Fig. 7(c), the bar is hammered so that more of the mass is
right of the middle; for Fig. 7(d), the bar is hammered so
that more of the mass is left of the middle.

At,
YA(i, t)=

At +(t, t)—
The rate of growth of A with t, d Y„(A, t) Idt, is

dY„(A, t &t, )
lnA,

t2 f /1

(73)

(74)

D. Multifragmentation limit
and the Saha equation; evaporation

In Sec. II B of this paper a model for studying fragmen-
tation processes was proposed, and in Sec. II C solutions
to the model were studied in terms of a tuning parameter
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A. FUSED MODE

(A, A)

0
C. EVAPORATION

LI KE MODE

( A„,A)

B IVIONOME R MODE

0
D. LINEAR GROWTH/

EXPONENTIAL
FALL OFF

(A, A}

E„(j)
(77)

The energies E„(j) are measured from the ground-state
energy. The effects of Z "(j)will first be neglected. Com-
paring Eq. (76) with Eq. (62) in the limit N, —A, the x is
—V/vo. This result can be improved upon by noting
that the binding energy EB(j ) depends on j. In fact, tak-
ing for EB(j ) a form

The N, is the number of nucleons, EB(j ) is the binding
energy of a nucleus of j nucleons, and kB is the
Boltzmann's constant. The V is the equilibrium volume,
vo = h /(2m m k T) ~ with T the temperature and m the
mass of a nucleon. The Z*(j} is an internal partition
function of the composite (nucleus ofj nucleons} and is
given by a sum over ground and excited state contribu-
tions:

0
EB(j ) =aB(j —1)

gives

(78)

FIG. 7. The cumulative mass distribution. The cumulative
mass distribution is given for different regions of x. The regions
considered are as follows: part A, the x =0 fused mode; part B,
the x =00 all monomer mode; part C, the evaporation-like
mode; and part D, the region of linear growth of small clusters
and exponential falloff of large clusters.

x. In this subsection a specific application of the model is
studied. Specifically, the solution in the multifragmenta-
tion region given in Sec. III C 5 is compared with a previ-
ous model developed in Ref. 13. The model of Ref. 13
was used to study composite particle (cluster) formation
in relativistic heavy-ion collisions. Properties of the tun-
ing parameter x are obtained for this specific application.

The model of Ref. 13 uses the law of mass action, or,
equivalently, the Saha equation to obtain the distribu-
tion of composite particles. This work shows that an
equilibrium is established in the space-time evolution of a
collision between two heavy ions. Reaction rates for vari-
ous processes were calculated and found to be fast
enough to establish chemical and thermal equilibrium.
The concept of a freeze-out volume was introduced. This
volume is the largest volume over which an equilibrium is
established. Reaction rates fall much faster than expan-
sion rates in the space-time history of the collision and,
consequently, equilibrium laws apply to a brief period of
expansion. The model assumes that the distribution of
composite particles reAect a frozen-in equilibrium state.
The form of the law of mass action of chemical equilibri-
um is very similar to the result of Eq. (62). This similari-
ty is used to obtain an approximate expression for x.

A main result of Ref. 13 is an equation for the number
of nuclei with j nucleons, X . The division into protons
and neutrons is not considered here and spin will be
neglected. Then

B ~ & Ze(J. )
~ 3/2

Vp

—a~ /k~ T
e (79)

The backshifted form of Eq. (78) has the following prop-
erties. First, EB(j) is backshifted so that EB(1)=0; the
unit elements have no binding energy since they are not
composites. The binding energy per particle,

EB(J}lj =aBll —(1/j)],

y ( 1 (( 1 )
—lv/kT—lV/k T

A
v 0

(80)

can be found in Ref. 42, for evaporation of a particle into
a volume V. Thus, a binding energy enhancement factor
in the law of mass action becomes a barrier suppression

is less for small clusters than for large clusters:
EB(2)/2=aB/2, EB(3)I3=2aBI3, . . . , EB(j ))1)/j
~aB. The form of Eq. (78) neglects surface effects, j
dependence, Coulomb terms (for charged objects), sym-
metry energy terms (for two component systems), and
shell effects. A discussion of nuclear binding energies can
be found in Ref. 41. Neglect of these effects represents a
limitation of the model when applied to nuclear col-
lisions.

A comment will be made concerning the evaporation
limit. For low x, x « 1, the Y„(k,x) is given by Eq. (31).
For k =1 and A ))1, Y„(l, x « 1)=x. The exponential
part of x in Eq. (79) is exp( —aB /kT), and this factor acts
as a barrier against evaporation. The separation energy
or work function W for a particle is also az = W for Eq.
(78) and is an example of Koopman's theorem. Thus, as
x varies from x ((1 to x &) A, the work function barrier
against evaporation evolves into a Maxwell-Boltzmann
binding energy enhancement factor. Even the volume
part V/vp is correct in the evaporation limit. The
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factor in the evaporation limit of the model.
The contribution of the internal partition function to x

is not as easily obtained. Unlike binding energies, very
little is known about this quantity. The x of Eq. (79) is
modified to read

x— B B fe(Z)
Vp

where f*(T) is the contribution of Z "(j) to x. The con-
tribution of Z'(j) to f'(T) can be obtained in a manner
similar to that used to obtain the contribution of the
binding energy to x. Again, the monomer of single ele-
ments has no internal excitations. Any exponential j
dependence in Z'(j) can be backshifted by j—+(j —1).
The Z'(j) has contributions from vibrations, rotations,
single-particle excitations, many-particle —many-hole exci-
tations, etc. A low-lying high-spin state can make a large
contribution because of the spin degeneracy factor 2J+1
in an internal partition function. Some discussion of
Z*(j) can be found in Refs. 13, 18, 43, and 44.

Not only do bound states contribute to Z*(j) but also
continuum states, resonances, and echoes of them. For
example, the partition function for the hydrogen atom
diverges when only bound states are considered, but is
finite when continuum contributions are included. In
fact as T~~, the continuum part exactly cancels the
bound state contribution because of Levinson's theorem.
For the nuclear case, a study of Z*(j) was made for j=2
using nucleon-nucleon phase shifts. ' Indeed, echoes (de-
creasing phase shifts) tend to cancel bound state or "reso-
nant" (increasing phase shifts) contributions to Z'(j).
For heavy systems (large j), Fermi gas calculations of
Z'(j) (Ref. 43) have been given but these calculations
give very large values of Z'(j) as discussed in Ref. 44.
Reference 44 proposes an arbitrary cutoff in Z "(j) which
was used in Ref. 17. A possible form for x is

Up

az
exp

k~T
kqT

Ep

TQ

T+TQ
(82)

III. SUMMARY

This paper proposes a model which may be used to
study fragmentation phenomena. The model is exactly

The ep is the nuclear level density parameter and is about
8 MeV from experiment. The Tp is an arbitrary cutoff'

temperature. The mass dependence of (j Z*(j)) in Eq.
(76) is taken to be j ' so as to generate the simple solu-
tion given in this paper. Until a better understanding of
internal partition functions is developed, the form of Eq.
(82) can only be considered an approximate representa-
tion. The model discussed here was introduced to cap-
ture some of the essences of the different fragmentation
modes rather than the individual details of them.

soluble in all regimes of an evolutionary tuning parame-
ter. As this evolutionary parameter is varied, various
modes of fragmentation rise and fall. A whole spectrum
of fragmentation schemes from the simplest to the most
complex are contained in one simple expression. The
spectrum ranges from a totally fused mode, to
evaporation-like modes, to scale-invariant power law be-
havior, to regions of linear growth of small clusters and
exponential falloff of large clusters, to total multifrag-
mentation. Properties of the multiplicity distribution of
fragments are developed.

The proposed model gives rise to an exact hyperbolic
power law behavior in the cluster size distribution func-
tion at a particular value of the evolutionary tuning pa-
rameter. At this point, the frequency of occurrence of a
cluster of a given size becomes scale invariant. Changing
the length scale does not change the distribution law.
Each row in Young's triangular lattice of partitions has a
distribution law of cluster sizes identical to any other
row. Cellular rules are given for generating rows on this
triangular lattice. Row by row, the law Y„(k)=1/k, for
k =1,2, . . . , A evolves as A is increased and the end
point on the hyperbola at k = A is moved one step over
as A ~ A +1. A rotation of Ferrer's block diagrams of
partitions was proposed and a collision of two systems
was viewed as a tumbling of blocks o6' two columns
which represent the target and projectile partitions.

The cumulative mass distribution of the cluster size
distribution function was found to have a staircase behav-
ior near the self-similar point. The continuous limit of
the staircase function is that of a uniform bar. This uni-
form bar may be hammered in various ways. One way
was to vary the evolutionary tuning parameter which
produced various homogeneous distributions. Another,
more exotic way, which was presented for its mathemati-
cal curiosity rather than its physical realizability, results
in Cantor's devil's staircase.

Finally, the solution in the multifragmentation region
is compared to results of a model of composite particle
formation based on the Saha equation or law of mass ac-
tion. Properties of the tuning parameter x are partly
developed for this specific comparison. The evaporation
limit for this choice of x is also discussed and the result
contains exponential barrier suppression factors.
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